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In this paper we consider expectation values for Hamiltonians bilinear in the fields. These ex-
pectation values are closely related to normal ordering, which was used by Wick [1] to determine
expectation values for the quantum case. There are various approaches to obtain these results. An
alternative approach which allows an algebraic formulation for perturbation theory can be found for
example in [2]. The author does not claim, that the material given below is new.

1 Expectation values for bilinear Hamiltonians

In this section a systematic way to evaluate the expectation values of products of fields for Hamiltoni-
ans bilinear in the fields is given. This holds both for classical (commuting and anti-commuting) and
for quantum fields (bosons and fermions). As a result the expectation value can be expressed as the
sum (21 and 46).

1.1 Classical Fields

1.1.1 Real Fields

First we consider a Hamiltonian H bilinear in real fields φ

H =
1

2

∑

kl

φkMklφl. (1)

The matrix M is assumed to be symmetric. We assume moreover that the real parts of the eigenvalues
of M are positive. Then the integral over the partial derivative

∫

Dφ
∂

∂φm

(A(φ)e−H) = 0 (2)

vanishes where
∫

Dφ stands for the integral over all φk from −∞ to +∞. It is assumed, that A(φ)
does not increase too fast (a polynomial increase is allowed). Evaluation of the derivative yields

∫

Dφ
∂A

∂φm

e−H =

∫

Dφ
∑

l

MmlφlA(φ)e
−H . (3)

After division by the partition function
∫

Dφe−H we obtain for the expectation values

<
∂A(φ)

∂φm

>=
∑

l

Mml < φlA(φ) > . (4)

Multiplication of this equation by M−1 yields

< φmA(φ) >=
∑

l

(M−1)ml <
∂A(φ)

φl

> . (5)
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In particular for A = φn one obtains

< φmφn >= (M−1)mn (6)

and thus

< φmA(φ) >=
∑

l

< φmφl ><
∂A(φ)

∂φl

>, (7)

which is our result.

1.1.2 Complex Fields

Similarly one may introduce a Hamiltonian

H =
∑

kl

φ⋆
kMklφl (8)

In order to evaluate the partition function or expectation values one has to integrate independently
over the real and the imaginary parts of the φk. Thus

Dφ =
∏

k

(dℜφkdℑφl). (9)

The derivatives are defined so that

∂φ

∂φ
= 1,

∂φ

∂φ⋆
= 0,

∂φ⋆

∂φ
= 0,

∂φ⋆

∂φ⋆
= 1. (10)

This can be achieved with

∂

∂φ
=

1

2
(

∂

∂ℜφ
− i

∂

∂ℑφ
),

∂

∂φ⋆
=

1

2
(

∂

∂ℜφ
+ i

∂

∂ℑφ
). (11)

Then the derivation of

< φmφ⋆
n > = (M−1)mn, (12)

< φ⋆
mA > =

∑

l

< φ⋆
mφl ><

∂A

∂φl

>, (13)

< φmA > =
∑

l

< φmφ⋆
l ><

∂A

∂φ⋆
l

> . (14)

runs parallel to that given for real fields. A more general Hamiltonian is

H =
∑

kl

φ⋆
kMklφl +

1

2

∑

kl

φ⋆
kM

′
klφ

⋆
l +

1

2

∑

kl

φkM
′′
klφl (15)

with symmetric M ′ and M ′′. Then

< φ⋆
mA > =

∑

l

< φ⋆
mφl ><

∂A

∂φl

> +
∑

l

< φ⋆
mφ⋆

l ><
∂A

∂φ⋆
l

>, (16)

< φmA > =
∑

l

< φmφl ><
∂A

∂φl

> +
∑

l

< φmφ⋆
l ><

∂A

∂φ⋆
l

> . (17)

Basically φ⋆ and φ can be considered to be independent fields.
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1.1.3 Grassmannian Fields and Superfields

In classical electrodynamics the electromagnetic field is described by real fields. In quantum electro-
dynamics the fields are quantized and described by bosonic creation and annihilation operators. Our
world consists not only of bosons but also of fermions. The classical counterpart of fermionic fields
are Grassmann variables which anticommute. One can also introduce a Hamiltonian H, eq. (1) for
anticommuting fields. If the fields φ are Grassmannian, then M has to be antisymmetric. We require
that M−1 exists. Then M has to be of even dimension. Noting that the integral over Grassmannian
fields is defined by

