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Abstract. Motion and generation of forces by single cells and cell collectives are essential elements of
many biological processes, including development, wound healing and cancer cell migration. Quantitative
wound healing assays have demonstrated that cell monolayers can be both dynamic and elastic at the
same time. However, it is very challenging to model this combination with conventional approaches. Here
we introduce an elastic phase field approach that allows us to predict the dynamics of elastic sheets
under the action of active stresses and localized forces, e.g. from leader cells. Our method ensures elastic
reversibility after release of forces. We demonstrate its potential by studying several paradigmatic situations
and geometries relevant for single cells and cell monolayers, including elastic bars, contractile discs and
expanding monolayers with leader cells.

1 Introduction

Cell and tissue mechanics is an essential element of many
physiological processes, including development, tissue ho-
meostasis and wound healing [1,2]. Both single cells and
cell collectives are highly dynamic. For animal cells, fluo-
rescence-based experiments have shown that subcellular
structures like the actomyosin cortex, lamellipodia and
adhesion complexes turn over on the timescale of min-
utes, despite their function to provide mechanical stabil-
ity to cells and tissues [3–5]. In most developing and even
in some homeostatic tissues (notably skin and intestine),
there exists a constant flow of cells [6]. Together, these ob-
servations suggest that biological systems should be vis-
cous rather than elastic on large time scales, at least in
the absence of extracellular matrix [7].

Surprisingly, recent experiments with epithelial mono-
layers did reveal elastic signatures despite the high cellular
and subcellular dynamics. The standard setup in this con-
text is the so-called wound healing assay. In these exper-
iments, cell monolayers of well-defined geometry migrate
into free space created by the removal of a straight bar-
rier. This setup has been used to quantify cellular velocity
fields, traction forces and intramonolayer tension [8–10].
Several new effects have been discovered, including plitho-
taxis [11] and collective durotaxis [12].

Very important in our context, it has been shown that
one can extract a linear relation between stress and strain,
thus defining an elastic modulus [13]. This agrees with the
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results of experiments that stretch free-standing mono-
layers without adhesion, from which a well-defined elastic
modulus can be extracted [14,15]. Later it has been argued
that the seemingly elastic signature in expanding mono-
layers can also be explained as an emergent property of
an active fluid with a purely viscous material law [16].

Three phenomena that have received special atten-
tion in the context of the wound healing assay are me-
chanical waves, interface protrusions with leader cells and
monolayer organization at boundaries. Mechanical waves
in expanding epithelial monolayers were discovered with
traction force microscopy and initially explained by re-
peated cycles of cytoskeleton fluidization and reinforce-
ment [17]. Later it was shown that both an elastic ma-
terial law [18] or a viscous material law [19] can explain
their origin. A similar situation exists for the finger-like
protrusions that are often observed to form at the wound
margin [8]. Reminscent of fingering in flow cells, these pro-
trusions are often explained by viscous theories that in-
clude mechanisms for wavelength selection [20]. Recently,
however, it has been shown that these protrusions tend
to have a characteristic distance between each other that
can be explained by the elastic properties of the mono-
layer [21]. Experiments with circular wounds and mono-
layer flow around obstacles have also provided evidence
for both elastic and viscous processes in cell monolayers.
While flow around a circular obstacle has been shown to
be described best by the Maxwell model for viscoelastic
fluids [22], the mechanical properties around a gap seem
to correspond more to those of the Kelvin-Voigt model for
a viscoelastic solid [23–25].
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Taken together, a growing body of experimental and
modelling results suggest that cell monolayers are highly
dynamic and reconcile both viscous and elastic signatures.
However, the identification of the appropriate material law
is often not clear and might strongly depend on the con-
text. Rather than extending the ongoing discussion of vis-
cous versus elastic laws in a continuum mechanics frame-
work, here we suggest a new approach that brings together
these two aspects in a different mathematical framework,
namely the phase field method. It is nowadays widely used,
e.g., for vesicle dynamics [26], actin gel growth [27] or for
the crawling motility of single [28,29] or collectives [30] of
cells, but to date has not been applied to the (bulk) elastic
aspects of cells and cell monolayers. For these elastic as-
pects, we resort to standard elasticity theory, which here
we turn into a dynamic description by coupling it to the
phase field. In fact the phase field method has already a
tradition for problems involving elasticity, especially for
fracture mechanics [31,32] and stress-induced instabili-
ties [33,34]. However, because they address irreversible
problems like fracture, these existing implementations are
typically not reversible under a removal of the forces and
stresses. They hence are not adapted to the biological sit-
uation described above, which requires the combination of
dynamics and reversible elasticity. Reversibility has been
shown e.g. by optogenetics, when cells return to a homeo-
static level of contraction after transient stimulation of
motor activity [35].

The aim of this work is to define and test a novel elas-
tic phase field approach that is reversible under release of
forces and stresses, and to apply it to few simple model
problems suggested by single cell and cell monolayer ex-
periments. It is organized as follows. First, in sect. 2 we
briefly review the phase field method, how elastic stresses
have to be defined, and how previous studies incorporated
elastic effects. We show that reversibility, one of the hall-
marks of elasticity and the fact that after a release of
the applied forces the system should go back to its initial
state, is not recovered in the existing approaches. There-
fore, in sect. 3 we propose a novel way to couple elasticity
to the phase field via an imbalance of forces at short times
that allows to drive the phase field interfaces. After testing
the approach in one dimension, in sect. 4 we extend the
approach to two-dimensional sheets and show that both
reversibility and the Poisson effect, another hallmark of
elasticity, are captured. Finally, in sect. 5 we discuss sev-
eral applications of the method in the context of cells and
cell monolayers, namely: a contractile cell (or cell sheet)
adhering to a substrate, a hole in a contractile cell mono-
layer, a contractile cell pinned via strong focal adhesions,
and the formation of a finger-like protrusion driven by a lo-
calized force at the boundary, cf. sketches (a)-(d) in fig. 1.
We conclude by discussions and conclusions in sect. 6.

