QFT I - Problem Set 6

Gelfand-Yaglom formalism
We need the results from this exercise for the problem (12) below. Consider the following $N \times N$-matrix

$$
\tilde{M}_{N}=\left(\begin{array}{cccccc}
2-\frac{\epsilon^{2}}{m} c_{1} & -1 & & & & \\
-1 & 2-\frac{\epsilon^{2}}{m} c_{2} & -1 & & & \\
& -1 & 2-\frac{\epsilon^{2}}{m} c_{3} & -1 & & \\
& & \ddots & \ddots & \ddots & \\
& & & -1 & 2-\frac{\epsilon^{2}}{m} c_{N-1} & -1 \\
& & & & -1 & 2-\frac{\epsilon^{2}}{m} c_{N}
\end{array}\right)
$$

We define the determinant d_{N} and the subdeteminants d_{j} as

$$
d_{N}=\operatorname{det} \tilde{M}_{N}, \quad d_{j}=\operatorname{det}\left(\tilde{M}_{N}\right)_{j \times j}
$$

where $\left(\tilde{M}_{N}\right)_{j \times j}$ is the matrix of the first j rows and columns of $\tilde{M}_{N}, d_{0} \equiv 1$ (definition).
a) Show the recursion relation

$$
d_{j+1}=\left(2-\frac{\epsilon^{2}}{m} c_{j+1}\right) d_{j}-d_{j-1}
$$

b) Use the notation $d\left(t_{j}\right) \equiv d\left(t_{\text {initial }}+j \epsilon\right)=d_{j}$ and show that in the limit $\epsilon \rightarrow 0, d(t)$ satisfies the differential equation

$$
\frac{d^{2}}{d t^{2}} d(t)=-\frac{c(t)}{m} d(t)
$$

In this way, the calculation of the determinant of such a big matrix is traced back to the integration of an ordinary differential equation!

This exercise generalizes problem (10). We consider a classical action of the form

$$
S[q]=\int d t\left(\frac{1}{2} m \dot{q}^{2}-\frac{1}{2} c(t) q^{2}\right) .
$$

a) Similar like in problem (10) study

$$
\left\langle q_{f}, t_{f} \mid q_{i}, t_{i}\right\rangle=\int_{q_{i}\left(t_{i}\right)}^{q_{f}\left(t_{f}\right)} D q e^{i S[q]} .
$$

Derive the following representation for the propagator

$$
\left\langle q_{f}, t_{f} \mid q_{i}, t_{i}\right\rangle=\sqrt{\frac{m}{2 \pi i D\left(t_{f}, t_{i}\right)}} e^{i S\left[q_{0} ; q_{i}, q_{f}\right]}
$$

and find a differential equation for $D\left(t, t_{i}\right)$ (with initial values) - we will solve the differential equation for a special case in b) below.
Hints:
(i) As intermediate result you should find similar to problem (10)

$$
\left\langle 0, t_{f} \mid 0, t_{i}\right\rangle=\lim _{N \rightarrow \infty} \sqrt{\frac{m}{2 \pi i d t}} \frac{1}{\sqrt{\operatorname{det} \tilde{M}_{N}}},
$$

with \tilde{M}_{N} studied in problem (11) ($\epsilon=d t$).
(ii) To derive a differential equation for

$$
D\left(t, t_{i}\right)=\lim _{N \rightarrow \infty, d t \rightarrow 0} d t \operatorname{det} \tilde{M}_{N}
$$

with initial values $D\left(t_{i}, t_{i}\right)$ and $\dot{D}\left(t_{i}, t_{i}\right)$, use the solution to problem (11).
b) Apply the result of a) to the harmonic oscillator: $c(t)=m \omega^{2}=$ const. Solve the differential equation for D and compute $S\left[q_{0} ; q_{i}, q_{f}\right]$ in order to give an explicit expression for the propagator.
Hint: For the calculation of the classical action $S\left[q_{0} ; q_{i}, q_{f}\right]$ of the harmonic oscillator use a classical trajectory with $q\left(t_{i}\right)=q_{i}$ and $q\left(t_{f}\right)=q_{f}$.
Comment: In the case $c(t)=0$, one finds $D\left(t_{f}, t_{i}\right)=t_{f}-t_{i}$ and hence the result of problem (10).