∫

dφA =
∂A

∂φ
(18)

it is obvious that eq.(2) holds for Grassmannian fields too, since the second derivative with respect
to a Grassmannian variable vanishes, since due to the anticommutativity the square of a Grassmann
variable vanishes. Then the derivation of eq. (7) is completely analogous. For A(φ) one chooses an
odd element of the algebra. Odd (even) means a sum of products each of which contains in total an
odd (even) number of Grassmann variables. One may also choose both commuting and anticommuting
fields (superfields). If φk is commuting and φl is anticommuting, then Mkl = −Mlk should be odd
elements of the algebra, so that H is an even element of the algebra.

1.1.4 Remarks

Let us denote a linear combination of fields φ and φ⋆ by γ. Then apparently

< γA >=
∑

l

< γφl ><
∂A

∂φl

> +
∑

l

< γφ⋆
l ><

∂A

∂φ⋆
l

> (19)

holds. Using the identity
∑

l

φl

∂

∂φl

γ +
∑

l

φ⋆
l

∂

∂φ⋆
l

γ = γ. (20)

we obtain for a product of fields γ

< γ1γ2...γ2n >=
2n
∑

k=2

(±)k < γ1γk ><
2n
∏

l=2,l 6=k

γl >, (21)

which yields recursively a sum of (2n− 1)!! products of n factors < γkγl >. The upper sign holds for
commuting fields, the lower for anticommuting ones. In the case of the Hamiltonian (8) the number
of terms reduces to n!, since no anomalous terms < φφ > and < φ⋆φ⋆ > appear. This expansion is
often referred to as Wick’s theorem.

1.2 Quantum Fields

1.2.1 Bosons

We show, that a similar theorem holds for a Hamiltonian H which is bilinear in the creation and
annihilation operators c† and c of bosons in the form

< c†kA > = −
∑

l

< c†kcl >< [c†l , A] > +
∑

l

< c†kc
†
l >< [cl, A] >, (22)

< ckA > = −
∑

l

< ckcl >< [c†l , A] > +
∑

l

< ckc
†
l >< [cl, A] > . (23)

We start with
0 = tr([c†k, Ae

−βH ]) = tr([c†k, A]e
−βH) + tr(A[c†k, e

−βH ]) (24)

and a similar equation in which c†k is replaced by ck.
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In a next step we have to evaluate the commutator [c†k, e
−βH ]. We introduce the column vector

(

c†

c

)

. Since the commutator with H is linear in the creation and annihilation operators, we may

write

[

(

c†

c

)

, H] = −M

(

c†

c

)

(25)

with a coefficient matrix M , which within a Lie algebra is denoted by adH. From this we obtain

(

c†

c

)

(1− αH) = (1− αH)(1 + αM)

(

c†

c

)

+O(α2). (26)

From e−βH = limn→∞(1− βH
n
)n one obtains

(

c†

c

)

e−βH = e−βHeβM
(

c†

c

)

(27)

and therefore

tr(A[

(

c†

c

)

, e−βH ]) = (eβM − 1)tr(

(

c†

c

)

Ae−βH), (28)

< [

(

c†

c

)

, A] > = (1− eβM ) <

(

c†

c

)

A > (29)

or

<

(

c†

c

)

A >= (1− eβM )−1 < [

(

c†

c

)

, A] > . (30)

I introduce now in place of A the row vector
(

−c c†
)

where transposition is not explicitly indicated.
Then

< [

(

c†

c

)

, A] >=<

(

[c†,−c] [c†, c†]
[c,−c] [c, c†]

)

> (31)

is the unit matrix and thus

<

(

c†

c

)

(

−c c†
)

>= (1− eβM )−1 (32)

which yields for bosons

<

(

c†

c

)

A >=<

(

c†

c

)

(

−c c†
)

>< [

(

c†

c

)

, A] > . (33)

If written in components one has the form as given above in eqs.(22) and (23).