2 Standard elastic phase field approach

Partial differential equations with moving boundaries are
difficult to solve numerically since the position of the latter
has to be tracked to impose the boundary conditions at ev-

(a) (b)

(c) (d)

Fig. 1. Sketches of the model ingredients and the geometries
studied using the developed approach: (a) a circular elastic cell
(modulus E, Poisson ratio ν) of small thickness d compared
to its in-plane extensions (radius r0) experiences an isotropic
contractile stress (σ0) while adhering to the substrate via a
homogeneous density of springs with spring constant density
Y . (b) A circular hole in a contractile cell monolayer. (c) A
contractile cell pinned at the corners by focal adhesions. (d) A
finger-like protrusion, similar as occurring in wound healing,
forming due to a localized force at the initially straight bound-
ary of a cell monolayer.

ery time point. An alternative, efficient solution strategy is
the phase field method, originally developed for solidifica-
tion and crystal growth [36,37]. In this method, the sharp
boundaries are replaced by diffusive ones at the cost of in-
troducing an additional auxiliary field, the so-called phase
field ρ(r, t). It distinguishes two bulk “phases”, assigning
to each one a constant value, with smooth transition re-
gions in between, identified with the boundaries or inter-
faces. This method has been now widely applied to many
physical systems, such as fracture mechanics [31], vesicles
in flow [26], actin gel growth [27] and cell motility [29]. De-
tailed descriptions of the application of this approach to
a variety of problems can be found in specialized reviews,
e.g. for microstructure evolution [38], solidification [39],
soft matter systems [40] and biological cells [41].

The method associates a free energy functional with
free energy density f(ρ) to the phase field

F [ρ] =
∫

V

f(ρ)dV =
∫

V

[
1
2
D(∇ρ)2 + g(ρ)

]
dV, (1)

where D describes the cost of creating interfaces and
sets the width of the diffusive interfaces (∝

√
D), and

g(ρ) = ρ2(1 − ρ)2 is a double-well potential with minima
at ρ = 0 and ρ = 1. The choice of the double-well poten-
tial is not unique, but the two phases should be minima
and the given choice is the simplest one. Assuming re-
laxational dynamics, the dynamic equation for the phase
field is then given by the functional derivative of the above
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energy functional

∂ρ

∂t
= DΔρ − ∂g(ρ)

∂ρ
. (2)

Let us now assume that both phases, described by the
regions where ρ = 0 and ρ = 1, respectively, are elastic
materials. In order to couple the phase field to the elas-
tic variables, first an expression for the stress field in the
whole domain is needed. Assuming both materials are lin-
early elastic and isotropic, for each phase one has Hooke’s
law [42],

σij = 2μεij + λεkkδij , (3)

with the strain field εij and Lamé coefficients μ and λ that
can be different in the two materials, and the respective
elastic energy density

fel =
1
2
σijεij =

1
2
λεjjεkk + μεijεij . (4)

To define the stress tensor in the whole domain, one
interpolates by writing

Σij(ρ) = h(ρ)σ1
ij + (1 − h(ρ))σ0

ij , (5)

with σ0
ij and σ1

ij the stresses in the materials described by
ρ = 0 and 1, respectively, and an interpolation function
h(ρ) = ρ2(3 − 2ρ) [27,34]. This function is, again, not
unique, but it should have values 0 and 1 for the phases
0 and 1, respectively. The given choice has in addition a
minimum for 0 and a maximum for 1.

Mechanical equilibrium is described by ∇ · σ + f =
0 [42], with f an external force density. The same relation
should hold for the stress in the phase field sense, i.e.

∇ · Σ + f = 0, (6)

with Σ being defined in eq. (5). Note that the divergence
operator then generates several terms, including deriva-
tives of the interpolation field h(ρ) and hence of ρ. Similar
to the stress field, the elastic energy can be interpolated
by replacing σij by Σij in eq. (4), resulting in

fel(ρ) = h(ρ)f1
el + (1 − h(ρ))f0

el. (7)

The standard approach to couple elasticity to the
phase field dynamics is to add the interpolated (and
hence phase field-dependent) elastic energy to the free en-
ergy density of the phase field defined in eq. (1), ftot =
f(ρ)+fel(ρ) [27,32–34,43–45]. Again performing the func-
tional derivative, this results in

∂ρ

∂t
= DΔρ − ∂g(ρ)

∂ρ
− ∂h(ρ)

∂ρ

(
f1

el − f0
el

)
, (8)

where the new term can be interpreted as a driving force
for the phase field due to elasticity. Since ∂h(ρ)/∂ρ is a
positive function peaked at the phase field interface, the
phase field (associated to phase 1) will advance if f1

el > f0
el

and retract otherwise. For example, consider the stress-
induced surface instability (Grinfeld instability) [33,34],

where phase 0 is the outside, non-material phase (hence
f0

el = 0) and phase 1 is under stress (hence f1
el > 0).

Consequently, phase 1 will grow —in fact, because of in-
compressibility, by undulating its surface— to release the
stress. Note that eq. (8) has to be solved together with
eq. (6) describing mechanical equilibrium.

