QFT I - Problem Set 11

To caution you from the onset: convince yourself that depending on the sign conventions of the metric (we chose $\left.\eta_{\mu \nu}=\operatorname{diag}(-1,1,1,1)\right)$, the Clifford algebra for γ^{μ}

$$
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \eta^{\mu \nu}
$$

can either yield $\left(\gamma^{0}\right)^{2}=-1$ (as it does for us) or $\left(\gamma^{0}\right)^{2}=1$. Correspondingly, in our conventions $\left(\gamma^{0}\right)^{\dagger}=-\gamma^{0}$, i.e. γ^{0} is anti-hermitian, γ^{i} hermitian and $\left(\gamma^{i}\right)^{2}=1$. Take a moment to think about the property of γ^{i} if we had chosen a different sign convention for η. Consulting a book without being aware of the conventions can thus be misleading, because relations might change by a sign.
The Dirac adjoint for a spinor Ψ and a (4×4) matrix A are defined as

$$
\begin{align*}
& \bar{\Psi}=\Psi^{\dagger} \gamma^{0} \tag{1}\\
& \bar{A}=\gamma^{0} A^{\dagger} \gamma^{0} . \tag{2}
\end{align*}
$$

a) Show that

$$
\begin{align*}
\overline{A B} & =-\bar{B} \bar{A} \tag{3}\\
(\bar{\chi} A \Psi)^{*} & =\bar{\Psi} \bar{A} \chi, \tag{4}
\end{align*}
$$

where χ and Ψ are spinors and A and B arbitrary (4x4) matrices.
b) Show that the condition for the bilinear $\bar{\Psi} A \Psi$ to be real, is

$$
\bar{A}=A
$$

Compute that the following matrices fulfill this requirement:

$$
\begin{align*}
\overline{i \mathbf{1}} & =i \mathbf{1} \tag{5}\\
\bar{\gamma}^{5} & =\gamma^{5} \tag{6}\\
\bar{\gamma}^{\mu} & =\gamma^{\mu} \tag{7}\\
\overline{\gamma^{\mu} \gamma^{5}} & =\gamma^{\mu} \gamma^{5} \tag{8}\\
\overline{i \sigma^{\mu \nu}} & =i \sigma^{\mu \nu}
\end{align*}
$$

As in total, there are 16 matrices $\left(i \mathbf{1}, 1 ; \gamma^{5}, 1 ; \gamma^{\mu}, 4 ; \gamma^{\mu} \gamma^{5}, 4 ; \sigma^{\mu \nu}, 6\right)$, they form a basis for all 4 x 4 matrices that obey $\bar{A}=A$, i.e. yield real bilinears.

Majorana Fermions

Consider the classical Majorana action

$$
\begin{equation*}
S=\int d^{4} x\left[i \chi^{\dagger} \bar{\tau}^{\mu} \partial_{\mu} \chi+\frac{i m}{2}\left(\chi^{T} \tau_{2} \chi-\chi^{\dagger} \tau_{2} \chi^{*}\right)\right] \tag{10}
\end{equation*}
$$

where χ are Grassmann valued 2-spinors and $\chi^{\dagger}:=\left(\chi^{*}\right)^{T}$ and $\bar{\tau}_{\mu}:=(1,-\vec{\tau})$.
a) Show that S is real (Hint: Remember the complex conjugation for Grassmann numbers $a, b:(a b)^{*}=b^{*} a^{*}=$ $-a^{*} b^{*}$.)
b) Derive the equations of motion for χ and χ^{*}.
c) Show that the resulting equations of motion are Lorentz invariant, and that they imply the Klein-Gordon equation $\left(\partial^{2}+m^{2}\right) \chi=0$.
d) Now consider the Dirac action

$$
\begin{equation*}
S=-i \int d^{4} x\left[\bar{\psi} \gamma^{\mu} \partial_{\mu} \psi+m \bar{\psi} \psi\right] \tag{11}
\end{equation*}
$$

with 4- (Dirac-) spinors $\psi=\left(\psi_{L}, \psi_{R}\right), \bar{\psi}=\psi^{\dagger} \gamma^{0}$. Write $\psi_{L}=\chi_{1}, \psi_{R}=i \tau_{2} \chi_{2}^{*}$ (reflecting that the transformation laws for left- and right-handed spinors are connected by complex conjugation) and express the action in terms of χ_{1}, χ_{2}. Compare the resulting Dirac mass term to the Majorana mass term.