1.2.2 Fermions

For fermions the derivation has to be modified. Then one obtains

< c†kA > =
∑

l

< c†kcl >< {c†l , A} > +
∑

l

< c†kc
†
l >< {cl, A} >, (34)

< ckA > =
∑

l

< ckcl >< {c†l , A} > +
∑

l

< ckc
†
l >< {cl, A} > . (35)

Since the only nonvanishing contributions come from products of an even number of creation and
annihilation operators, A has to contain products of an odd number of such operators. Therefore I
introduce the anticommutators {c†, A} and {c, A} and have

0 = tr([c†k, Ae
−βH ]) = tr({c†k, A}e

−βH)− tr(A{c†k, e
−βH}). (36)

4



Analogously to the bosons eqs.(25,26,27) hold for fermions. Therefore one obtains

tr(A{

(

c†

c

)

, e−βH}) = (eβM + 1) <

(

c†

c

)

A > (37)

or

<

(

c†

c

)

A >= (1 + eβM )−1 < {

(

c†

c

)

, A} > . (38)

With A =
(

c c†
)

this yields

< {

(

c†

c

)

, A} >=<

(

{c†, c} {c†, c†}
{c, c} {c, c†}

)

> (39)

with the right hand side being the unit matrix, so that

<

(

c†

c

)

(

c c†
)

>= (1 + eβM )−1. (40)

Thus we obtain

<

(

c†

c

)

A >=<

(

c†

c

)

(

c c†
)

>< {

(

c†

c

)

, A} >, (41)

which are the equations (34) and (35) for fermions.

1.2.3 Remarks

(i) Especially for a diagonal Hamiltonian H =
∑

k ǫkc
†
kck M becomes diagonal with M =

(

ǫ 0
0 −ǫ

)

.

From these one obtains the well-known distributions of bosons and fermions.
(ii) Obviously a linear combination γ of operators c† and c obeys

< γA >= −
∑

l

< γcl >< [c†l , A] > +
∑

l

< γc†l >< [cl, A] > (42)

for bosons and
< γA >=

∑

l

< γcl >< {c†l , A} > +
∑

l

< γc†l >< {cl, A} > (43)

for fermions. Moreover a linear combination γ′ of operators c† and c reproduces under the operation

−
∑

l

cl[c
†
l , γ

′] +
∑

l

c†l [cl, γ
′] = γ′ (44)

for bosons and
∑

l

cl{c
†
l , γ

′}+
∑

l

c†l {cl, γ
′} = γ′ (45)

for fermions. Thus for a product of such operators γl one has

< γ1γ2...γ2n >=

2n
∑

k=2

(±)k < γ1γk ><

2n
∏

l=2,l 6=k

γl >, (46)

which yields recursively a sum of (2n− 1)!! products of n factors < γkγl >. The upper sign holds for
bosons, the lower for fermions. In the original version of Wick the creation and annihilation operators
are often rotated by H, ak(t) = eiHtake

−iHt. These time-dependent operators are still linear in the
original ones due to eq. (27).

(iii) Comparing the theorem for classical fields eqs. (7, 13-14,16-17) with that of quantum fields
eqs. (22-23, 34-35) we observe that in the classical case we have on the right hand side the derivative of
A with respect to a field whereas in the quantum case we have the (anti-)commutator of a creation or
annihilation operator with A. We note, that the (anti-)commutator has basically the same effect like
a derivative since the (anti-)commutator with a creation operator removes an annihilation operator
and vice versa from a product of operators.
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2 Wick’s theorems and Normal Ordering

2.1 Bosons

2.1.1 Definition of normal ordering

In this section Wick’s theorems [1] and the normal ordering of Bose fields are introduced. In the fol-
lowing I denote by ak any linear combination of Bose creation and annihilation operators. I introduce
a matrix G, which normally describes the correlations of the operators a for a Hamiltonian H bilinear
in the creation and annihilation operators (free theory)

< akal >= Gkl (47)

These matrix-elements are called contractions. What we really need for the definition of normal
ordering is only, that the commutator of the operators obeys

[ak, al] = Gkl −Glk (48)

The following is also valid for classical commutating fields for which of course Gkl = Glk.
Normal ordering of an operator A denoted by : A : is now defined by

: 1 : = 1, (49)

: αA(a) + βB(a) : = α : A(a) : +β : B(a) :, (50)

ak : A(a) : = : akA(a) : +
∑

l

Gkl :
∂A(a)

∂al
: (51)

where α and β are c-numbers. The second of these three equations defines normal ordering as a linear
procedure. (rule A of Wick). The third one is a recurrence relation (mentioned by Wick after rule C”,
who however introduces multiplication of ak from the right), and the first one sets the initial step.

