QFT I - Problem Set 1

For the one dimensional solid state lattice without nearest neighbor interaction, the Hamiltonian is

$$
H=\sum_{j}\left\{\frac{D}{2} Q_{j} Q_{j}+\frac{1}{2 M} P_{j} P_{j}\right\}
$$

We would like to add a so called self-interaction to this Hamiltonian, that is an interaction not with any neighbor but at the same lattice site j. Later in the lecture, you will see that self interactions of quartic powers are particularly important. So we are talking of the Hamiltonian

$$
H=\sum_{j}\left\{\frac{D}{2} Q_{j} Q_{j}+\frac{1}{2 M} P_{j} P_{j}+\lambda Q_{j} Q_{j} Q_{j} Q_{j}\right\}
$$

and in particular of the self-interaction piece

$$
H_{\text {self in. }}=\sum_{j} \lambda Q_{j} Q_{j} Q_{j} Q_{j} .
$$

Now, given the expression of Q_{j} in terms of creation and annihilation operators

$$
Q_{j}=\frac{1}{\sqrt{2}(D M)^{1 / 4}}\left(a_{j}+a_{j}^{\dagger}\right),
$$

and the Fourier decomposition of a and a^{\dagger},

$$
a_{j}=\frac{1}{\sqrt{\mathcal{N}}} \sum_{q} e^{i a q j} a_{q}, \quad \quad a_{j}^{\dagger}=\frac{1}{\sqrt{\mathcal{N}}} \sum_{q} e^{-i a q j} a_{q}^{\dagger},
$$

 but if you like, go ahead and convince yourself that you end up with quite some terms.
Hints: For our periodic lattice $\frac{1}{\mathcal{N}} \sum_{j} e^{i a j q}=\delta_{0, q}$, where q can be the sum of momenta, i.e. $q=q_{1}+q_{2}+q_{3}+\ldots$ in general. Which brings us to the final hint: each power of Q_{j} needs its own Fourier decomposition.

(2) One-Phonon State

Compute the mean square displacement for a one-phonon state in position space,

$$
\langle j| Q_{j}^{2}|j\rangle
$$

for
(a) an uncoupled phonon state,
(b) for a state with nearest-neighbor interactions.

Hints: Express Q_{j} in terms of creation and annihilation operators a_{j}^{\dagger}, a_{j}. For (b), figure out how the latter relate to the physical creation and annihilation operators A_{j}^{\dagger}, A_{j}.