The standard elastic phase field approach describes
situations in which elastic deformations drive changes in
the position of a domain. However, it does not describe
any elastic relaxation back to the original configuration.
The reason is that in eq. (8) only the elastic energy en-
ters, which is quadratic in deformation (or, equivalently,
in stress). Hence a sign change of the applied force f does
not lead to a sign change in the driving force term (last
term of that equation) and the interface does not go back.
We should note that for the problems treated with eq. (8)
so far, this “non-reversibility” was not a problem: in frac-
ture mechanics problems of brittle materials, when the
material is broken, it does not close under release of the
force [32,43]. Similarly, in ref. [27] the growth of an actin
gel was modeled, but the healing/depolymerisation of the
gel was not considered. However, for many other situations
of interest, and in particular for cell monolayers as exten-
sively discussed in the introduction, a phase field approach
with elastic reversibility would be highly desirable.

3 Reversible elastic phase field approach

We now propose an alternative approach to couple the
elasticity to the phase field dynamics, which is able to re-
cover the reversibility of linear elasticity. To make it more
transparent, we first describe it in one spatial dimension
(1D). The generalization to two dimensions (2D) is then
described in the next section.

The idea is as follows: the phase field should be re-
garded as a numerical method to describe deforming or
moving boundaries. As such, although this may be con-
venient, its dynamics does not need to be the functional
derivative of a potential. We propose to keep the phase
field potential defined in eq. (1), but to implement the cou-
pling to elasticity via forces instead of energy. We hence
write for the phase field dynamics

∂ρ

∂t
= D

∂2ρ

∂x2
− ∂g(ρ)

∂ρ
− α

(
∂Σ

∂x
+ F

)
∂ρ

∂x
. (9)

The last term should be interpreted as follows: the term in
brackets is the sum of the internal elastic force (1D diver-
gence of stress) and the external force density F (we use
F here to avoid confusion with the free energy density).
At mechanical equilibrium, this sum is zero and hence the
whole term vanishes and the interface described by the
phase field is stationary. If there is an imbalance of forces,
however, the interface will be advected in the direction
of this force imbalance due to the term ∂ρ/∂x. This pro-
ceeds until the phase field has attained a new shape ful-
filling force balance, where mechanical equilibrium again
holds and the movement stops. α is a coupling parameter
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(a mobility or inverse friction), setting the characteristic
velocity of this movement.

The question now arises how to implement the elas-
tic movement during the times of force imbalance. One
could think of various choices, depending on the system
to be modeled. In the soft matter and biology context,
one would argue that motion should be overdamped. The
simplest assumption then is a relaxational (overdamped)
dynamics for the displacement field,

ξ
∂u

∂t
=

∂Σ

∂x
+ F, (10)

where ξ is a friction coefficient setting the relaxation time-
scale into mechanical equilibrium.

The dynamics of eqs. (9) and (10) then is as follows: let
us assume we start with a stationary phase field (for the
standard phase field in 1D, this corresponds to a tanh(x)-
profile) and vanishing displacement field u(x) = 0. If we
apply a force F (specified in detail below) at the phase
field boundary, as the stress in eq. (10) is zero, u will in-
crease with a certain timescale proportional to ξ. This will
lead to a build-up of stress until mechanical equilibrium is
reached via eq. (10) and at the same time the phase field
interface moves via eq. (9) because of the transient force
imbalance.

In order to ensure the independence of the phase field
dynamics on ξ, the coupling parameter α should be pro-
portional to the inverse of ξ. This becomes clear by rec-
ognizing that the right hand side of eq. (10) is the driv-
ing term of eq. (9). We chose α = 1/ξ since this yields
indeed consistent results, meaning that the phase field in-
terface moves as far as the displacement field at the initial
boundary indicates, independent of ξ. In turn, ξ should
be chosen as small as possible to minimize computational
costs, although for a specific system of interest, the exact
choice should depend on microscopic details. We use an
implicit scheme (Crank-Nicolson) to solve eq. (10), while
the phase field dynamics is solved by the Fourier pseudo-
spectral method.

We now test the proposed modeling approach with an
instructive example, namely an elastic bar. In 1D, with the
ρ = 1 phase describing an elastic material with Young’s
modulus E and the ρ = 0 phase being empty space, the
stress is simply given by Σ = h(ρ)Eε = h(ρ)E∂u/∂x.
The externally applied force density in eq. (10) has to
be modeled in the phase field sense. That means, if one
wants to apply a force at the boundary, which is diffuse,
also the force has to be smeared out. As it should converge
to a delta-function in the sharp-interface limit, we choose
a Gaussian force profile

F (x, t) =
Fmax√
2πυ2

exp
[
− (x − x0(ρ))2

2υ2

]
, (11)

with an amplitude Fmax and a width given by the vari-
ance υ2. For consistency, the latter should be chosen in
a similar range as the width of the phase field interface.
As the force should be always located at the boundary, its
position is phase field-dependent. We hence assume the
mean x0(ρ) to be always located at the position where

∂ρ/∂x is maximum, which is the simplest identification of
the boundary position in the phase field approach.

Finally, there is one more thing to take into account: if
the interface moves backwards, i.e. if the domain shrinks,
one has to assure that the displacement field is suppressed
in what will become the outside of the domain, where
no material and hence no displacement field exists. This
problem is easy to remedy by adding a suppression term
to eq. (10) for the displacement field

ξ
∂u

∂t
=

∂Σ

∂x
+ F − γ[1 − h(ρ)]u. (12)

One sees that the new suppression term is active only in
the outside, is linear in u and has a rate γ.