2.1.2 Product of two normal ordered operators

We may now iterate the third equation

ak : A(a) : = : (ak +
∑

kl

Gkl

∂

∂al
)A(a) : (52)

ak1
ak2

: A(a) : = : (ak1
+

∑

l1

Gk1l1

∂

∂al1
)(ak2

+
∑

l2

Gk2l2

∂

∂al2
)A(a) : (53)

from which we conclude

ak1
ak2

...akm
=: (ak1

+
∑

l1

Gk1l1

∂

∂al1
)(ak2

+
∑

l2

Gk2l2

∂

∂al2
)...akm

: (54)

which can also be written as

ak1
ak2

...akm
=: exp(

∑

Gkl

∂2

∂aleftk ∂arightl

)ak1
ak2

...akm
: . (55)

This is Wicks first theorem. The superscripts left and right indicate that we always pick a pair of
factors a and perform the derivative ∂/∂ak on the left factor and the derivative ∂/∂al on the right
factor, so that the factor Gkl depends on the sequence of the operators. The exponential appears in
the equation for the following reason. If we perform the operation G∂2/∂a∂a on m pairs of factors a,
then there are due to the permutation symmetry m! contributions. Therefore in order to obtain the
contribution with factor one we have to divide the m-th power of G∂2/∂a∂a by m!, which yields the
exponential.
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Similarly one obtains

: ak1
ak2

...akm
:= exp(−

∑

Gkl

∂2

∂aleftk ∂arightl

)ak1
ak2

...akm
. (56)

In order to obtain the product of two normal ordered operators one can combine

: A(a) :: B(a) := exp(
∑

Gkl(−
∂2

∂aleftk ∂arightl

−
∂2

∂bleftk ∂brightl

))A(a)B(b)|b=a (57)

and

A(a)B(b) =: exp(
∑

Gkl(
∂2

∂aleftk ∂arightl

+
∂2

∂bleftk ∂brightl

+
∂2

∂ak∂bl
))A(a)B(b) : (58)

which yields the formula for the product of two normal ordered operators

: A(a) :: B(a) :=: exp(
∑

Gkl

∂2

∂ak∂bl
)A(a)B(b) : |b=a (59)

This is Wick’s second theorem.

2.1.3 Commutative Law under Normal Ordering

Now we show, that under normal ordering the commutative law holds. For this purpose we write

: ak1
ak2

...akm
:= (ak1

−
∑

l1

Gk1l1

∂

∂al1
)(ak2

−
∑

l2

Gk2l2

∂

∂al2
)...akm

(60)

Let us now exchange the factors akn
and akn+1

on the left hand side of this equation. Then on the
right hand side we have to take the commutator

[(akn
−

∑

ln

Gknln

∂

∂aln
), (akn+1

−
∑

ln+1

Gkn+1ln+1

∂

∂aln+1

)]

= [akn
, akn+1

]−Gkn,kn+1
+Gkn+1kn

= 0. (61)

The normal ordered product is invariant under exchange of the two operators akn
and akn+1

due to
eq. (48)

: ak1
ak2

...akn
akn+1

...akm
:=: ak1

ak2
...akn+1

akn
...akm

: (62)

Application of this law several times yields generally

: ABCD :=: ACBD : . (63)

This is rule C of Wick.

