QFT I - PROBLEM SET 10

(19) LIE ALGEBRAS

We consider the exponential representation $e^{i\alpha_a X_a}$ of an unitary group. The generators X_a are hermitian operators and form a vector space. In general

$$e^{i\alpha_a X_a} e^{i\beta_b X_b} \neq e^{i(\alpha_a + \beta_b) X_a} ,$$

but as the elements form a group, it must hold

$$e^{i\alpha_a X_a} e^{i\beta_b X_b} = e^{i\delta_a X_a}$$

for some δ (summation over repeated indices is understood).

a) Show by expansion up to quadratic order in α and β

$$i\delta_a X_a = \ln\left(1 + e^{i\alpha_a X_a} e^{i\beta_b X_b} - 1\right) = i\alpha_a X_a + i\beta_b X_b - \frac{1}{2}[\alpha_a X_a, \beta_b X_b] + \dots$$

b) Show that the generators fulfill the following Lie algebra

$$[X_a, X_b] = i f_{abc} X_c \,.$$

The f_{abc} are called structure constants and summarize the entire group multiplication law. Show that $f_{abc} = -f_{bac}$ and that the f_{abc} are real (for a unitary representation).

Remark: Expanding beyond second order in a) yields no additional conditions to make sure that the group multiplication law is maintained.

c) As a simple and explicit example work out rotations in ordinary space (R^3) . You can write rotations around an axis of rotation $\mathbf{u}, (|\mathbf{u}| = 1)$ by the angle ϵ as

$$R(\mathbf{u},\epsilon) = e^{-i\epsilon\mathbf{u}\cdot\mathbf{J}} \,,$$

where the J_1, J_2, J_3 are the generators of the rotations around the x-, y-, z-axis. Show that these generators suffice the following Lie algebra

$$[J_i, J_j] = i\epsilon_{ijk}J_k \,.$$

Hint: One way is to directly construct adequate J's and to verify the algebra. But one can also deduce the algebra by studying two consecutive infinitesimal rotations in different order.

(20) POINCARÉ TRANSFORMATIONS

Poincaré transformations are linear transformations

$$x^{\mu} \to x^{\prime \mu} = \Lambda^{\mu}{}_{\nu}x^{\nu} + a^{\mu}$$
 or $x^{\prime} = \Lambda x + a$,

with the multiplication law

$$(\Lambda_2, a_2)(\Lambda_1, a_1) = (\Lambda_2 \Lambda_1, \Lambda_2 a_1 + a_2)$$

a) The unit element is (1, 0). What is the inverse $(\Lambda, a)^{-1}$?

The Lie algebra of the Poincaré group is generated by 4(4+1)/2 (four space-time dimensions) generators: the 4(4-1)/2 generators $M_{\mu\nu} = -M_{\nu\mu}$ of the Lorentz group and the 4 generators of the group of translations,

$$(\Lambda, a) = \exp\left\{\frac{i}{2}\omega^{\mu\nu}M_{\mu\nu} + ia^{\mu}P_{\mu}\right\},\,$$

where the variables $\omega^{\mu\nu}$ and a^{μ} parameterize the transformation. To get the full Poincaré algebra we need commutation relations of the infinitesimal Lorentz transformations and translations.

b) Observe that

$$(\Lambda, 0)(\mathbf{1}, a)(\Lambda, 0)^{-1} = (\mathbf{1}, \Lambda a).$$

Study this relation for infinitesimal translations and show

$$[P_{\rho}, M_{\mu\nu}] = i(\eta_{\rho\mu}P_{\nu} - \eta_{\rho\nu}P_{\mu}),$$

with $\eta = \text{diag}(-1, 1, 1, 1)$. *Hint:* $(M_{\mu\nu})_{\rho\sigma} = -i(\eta_{\mu\rho}\eta_{\nu\sigma} - \eta_{\nu\rho}\eta_{\mu\sigma})$. To summarize, the Poincaré algebra is (in this convention):

$$[M_{\mu\nu}, M_{\rho\sigma}] = -i(\eta_{\mu\rho}M_{\nu\sigma} + \eta_{\nu\sigma}M_{\mu\rho} - \eta_{\mu\sigma}M_{\nu\rho} - \eta_{\nu\rho}M_{\mu\sigma})$$

$$[P_{\rho}, M_{\mu\nu}] = i(\eta_{\rho\mu}P_{\nu} - \eta_{\rho\nu}P_{\mu})$$

$$[P_{\mu}, P_{\nu}] = 0.$$

(21) DIRAC MATRICES

Here, we would like to exercise a bit with gamma matrices. In the convention of the lecture the γ -matrices are

$$\gamma^k = \begin{pmatrix} 0 & -i\tau_k \\ i\tau_k & 0 \end{pmatrix}$$
, $k = 1, 2, 3$ and $\gamma^0 = \begin{pmatrix} 0 & -i\mathbf{1} \\ -i\mathbf{1} & 0 \end{pmatrix}$

where the τ_k , k = 1, 2, 3 are the Pauli matrices.

a) Show that the γ -matrices fulfill the Clifford algebra

$$\left\{\gamma^{\mu},\gamma^{\nu}\right\} = 2\eta^{\mu\nu}$$

and that $(\gamma^i)^2 = 1$ for i = 1, 2, 3 and $(\gamma^0)^2 = -1$.

As the square of a gamma matrix is hence $\pm 1,$ the largest ("fundamental") product of gamma matrices is the important

$$\gamma^5 = -i\gamma^0\gamma^1\gamma^2\gamma^3 = \left(\begin{array}{cc} \mathbf{1} & 0\\ 0 & -\mathbf{1} \end{array}\right) \,.$$

b) Show that

$$\{\gamma^{\mu}, \gamma^{5}\} = 0, \quad (\gamma^{5})^{2} = 1.$$

and

$$\left[\gamma^5, \sigma^{\mu\nu}\right] = 0 \,.$$

with $\sigma^{\mu\nu} = \frac{i}{2} [\gamma^{\mu}, \gamma^{\nu}].$