Since the suppression term is active also in the in-
terface region, as a consequence the total force actually
applied to the domain is not the integral

∫
F (x)dx of the

Gaussian force. Rather, the integral of the last two terms
in (12),

Feff =
∫

[F (x) − γ(1 − h(ρ(x)))u(x)] dx, (13)

should be regarded as the total applied force, which we
will call “effective force” in the following.

A numerical implementation of our scheme shows that
it is indeed able to describe the reversible dynamics of a 1D
domain after the release of an applied force as predicted
by linear elasticity. This is demonstrated in figs. 2 and 3,
where eqs. (9) and (12), i.e.

∂ρ

∂t
= D

∂2ρ

∂x2
− ∂g(ρ)

∂ρ
−

(
∂u

∂t

)
∂ρ

∂x
, (14)

ξ
∂u

∂t
=

∂Σ

∂x
+ F − γ[1 − h(ρ)]u. (15)

were solved numerically for a 1D domain of length 2L0

under both extension and compression, i.e. with a force
couple F applied (with opposite sign) on both sides. Fig-
ure 2 shows the reversibility: the black symbols and solid
black curve show the phase field before and after the ac-
tion of the force. Because they lie on top of each other,
our model is reversible. The dashed curve shows the phase
field during the action of the force, after its movement has
stopped and before relaxation by removal of the force. The
corresponding displacement fields are shown in red: before
application of the force (symbols), during application of
the force (dashed, linear profile in bulk) and after force
removal (solid flat line). Again it behaves exactly as ex-
pected for a reversible model.

Figure 3 compares the obtained stationary, mechanical
equilibrium state to the analytical solution of the elastic
problem. Here the red solid curve is the numerically ob-
tained displacement field. The symbols show the analyti-
cal solution of the underlying elasticity problem, which is
u(x) = Fextx/E, where Fext is given by the effectively ap-
plied force, eq. (13), obtained using the numerical solution
without any fitting parameter. In the bulk, the numerical
displacement is indeed linear with the correct slope, until
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Fig. 2. Results for a force being applied and then removed
again on the boundary of a 1D elastic domain. The black sym-
bols display the phase field before the action of the force, while
the black dashed and solid curves are at mechanical equilibrium
after application of the force and after release of the force and
relaxation, respectively. The same is shown for the displace-
ment field in red: before (symbols) and after (dashed) applica-
tion of the force, after force removal (solid). Panel (a) shows
extension and panel (b) shows compression. One can see that
the model well describes reversible linear elasticity: upon ap-
plication of the force a linear displacement field emerges inside
the domain, the interface (described by the phase field) moves,
and after removal of the force the interface moves back and the
displacement goes back to zero. The simulation was performed
with N = 1024 grid points and time step Δt = 0.005. Param-
eters: L0 = 25, D = ξ = 1, E = 1000, Fmax = 100, 2υ2 = 2.5,
γ = 10.

it rapidly transits to zero at the boundary (since it has
to vanish in the outside where there is no material). The
blue curve shows the shape of the integrand of eq. (13),
normalized by the total effective force Feff . The peak at
the interface corresponds to the applied force density and
the dip outside to the local suppression of u. Obviously
the dip cannot be neglected and is important to obtain
the excellent agreement with the analytical solution.

Apart from applying forces at the boundaries, we also
checked the approach under the action of a constant ho-
mogeneous internal stress inside the material. This also
works and is explained in more detail for the 2D case of a
contractile cell sheet in sect. 5.1.
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Fig. 3. Result of the 1D model when mechanical equilibrium
has been reached after the application of a force at the bound-
ary. The numerical displacement field (red solid curve) is com-
pared to the analytical result for the underlying elasticity prob-
lem with the effective force Feff , eq. (13), obtained directly
from the simulation, as the applied force. The blue curve is the
integrand of eq. (13), normalized by the total effective force
Feff . Parameters as in fig. 2.

4 Two-dimensional elastic sheets

Having detailed the model for the case of a 1D elastic do-
main, it is not difficult to generalize to higher dimensions
and to study more complex geometries. As we are aiming
at quasi-two-dimensional cell monolayers and cell sheets,
the generalization to 2D involves the fields ρ = ρ(x, y, t)
and u = (ux(x, y, t), uy(x, y, t)) and reads

∂ρ

∂t
= DΔρ − ∂g(ρ)

∂ρ
+

√
2Dg(ρ)κ −

(
∂u

∂t

)
· ∇ρ, (16)

ξ
∂u

∂t
= ∇ · Σ + F − γ(F ) [1 − h(ρ)] u. (17)

Here a new term appears that is related to κ, the 2D
curvature of the interface. The curvature can be calculated
from the phase field via κ = −∇ · (∇ρ/|∇ρ|). In practise,
its calculation can be restricted to the region around the
interface, because the prefactor rapidly goes to zero away
from the interface. This term is needed to correct for the
known effect of the used phase field potential to shrink
curved interfaces [46–48]. Otherwise eq. (17) is formally
identical to the 1D version. We note that the stress as
defined by eqs. (5), (3) now involves the 2D plane stress
Lamé coefficients

μ2D =
Ed

2(1 + ν)
, λ2D =

Edν

1 − ν2
, (18)

where d is the thickness of the layer, assumed to be much
smaller than the in-plane dimensions.