2.1.4 Expectation Values

Finally we consider expectation values of normal ordered products with respect to H. I begin with

<: akA(a) :>=< ak : A(a) :> −
∑

l

Gkl <:
∂A(a)

∂al
:> (64)

The first term on the right hand side of this equation can be written according to eq.(42) and the
following remark

< ak : A(a) :>=
∑

l

< akal ><:
∂A(a)

∂al
:>, (65)

so that both terms cancel,
<: akA(a) :>= 0 (66)
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Since all contributions to an operator but a constant can be written as sums of such expressions we
obtain

<: A(a) :>= A(a = 0). (67)

Now suppose P and Q are homogeneous polynomials of order n and m in the fields, resp. Then the
product : P :: Q : contains in the normal ordered form terms of order n+m, n+m− 2, ... |n−m| in
the fields. Thus <: P :: Q :> vanishes unless n = m.

2.2 Other Fields

2.2.1 Classical Fields

The same ideas can be applied for classical fields.
In particular for a real field φ we find that apart from an overall factor : φn : is the Hermitean

polynomial of order n in φ since it is orthogonal with respect to a Gaussian weight function to all
: φm : with m < n.

For classical fields there is no necessity to distinguish between the superscripts left and right in
eqs. (55-56). Instead one introduces one half of the unrestricted sum

∑

kl

Gkl

∂2

∂aleftk ∂arightl

→
1

2

∑

kl

Gkl

∂2

∂ak∂al
. (68)

This type of normal ordering is typically e.g. for the eigenoperators in a φ4 theory in first order in
4− d in an expansion around d=4 dimensions ([3], eqs. (3.176, 3.177)).

2.2.2 Fermions

For fermions one can basically use the same reasoning. It has only to be considered, that fermions
anticommute. Therefore eq. (48) has to be replaced by

{ak, al} = Gkl +Glk. (69)

For classical anticommuting fields one has Gkl = −Glk. It has to be observed that ∂
∂al

ak = δkl−ak
∂

∂al

and that in the second derivatives in the exponentials the derivative with respect to aleft has to be
performed before aright. Thus Wick’s theorem eq.(59) has to be written

: A(a) :: B(a) :=: exp(
∑

Gkl

∂2

∂bl∂ak
)A(a)B(b) : |b=a. (70)

The commutative law under normal ordering eq.(63) reads now

: ABCD := ± : ACBD : (71)

where the minus sign applies if B and C are both odd elements of the algebra and the plus sign if B
or C is an even element.

2.2.3 Hartree-Fock Approximation

The Hamiltonian of a system of fermions

H =
∑

ks

ǫkc
†
kscks +

1

2

∑

kk′qss′

V (k, k′, q)c†ksc
†
k′s′ck′+qs′ck−qs (72)

can be rewritten in normal-ordered form as

H = E0 +H1 +H2, (73)

E0 =
∑

ks

ǫk < c†kscks > +
1

2

∑

kk′qss′

V (k, k′, q)(< c†ksck−qs >< c†k′s′ck′+qs′ >
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− < c†ksck′+qs′ >< c†k′s′ck−qs > + < c†ksc
†
k′s′ >< ck′+qs′ck−qs >), (74)

H1 =
∑

ks

ǫk : c†kscks : +
1

2

∑

kk′qss′

V (k, k′, q)

(< c†ksck−qs >: c†k′s′ck′+qs′ : + < c†k′s′ck′+qs′ >: c†ksck−qs :

− < c†ksck′+qs′ >: c†k′s′ck−qs : − < c†k′s′ck−qs >: c†ksck′+qs′ :

+ < c†ksc
†
k′s′ >: ck′+qs′ck−qs : + < ck′+qs′ck−qs >: c†ksc

†
k′s′ :), (75)

H2 =
1

2

∑

kk′qss′

V (k, k′, q) : c†ksc
†
k′s′ck′+qs′ck−qs : . (76)

Within the Hartee-Fock scheme the last term H2 is neglected. The expectation values < ... > are
determined as a function of the one-particle Hamiltonian H1 and the temperature in a self-consistent
way. One has to choose the solution with the lowest free energy (including E0). The second term in
E0 and the second and third term of H1 are the Hartree- (direct) contributions, the third term in E0

and the fourth and fifth term in H1 are the Fock- (exchange) contributions. The fourth term in E0

and the sixth and seventh term in H1 are the Bogoliubov- (anomalous) contributions, which appear
in the superconducting state.
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