QFT I - Problem Set 3

Atom Propagator

Consider free nonrelativistic bosonic particles (noninteracting atoms) in a constant potential (e.g., a chemical potential μ). Their equation of motion is given by

$$
\left(\mathrm{i} \partial_{t}+\frac{\triangle}{2 M}-\mu\right) \hat{\phi}(x)=0
$$

Here, $x=(t, \boldsymbol{x})$ is a space-time coordinate. The probability amplitude for such a particle to move ("propagate") from $x_{0}=\left(t_{0}, \boldsymbol{x}_{0}\right)$ to $x=(t, \boldsymbol{x})$ for $t>t_{0}$ is given by

$$
P\left(x-x_{0}\right)=\theta\left(t-t_{0}\right)\left\langle x \mid x_{0}\right\rangle .
$$

The θ - function ensures causality, i.e. the fact that the condition $t>t_{0}$ must hold for a nonzero amplitude in a well-posed problem.
a) Write the matrix element $\left\langle x \mid x_{0}\right\rangle$ in terms of field operators.
b) Consider the action of the differential operator $\mathcal{D}=\mathrm{i} \partial_{t}+\frac{\Delta}{2 M}-\mu$ on the obtained expression. You should find that $P\left(x-x_{0}\right)$ is precisely the Green function of \mathcal{D}.
c) Find an explicit expression for $\tilde{P}(p), p=(E, \boldsymbol{p})$ in momentum space by Fourier transform of the result in b). \tilde{P} is the propagator in momentum space.
d) Knowing the propagator in momentum space transform it back to position space to obtain an explicit result for $P\left(x-x_{0}\right)$. In order to get the correct retarded causality perform the integration over the energy/frequency part with an infinitesimal imaginary constant $+i \epsilon(\epsilon>0)$ added to the denominator of the propagator $\tilde{P}(p)$ and use the following representation of the θ-function

$$
\begin{equation*}
\theta(\tau)=\lim _{\epsilon \rightarrow 0} \frac{-1}{2 \pi i} \int_{-\infty}^{\infty} \frac{d \omega e^{-i \omega \tau}}{\omega+i \epsilon} . \tag{1}
\end{equation*}
$$

After integrating over the energy/frequency part, you should find

$$
\begin{equation*}
P\left(x-x_{0}\right)=-i \int \frac{d^{3} p}{(2 \pi)^{3}} e^{i \boldsymbol{p} \cdot\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)-i\left[\frac{p^{2}}{2 M}+\mu\right]\left(t-t_{0}\right)} \theta\left(t-t_{0}\right) . \tag{2}
\end{equation*}
$$

What would change if you chose $\epsilon<0$ in the denominator of the propagator $\tilde{P}(p)$?
Finally, perform the remaining integration over the spatial momenta.

Potential Energy
This exercise might be a real eye-opener for you! We will consider the important case of two particles at positions \boldsymbol{x} and \boldsymbol{x}^{\prime} interacting via a potential that depends on their distance $\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|$ only, $V=$ $V\left(\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|\right)$. Suppose that the Hilbert space of our theory accommodates states with $0,1,2, \ldots$ particles at positions $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots$. Let us label the states $\left|\boldsymbol{x}_{1} \boldsymbol{x}_{2} \ldots\right\rangle$. To place a particle at some position \boldsymbol{y}, you simply have to act with the creation operator $a^{\dagger}(\boldsymbol{y})\left|\boldsymbol{x}_{1} \boldsymbol{x}_{2} \ldots\right\rangle=\left|\boldsymbol{x}_{1} \boldsymbol{x}_{2} \ldots \boldsymbol{y}\right\rangle$. In addition, the usual commutation relation holds $\left[a(\boldsymbol{x}), a^{\dagger}(\boldsymbol{y})\right]=\delta(\boldsymbol{x}-\boldsymbol{y})$.
a) Don't look at part b)! Don't flip the page yet! How would the interaction piece of the Hamiltonian $H_{\text {int }}$ for this case look like in terms of V, a and a^{\dagger} ? Hints: Think in terms of the familiar gravitational potential: what you want in the end is the sum of the potential energies of all pairs you can form. So clearly, in the case of a one-particle state, your interaction should return zero. And in the continuum, summing means integrating.
b) Compute the interaction energy for a state of three particles at positions $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}$ and \boldsymbol{x}_{3}, i.e.

$$
\left\langle\boldsymbol{x}_{1} \boldsymbol{x}_{2} \boldsymbol{x}_{3}\right| H_{\text {int }}\left|\boldsymbol{x}_{1} \boldsymbol{x}_{2} \boldsymbol{x}_{3}\right\rangle .
$$

The interaction Hamiltonian (the solution to (a)) is given by $H_{\text {int }}=\frac{1}{2} \int d \boldsymbol{x} d \boldsymbol{x}^{\prime} a^{\dagger}(\boldsymbol{x}) a^{\dagger}\left(\boldsymbol{x}^{\prime}\right) a(\boldsymbol{x}) a\left(\boldsymbol{x}^{\prime}\right) V(\mid \boldsymbol{x}-$ $\left.x^{\prime} \mid\right)$.
Hints:
i) Rewrite $H_{\text {int }}$ in terms of the number operator $n(\boldsymbol{x})=a^{\dagger}(\boldsymbol{x}) a(\boldsymbol{x})$ (and $n\left(\boldsymbol{x}^{\prime}\right)$ of course!)
ii) Compute $n(\boldsymbol{x})\left|\boldsymbol{x}_{1} \boldsymbol{x}_{2} \boldsymbol{x}_{3}\right\rangle$ to convince yourself of the action of $n(\boldsymbol{x})$ on our three-particle state.
iii) The normalization of our three particle state is such that $\left\langle\boldsymbol{x}_{1} \boldsymbol{x}_{2} \boldsymbol{x}_{3} \mid \boldsymbol{x}_{1} \boldsymbol{x}_{2} \boldsymbol{x}_{3}\right\rangle=[\delta(0)]^{3}$. If we put our field theory in a box, $\delta(0) \rightarrow$ volume of box.
iv) Finally compute the interaction energy. Whenever you get a δ-function and you have an integration left removing it, perform the integration. In other words, integrate over \boldsymbol{x} and \boldsymbol{x}^{\prime}.
c) If you like, convince yourself that you get the same answer by pulling the annihilation operators $a(\boldsymbol{x}) a\left(\boldsymbol{x}^{\prime}\right)$ of $H_{\text {int }}=\frac{1}{2} \int d \boldsymbol{x} d \boldsymbol{x}^{\prime} a^{\dagger}(\boldsymbol{x}) a^{\dagger}\left(\boldsymbol{x}^{\prime}\right) a(\boldsymbol{x}) a\left(\boldsymbol{x}^{\prime}\right) V\left(\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|\right)$ through the creation operators needed for our state $\left|\boldsymbol{x}_{1} \boldsymbol{x}_{2} \boldsymbol{x}_{3}\right\rangle=a^{\dagger}\left(\boldsymbol{x}_{1}\right) a^{\dagger}\left(\boldsymbol{x}_{2}\right) a^{\dagger}\left(\boldsymbol{x}_{3}\right)|0\rangle$.