As in 1D, we again suppress displacement outside
the moving elastic domain. We now write the damping
term in eq. (17) as γ(F ) = γ0 + γ1(F ). The use of two
terms make the procedure more flexible and in particular
allows us to adapt to the Poisson effect, which leads to
movement at free boundaries that are not directly pulled
by an external force.
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Fig. 4. Results for the displacements ux (blue) and uy (red)
of a rectangular elastic sheet under uniaxial tension in x-
direction. The solid curves show the numerical result while
the dashed lines the analytical one (for an infinite sheet), both
normalized to the respective sheet dimension Li. (a) For γ0 = 0
and γ1 = 1 one obtains very good agreement within the bulk
phase ρ = 1. (b) For global suppression γ0 �= 0 (here γ0 = 0.35
and γ1 = 0.65), to remove artefacts under release of the forces,
deviations from the linearity of the displacements in the ρ = 1
phase appear and their decrease towards the outside phase
starts earlier. Simulations were performed on a 512 × 512 grid
with time step Δt = 0.001. The parameters of the sheet are
Lx = 25, Ly = 20, d = 0.1, E = 1000, ν = 0.5; the force
was applied all along both x-boundaries with Fmax = 10 and
2υ2

x = 2.5. Other parameters: D = 1, ξ = 0.1.

Figure 4 demonstrates the applicability of the method
to 2D elastic systems by simulating the elastic bar in
2D, thus including the Poisson effect. We simulated
eqs. (16), (17) for a rectangular 2D sheet of dimensions
Lx = 25 and Ly = 20 under uniaxial tension, implemented
by a force couple F with opposite signs applied at the
two interfaces in the x-direction. Therefore the two inter-
faces in the y-direction are free boundaries. Figure 4 shows
the displacement in force direction ux(x, 0) (along the one
symmetry axis of the sheet) in blue and the displacement
orthogonal to the force direction, uy(0, y) (along the other
symmetry axis) in red. The dashed lines are the analyti-
cal results1 for an infinite sheet, ux(x, 0) = Feffx/E and

1 Note that in the analytical result, both Young’s modulus
and the force per area Feff are 3D quantities, while in the nu-

-1 -0.5 0 0.5 1
x/Lx

-1

-0.5

0

0.5

1

y/
L y

Fig. 5. Displacement field for the rectangular elastic sheet
under uniaxial tension in x-direction, as described in fig. 4.
The initial interface (blue) of the sheet is shown together with
the one at mechanical equilibrium (red), both defined as the
ρ = 0.5-isocurves. One can clearly see the Poisson effect with
a contraction in y-direction due to the sheet extension under
the force in x-direction. Parameters as in fig. 4(a), i.e. with
γ0 = 0. On the scale of the whole sheet as shown in this figure,
there is no visible difference for γ0 �= 0.

uy(0, y) = −νFeffy/E, where ν is the Poisson ratio, the
figure showing the incompressible case, ν = 0.5.

The results depend on the choice of the damping co-
efficients for the displacement outside the elastic domain.
Figure 4(a) shows the result for γ1 = 1 (suppression at re-
gions with large force) and γ0 = 0 (no global suppression).
One can see that the Poisson effect is indeed very well
captured. Figure 4(b) shows the result including a small
global suppression, γ0 = 0.35 and γ1 = 0.65. The Pois-
son effect is still captured well, but the displacement in
the normal direction is not perfectly linear (probably also
due to edge effects) and slightly underestimated close to
the boundary. Despite this slight disadvantage, the second
version is favorable in regard to reversibility. If the force is
released, for the suppression parameters as in (b) the sys-
tem is completely reversible, while for the version shown
in (a) the phase field retracts back but leaves some dis-
placement artefacts, that can even accumulate to a peak
in the outside region. In conclusion, our approach yields
reversibility, but it comes at the cost of resolving the Pois-
son effect less accurately. Obviously, if needed, the latter
accuracy can still be improved by decreasing D and by
using a finer grid resolution.

merical realization in 2D plane stress, Fmax already takes into
account the layer height d. Hence to compare the numerical
and analytical results, Feff has to be devided by d.
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Fig. 6. Displacement field in the direction perpendicular to
the applied force F for different values of the Poisson ratio
ν = 0.5 (incompressible) down to ν = 0 by steps of 0.1 (red to
black). Clearly, the approach is best suited for large Poisson
ratios. Parameters as in fig. 4(a), i.e. γ0 = 0.

Figure 5 shows the full 2D displacement field, u =
(ux, uy), as arrows. In addition, the domain’s initial in-
terface (defined by the ρ = 0.5-isocurve) is shown in blue
and the domain’s interface after application of the force
and reaching mechanical equilibrium in red. Clearly, be-
yond the mid sections shown in fig. 4, the behavior is well
captured: The left and right boundaries move under the
acting force and the upper and lower boundaries, where
no force is acting, retract due to the Poisson effect. Only
the corners lightly round up, which however is a known
feature for the phase field method, related to the wall en-
ergy being removed only to leading order by the correction
term (∝ κ) in eq. (16). In general, as most geometries of
interest in soft matter and biological systems do not show
corners, this is not a strong weakness.

Finally, fig. 6 investigates different values for the Pois-
son ratio. From the figure (obtained for the case γ0 = 0)
one sees that for lower values of the Poisson ratio, the sim-
ulations agree less well with the analytical results. Again
this is not a strong weakness as in soft matter and bi-
ological systems, we are usually interested in close-to-
incompressible materials. Moreover the overall trends are
captured well for lower Poisson ratios as well. For ν = 0
the method experiences problems due to insufficient res-
olution and, probably, edge effects. As expected, for the
case with global suppression (γ �= 0) the agreement wors-
ens. Nevertheless, alternative approaches are either not
reversible at all (as discussed above) or only work for the
incompressible case [49].

5 Application to cells and cell monolayers

Having validated the approach for passive 2D elastic do-
mains deformed by external forces, we will now discuss
its usefulness to describe biological systems that deform
themselves due to active internal forces. More specifically,
we will now use the developed elastic phase field approach
to investigate several archetypical geometries, as aleady
sketched in fig. 1.

