
QFT I - Problem Set 5

(9) Functional Differentiation

Sometimes (as in the next exercise) it is useful to expand functionals around known functions.
The expansion of e.g. a functional S[x(t)] around the path x0(t) is in close analogy to ordinary
Taylor expansion given by

S[x(t)] = S[x0(t) + y(t)]

= S[x0(t)] +

∫
dt

δS

δx(t)

∣∣∣
x0(t)

y(t) +
1

2

∫
dtdt′y(t)

δ2S

δx(t)x(t′)

∣∣∣
x0(t)

y(t′) + ...

Now suppose that S is the action of a particle in one dimension, i.e. given by

S[x(t)] =

∫
dtL(ẋ(t), x(t)). (1)

(a) Compute S(1) ≡ δS
δx(t1)

, S(2) ≡ δ2S
δx(t1)δx(t2)

for the quadratic Lagrangian

L(ẋ(t), x(t)) = c1ẋ
2(t) + c2x

2(t),

expanding around an arbitrary trajectory x0(t).

(b) Derive the Euler-Lagrange equation for general L(ẋ, x) from the action principle δS/δx = 0.

Hint: Functional differentiation generalizes usual differentiation. In particular, it respects gen-
eral properties, such as linearity, product and chain rule. However, care has to be taken when
dealing with the arguments of the functions. Useful identities are

δx(t)

δx(t′)
= δ(t− t′),

δẋ(t)

δx(t′)
=

d

dt
δ(t− t′).

The last identity states that functional and usual differentiation commute. To simplify expres-
sions involving such terms, it might be useful to apply partial integration, such that d/dt does
no longer act on the δ – function.

(10) Atom Propagator from the Path Integral

In exercise (6) you did already compute the propagator for a free nonrelativistic particle. Here,
we would like to compute the propagator using path integrals. We restrict ourselves to one
dimension. The path integral representation of the propagator is then

〈qf , tf |qi, ti〉 =

qf (tf )∫
qi(ti)

Dq exp iS[q].

The action is given by eq. (1) with c1 = M/2, c2 = 0.

(a) By an expansion of S around the “classical path” q0(t) (write q(t) = q0(t) + y(t); q0(t) is
the solution of the Euler-Lagrange equation, i.e. q0 solves δS/δq = 0), show that the matrix
element can be written as

〈qf , tf |qi, ti〉 = exp(iS[q0]) 〈0, tf |0, ti〉.
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with the reduced propagator

〈0, tf |0, ti〉 =

y(tf )=0∫
y(ti)=0

Dy exp i

∫
dt c1 ẏ(t)2.

Hint: At this stage, do not solve the classical Euler-Lagrange equation explicitly. Only use the
extremum property of the solution.

(b) Evaluate the reduced propagator explicitly. For this purpose, go back to the discrete version
of the action, ∫

dtc1ẏ(t)2 = lim
dt→0,N→∞

dt

N+1∑
k=1

c1

(yk − yk−1

dt

)2

.

Write this sum as a bilinear form κ yT Ay, using y(tf ) = yN+1 = 0, y(ti) = y0 = 0, with a
symmetric matrix A containing only numbers. Then, evaluate the discrete path integral using
the formulae of problem set 4 (the determinant of A is det A = N + 1). Draw the continuum
limit, i.e N →∞ and dt → 0.

(c) Now solve the Euler-Lagrange equation for the boundary conditions qf (tf ) = x′, qi(ti) = x
(in exercise (6), the point x′ was called x and the point x was denoted x0). Compute the action
S[q0]. You should recover a expression analogous to the result of exercise (6), with the difference
that we are working here in one instead of three space dimensions.

For the solution of (b) and (c), (a) is not necessary.
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