1 Häufig verwendete Variablen

Variable	Beschreibung [typ. Werte für Si in eckigen Klammern]
E_v	Energie des höchsten Zustandes im Valenzband
E_c	Energie des niedrigsten Zustandes im Leitungsband
E_g	Bandlücke $E_g = E_c - E_v [1.124eV]$
E_f	Fermi Energie (im undotierten Halbleiter ungefähr in der Mitte der Bandlücke)
E_i	Fermi Energie im undotierten (=intrinsischen) Halbleiter
n_0	Anzahldichte (in cm^{-3}) der e^- im Leitungsband im thermischen Gleichgewicht
n	Anzahldichte (in cm^{-3}) der e^- im Leitungsband (= n_0 im therm. Gleichg.)
Δn	Differenz von n zum Gleichgewichtswert: $\Delta n = n - n_0$
n_i	Intrinsische Konzentration im thermischen Gleichgewicht: $n_0 p_0 = n_i^2$ Relation gilt auch bei Dotierung solange therm. Gleichgew. $[1.1 \times 10^{10} cm^{-3}]$
p_0	Anzahldichte (in cm^{-3}) der Löcher im Valenzband im thermischen Gleichgewicht
p	Anzahldichte (in cm^{-3}) der Löcher im Valenzband (= p_0 im therm. Gleichg.)
Δp	Differenz von p zum Gleichgewichtswert: $\Delta p = p - p_0$
N_C	Effektive Zustandsdichte (in cm^{-3}) der e^- im Leitungsband $[2.9 \times 10^{19} cm^{-3}]$
N_V	Effektive Zustandsdichte (in cm^{-3}) der Löcher im Valenzband $[3.1 \times 10^{19} cm^{-3}]$
N_D	Anzahldichte (in cm^{-3}) der Donatoren Fremdatome $[10^{15}\dots 10^{20}cm^{-3}]$
N_A	Anzahldichte (in cm^{-3}) der Akzeptoren Fremdatome $[10^{15}\dots 10^{20}cm^{-3}]$