Cells and cell monolayers continuously generate inter-
nal forces to probe the mechanics of their environment,
to stabilize their interactions with the environment and
to control their shape and mechanics. In order to address
this biological situation, we have to include two important
aspects in our modelling approach, namely internal con-
tractility and adhesion to the underlying surface. Regard-
ing contractility, single cells and cell sheets are known to
be contractile due to myosin II motors actively contract-
ing the actin cytoskeleton [50]. For epithelial monolayers,
this contraction is coherent over very large distances (hun-
dreds of micrometers) due to the strong cohesion provided
by the cadherin-based adherens junctions [51,21]. Such a
global contractility can be modeled on a coarse scale by
adding an isotropic contractile stress σ0 < 0 to the con-
stitutive relation from eq. (3):

σij = 2μεij + (λεkk + σ0d) δij . (19)

For simplicity, we here consider only a homogeneous, time-
independent contractile stress, but clearly the method is
also applicable for time-dependent and spatially inhomo-
geneous active stresses σ0(x, y, t).

Regarding adhesion, cells and cell monolayers are con-
nected to the substrate through a layer of integrin-media-
ted adhesions. This adhesion layer allows for exchange of
information and for mechanical coupling between cells and
their substrates [52]. Cell-matrix adhesion to the substrate
has been extensively characterized with traction force mi-
croscopy [53,54]. A simple approach to model an adhesive
soft interface that transmits force is the so-called elastic
foundation [55–58]. Here one assumes a homogeneous sur-
face coverage with springs of spring constant density Y
(measured in N/m3) positioned between a stiff substrate
and the cell. This leads to an additional contribution to
the force balance, eq. (6), reading

Fsub = −Y u. (20)

In the dynamics, this term simply enters the r.h.s. of
eq. (17).

Finally, the case of very strong adhesions can also be
modeled by defining regions A where both the phase field
and the displacement field are pinned, i.e. via the bound-
ary condition

∂tρ|A = 0 = ∂tu|A, u|A = 0. (21)

With these rather simple ingredients added, we are now
prepared to model the specific geometries relevant for cell
and cell monolayer statics and dynamics, as sketched in
fig. 1.

5.1 Contractile cell adhering to a substrate

We first address the contractile elastic disk on an elas-
tic foundation, cf. fig. 1(a), which constitutes a simple
model for an adherent cell or cell monolayer [55–58]. This
model has been used before to explain the characteristic
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Fig. 7. Radial displacement field of a uniformly contracting
disk, cf. fig. 1(a), of initial radius r0 = 25 with contractil-
ity σ0 = 3182 and adhering to substrates with different stiff-
nesses Y = 250 (red), Y = 500 (blue), Y = 1000 (green) and
Y = 2000 (violet). The symbols show the analytical solution,
eq. (22). The inset demonstrates the reversibility (for Y = 500
in blue, Y = 250 in red), the black curve indicating the ini-
tial phase field profile, the colored solid curves the profiles at
mechanical equilibrium under stress and the symbols those af-
ter stress release and relaxation. Simulations were performed
on a N = 512 × 512 grid with timestep Δt = 10−4 (10−5 for
Y = 250). Other parameters: E = 5000, ν = 0.45, d = 1,
D = ξ = 1, γ0 = 0.35, Fmax = γ1 = 0. The obtained disk radii
at mechanical equilibrium are rc = 23.24 (Y = 250), rc = 23.83
(Y = 500), rc = 24.41 (Y = 1000) and rc = 24.61 (Y = 2000).

localization of traction forces at the cell or cell layer pe-
riphery. Important in our context, an analytical solution
is known [55] and the radial displacement field is given by

ur(r) = −l
σ0d

λ + 2μ

I1( r
l )

I0( r0
l ) − 2μ

λ+2μ
l

r0
I1( r0

l )
. (22)

Here l =
√

Ed/Y (1 − ν2) is the localization length, which
combines the moduli and dimension of the disk with the
substrate stiffness, i.e. the spring stiffness density, Y . I0

and I1 are the modified Bessel functions of the first kind.
Figure 7 shows results of phase field simulations for an

elastic disk of radius r0 = 25 under the action of a strong
homogeneous contractile stress and for different values of
the substrate spring stiffness density Y . The agreement
of the displacement field, which by symmetry is only ra-
dial, with the analytical solution is very good inside the
bulk material. At the interface, the displacement smoothly
crosses over to zero in the no-material region.

Note that to make this comparison, in eq. (22) one
has to account for two effects: first, the initial disk radius
r0 has to be replaced by rc, the current radius, since the
displacement field moves with the phase field. Second, in
analogy to sect. 3 where the damping γ reduced the ap-
plied force, here the contractile stress is reduced. Hence
similar to the effective force given in eq. (13), here an ef-
fective (radial) stress is acting that is given by

σ0,effd = σ0d − γ0 + Y

rc

∫
(1 − h(ρ))ur r dr, (23)

where rc is again the current radius of the disk. Note that
to get this good agreement, the contribution of the sub-
strate spring stiffness density Y in the interface region has
also to be accounted for2.

The inset of fig. 7 investigates the reversibility. It
should be noted that the used stress value is rather high,
so deformations are only small for large stiffnesses Y .
Nevertheless, the reversibility is well captured down to
Y = 250 implying displacements of order 10%. We never-
theless should give the warning that for too large displace-
ments (i.e. large σ0 and/or small Y ), reversibility may be
no longer complete, because the phase field model includes
non-linear effects associated to the large scale motion of
its interface that go beyond linear elasticity.

