QFT I - Problem Set 4

Gaussian Integrals
a) Prove the following identity for multi-dimensional integrals over real variables:

$$
\begin{equation*}
I_{1}=\int d x_{1} \cdots d x_{n} e^{-\frac{1}{2} x_{i} A_{i j} x_{j}+x_{i} J_{i}}=\frac{(2 \pi)^{\frac{n}{2}}}{\sqrt{\operatorname{det} A}} e^{\frac{1}{2} J_{i} A_{i j}^{-1} J_{j}} \tag{1}
\end{equation*}
$$

where A is a real symmetric positive definite matrix (sum convention).
Hints:

1. Complete the square to get rid of the linear $J_{i} x_{i}$ piece. It may help you to find the appropriate variable transformation by considering a new variable $y_{i} \equiv x_{i}+q_{i}$ and demanding that $-\frac{1}{2} y_{i} A_{i j} y_{j}=-\frac{1}{2} x_{i} A_{i j} x_{j}+x_{i} J_{i}$, which gives you an expression for y_{i} in terms of x, A^{-1}, J.
2. Rotate y to diagonalize A, i.e. define a new variable $z \equiv R^{-1} y$ such that $R^{-1} A R$ is diagonal.
3. Use the one-dimensional result $\int_{-\infty}^{\infty} d x e^{-a x^{2}}=\sqrt{\frac{\pi}{a}}$.
b) For integrals over pairs of conjugate complex variables holds a similar identity. Prove:

$$
\begin{equation*}
I_{2}=\int \prod_{i=1}^{n}\left(\frac{d x_{i}^{*} d x_{i}}{2 \pi i}\right) e^{-x_{i}^{*} H_{i j} x_{j}+J_{i}^{*} x_{i}+x_{i}^{*} J_{i}}=[\operatorname{det} H]^{-1} e^{J_{i}^{*} H_{i j}^{-1} J_{j}} \tag{2}
\end{equation*}
$$

for any positive definite Hermitian matrix (all eigenvalues are real and positive). Hint: Use $\int \frac{d x^{*} d x}{2 \pi i} e^{-x^{*} a x}=\int \frac{d u d v}{\pi} e^{-a\left(u^{2}+v^{2}\right)}=\frac{1}{a}$.

(9) Identities

a) We pick up on problem (8) for this identity: Prove the following representation of the inverse of H :

$$
\begin{equation*}
(H)_{l k}^{-1}=\operatorname{det} H \int \prod_{i=1}^{n}\left(\frac{d x_{i}^{*} d x_{i}}{2 \pi i}\right) x_{k}^{*} x_{l} e^{-x_{i}^{*} H_{i j} x_{j}} . \tag{3}
\end{equation*}
$$

Hint: Consider $\left.\frac{\partial^{2} I_{2}}{\partial J_{l}^{*} \partial J_{k}}\right|_{J=0}$.
b) Prove the incredibly important (no kidding!) identity

$$
\begin{equation*}
\log \operatorname{det} A=\operatorname{Tr} \log A \tag{4}
\end{equation*}
$$

for a $(n \times n)$ matrix A.