Let us briefly discuss the orders of magnitude of the
parameters used. The equations we solve have been made
dimensionless by assuming a typical length scale of 1 μm
(for cell layers we use 10μm) and a force scale of 1 pN. In
the example shown in fig. 7, this corresponds to a strongly
spreading cell of diameter 50μm, thickness 1μm and mod-
ulus E = 5kPa creating a contractile stress σ0 ∼ 3.15 kPa.
The values for the spring stiffness densities Y are in the
range 0.25–2 nN/μm3. This demonstrates that the method
is working well in the range of parameters relevant for the
aimed at biological problems. The actual values for the
following examples are in a similar range.

5.2 Contractile cell monolayer with a hole

Motivated by earlier work on wound closure [25,24,59–63],
as a second test case we modeled a hole (devoid of cells) in
a cell monolayer under isotropic contraction, as sketched
in fig. 1(b).

If adhesion to the substrate is not considered the ana-
lytical solution for a hole of radius r0 in an infinite mono-
layer under an isotropic stress σ0 is given by [64]

ur(r) =
1 + ν

E

σ0r
2
0

r
, (24)

yielding a long-ranged 1/r-decay. In the numerical imple-
mentation we have to apply periodic boundary conditions,
corresponding to a regular array of holes. The result for
the radial displacement field for a hole of r0 = 10 is shown
in fig. 8 for three different system sizes L = 200, 300,
400 (colored curves) and compared to the analytical solu-
tion (dashed). One can see that the —most interesting—
part of the displacement close to the hole is well captured,
while the long-ranged decay suffers from finite size effects
that become smaller for larger system sizes. The inset of

2 The interpretation is that, while inside the cell’s domain
(i.e. underneath the cell) the springs reduce the displacement
as elastic elements should do, their effect outside the cell and
in the diffuse interface is indistinguishable of the implemented
damping term ∝ γ. Note that the effect is large in the given
case, since the displacement is largest at the boundary and Y is
large, but it can be reduced by decreasing the interface width
of the phase field.
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Fig. 8. A hole of initial size r0 = 10 in a contractile cell
monolayer, cf. fig. 1(b). Shown is the radial displacement field
at mechanical equilibrium, scaled by the final hole radius. The
colored solid curves are numerical results and the black dashed
curve is the analytical result for an infinite monolayer. The be-
havior close to the hole is well captured, but one can clearly
see finite size effects due to the applied periodic boundary con-
ditions, with monolayer in-plane dimension L = 200 (red),
L = 300 (blue), L = 400 (green). The inset again confirms re-
versibility (for L = 200). N = 512× 512 grid with Δt = 0.001.
Other parameters: E = 1000, ν = 0.5, d = 0.1, D = ξ = 1,
σ0 = 75, γ0 = 0.35, Fmax = γ1 = Y = 0. Final hole radii:
rc = 10.94 (L = 200), rc = 11.13 (L = 300), rc = 10.94
(L = 400).

fig. 8 again confirms the reversibility after the release of
the stress.

Note that to make this comparison —as already ex-
plained in the previous section— in eq. (24) one again has
to use the current radius rc instead of r0 and σ0,eff as
given by eq. (23), where Y = 0 in the present case.

5.3 Contractile cell pinned at focal adhesions

Studying cells on micropatterned adhesive substrates has
a long tradition in cell biology and biophysics [65–67]. To-
day this approach is used on a routine level to mimic the
behaviour of different cell types in their physiological envi-
ronment, which is more structured than a glass or plastic
dish [52]. We envision that our new model approach can
be used in the future to simulate mechanosensitive cell
behaviour in such environments.

With this motivation, we next studied another test
case as sketched in fig. 1(c): A cell was pinned to the cor-
ners of a (25 × 25) square by strong focal adhesions. The
latter were implemented as being centered around the four
corners, where we draw circles of radius rA = 3 wherein
the rigid boundary condition, eq. (21), was applied. We
then allowed the cell to contract under an isotropic stress
(here σ0 = 400).

In mechanical equilibrium the cell’s boundaries dis-
played invaginated arcs as shown in fig. 9(a) in red (cor-
responding to the ρ = 1/2−isocurve). The displacement
field is shown as arrows and the adhesion sites, where the
cell is pinned, as blue circles. To get a scalar quantification

Fig. 9. An initially square-shaped cell, pinned at its corners
by focal adhesions, cf. fig. 1(c), and contracted under a homo-
geneous internal stress σ0 = 400. Panel (a) shows the cell’s
contour (red) and the displacement field as arrows, after the
cell has reached mechanical equilibrium. Panel (b) shows the
normalized von Mises stress distribution (maximum stress cor-
responding to yellow given by σmax = 61.76). N = 512 × 512
grid with Δt = 10−6. Parameters: Lx = Ly = 25, corners are
pinned on radius rA = 3 as sketched, E = 1000, ν = 0.5,
d = 0.1, D = ξ = 1, γ0 = 0.35, Fmax = γ1 = Y = 0.

of the stress inside the cell, we calculated the von Mises
stress, which is defined (in plane stress) as

σvM =
√

σ2
xx + σ2

yy − σxxσyy + 3σxy. (25)

Note that in the phase field sense, σij was replaced by
the interpolated stress Σij . The result for the cell shape
shown in fig. 9(a) is given in fig. 9(b), where one can nicely
see the expected stress accummulation close to the pinned
corners.

We also checked that taking a small adhesion to the
substrate (with a spring stiffness density Y ) into account
—in addition to the pinning at the corners— does not
change the overall qualitative picture (not shown). In con-
trast, when we implemented only substrate adhesion via
a spring stiffness density Y , but no pinning, the square-
shaped cell did just contract homogeneously (in an affine
fashion), i.e. without displaying invaginations, and the
stress was highest in the center, as expected (not shown).

5.4 Finger formation in wound healing

As a last test case, we study finger formation at the bound-
ary of cell monolayers, cf. the sketch in fig. 1(d). Such
finger-like protrusions emerge spontaneously in wound
healing assays [8,10] and have attracted much atten-
tion recently, both experimentally and from the modeling
side [68–70]. Especially, it has been shown recently [21]
that the elasticity of the cell sheet is a determinant of the
emergence and the spacing of the fingers.

To study the emergence of fingers in our new model-
ing framework, we initialize a semi-infinite cell monolayer
with a straight boundary (at a fixed x0). We then apply
a localized force at and perpendicular to the boundary,
given in generalization of eq. (11) by

F =
Fmax

2πυxυy
exp

[
−

(
(x − x0)2

2υ2
x

+
(y − y0)2

2υ2
y

)]
ex. (26)
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Fig. 10. A finger forming at the initially straight boundary of a
cell sheet, cf. fig. 1(d), due to a localized (Gaussian) force acting
at the boundary as defined in eq. (26). Panel (a) shows the cell’s
boundary (red) and the displacement field as arrows, panel (b)
the normalized von Mises stress distribution (maximum stress
corresponding to yellow given by σmax = 31.97). N = 512×512
grid with Δt = 0.001. Parameters: Lx = 35, E = 1000, ν = 0.5,
d = 0.1, D = ξ = 1, Fmax = 200, 2υ2

x = 2υ2
x = 2.5, γ1 = 0.65,

γ0 = 0.35. Small values for contractility and substrate spring
stiffness density were used: σ0 = 1, Y = 0.5.

Note that again x0 = x0(ρ), i.e. the position where the
force is acting moves with the phase field and hence is
always acting at the boundary. This force mimics the effect
of a cell having decided to spontaneously migrate to invade
the free space not belonging to the epithelial monolayer,
dragging followers with it.

Our numerical results are shown in fig. 10. Panel (a)
shows the boundary of the monolayer in red and the dis-
placement field as arrows. Panel (b) is the calculated von
Mises stress, showing stress localization in the layer close
to the finger tip. Note that we added a small contractile
stress and a weak adhesion to the substrate here, other-
wise the displacement propagates even further inside the
layer. As in the former cases, for small forces the finger
formation is completely reversible.

6 Discussion and conclusions

Cells and cell monolayers are both elastic and dynamic at
the same time, making it very challenging to develop ap-
propriate mathematical models. The phase field approach
is very suitable for describing moving interfaces and ver-
sions accounting for elasticity have already been devel-
oped. However, existing elastic phase field approaches are
not reversible under release of forces. As this is crucial in
the biological context, e.g. when a protrusion first forms
and then relaxes again in a wound healing assay, here we
introduced a novel approach. It is based not on a total
phase field energy that includes the elastic energy, but
rather implements elasticity on the level of forces.

In order to validate the new approach, we performed
several tests in 1D and 2D. The Poisson effect is captured
best for close to incompressible materials. Care has to be
taken when using strong damping outside of the domain
(to ensure good reversibility) and when implementing
an elastic foundation, since both involve a rescaling of the
forces/stresses for finite widths of the phase field inter-
face. Accounting for this, we have shown that the method

is in agreement with all tests against analytical results
performed and is completely reversible for not too large
forces and stresses. Reversibility may become only partial
(i.e. the system does not go back completely to its initial
state) for higher forces or stresses. This is to be expected
since the phase field moving under the action of elastic
forces is an effect going beyond linear elasticity, and the
more so, the further the phase field boundaries move.

We applied the method to several standard situations
that are often studied experimentally for both single cells
and cell monolayers. Important features of biological sys-
tems, namely active stresses generated inside the layer
as well as both weak adhesion and strong pinning to
an underlying substrate can be integrated easily into the
method. All tests worked well, including reversibility, and
several features observed experimentally were well cap-
tured, such as the appearance of invaginated arcs and
stress focusing for strongly pinned contractile cells.

In the future, the method should prove very useful to
investigate dynamically self-organized forces and stresses,
especially concerning contractile cells pinned at focal ad-
hesions or finger formation and dynamics at monolayer
boundaries. Building on existing cellular phase field mod-
els, as additional features relevant to cell dynamics one
could implement actin filament orientation [29], concen-
tration fields [28], the effects of biochemical signaling like
the Rho-pathway [71], as well as adhesion and traction
force dynamics. The latter have been modeled previously
within the phase field approach [72,73] by introducing
reaction-diffusion kinetics for the engaged adhesive bonds,
transmitting traction forces on an elastic substrate, while
elasticity of the cell was disregarded. In the framework
proposed here, the simplest approach would be to let the
distribution of engaged adhesive bonds modulate the sub-
strate’s spring stiffness density. Furtheron, in view of the
viscoelastic flow behavior of monolayers migrating around
an obstacle [22], a generalization of the approach to dif-
ferent viscoelastic models [49] would be highly interesting.
We also envision extending our approach to multicellular
situations in which single cell resolution is required, by
using different phase fields for different cells [30,74–77].
The approach could be generalized to three dimensions, to
model e.g. cell spheroids or cells moving in strong confine-
ment [78]. In summary, the new method of reversible elas-
tic phase fields introduced here is expected to find many
interesting applications in modelling biological systems.
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