
QFT I - Problem Set 8

(15) Your first own perturbation result

In problem (14), you developed the important relation

Z[j∗, j] = exp
[
iSI [i

δ

δj
, i

δ

δj∗
]
]
Z0[j∗, j]

for the partition function

Z[j∗, j] =
∫
D(φ∗, φ) exp

{
iS[φ∗, φ]− i

∫
x

(j(x)φ∗(x) + j∗(x)φ(x))
}

, (1)

where x = (t, x). For the Lagrangian of (14), you did also show that the non-interacting part Z0[j∗, j] can be
written as

Z0[j∗, j] = N exp
(∫

p

j∗(p)
i

ω − p2/(2M)
j(p)

)
,

where p = (ω, p) and the normalization factor N was actually det[ω−p2/(2M)]−1, but that will be unimportant
in the following. In fact, as far as correlation functions such as the propagator are concerned, N drops out by
normalizing the partition function just like in the lecture as

Znorm.[j∗, j] =

∫
D(φ∗, φ) exp

{
iS[φ∗, φ]− i

∫
(jφ∗ + j∗φ)

}
∫
D(φ∗, φ) exp

{
iS[φ∗, φ]− i

∫
(jφ∗ + j∗φ)

}
|j,j∗=0

=
Z[j∗, j]

Z[0]
. (2)

In the following problem, we will compute Znorm.[j∗, j] to first order in the interaction and from this infer
the propagator to first order in perturbation theory. You are invited to try this first without the detailed
step-by-step problems given below. The interacting piece of the action was

SI =
∫

x

λ

2
(
φ∗(t,x)φ(t, x)

)2
.

The results can be obtained either in position or momentum space. As one usually works in momentum space,
we want to perform the calculation in momentum space. So . . .

a) Fourier transform SI to Fourier space.
You should find that SI = λ

2

∫
p1

∫
p2

∫
p3

∫
p4

δ(p1 − p2 + p3 − p4)φ∗(p1)φ(p2)φ∗(p3)φ(p4).

b) To compute the numerator of Eqn. (2) . . .

b1) Expand exp(iSI) to first order in λ and substitute φ(p) → i δ
δj∗(p) , φ∗(p) → i δ

δj(p)

b2) Concentrate on the term proportional to λ: Ignore for a moment the iλ
2

∫
p1...p4

δ(p1 − p2 + p3 − p4) part of
this term and compute

δ

δj(p1)
δ

δj∗(p2)
δ

δj(p3)
δ

δj∗(p4)
exp

(∫
p

j∗(p)K(p)j(p)
)

,

where we have abbreviated K(p) ≡ i
ω−p2/(2M) for convenience.

b3) In total, this will give you 7 terms: One with 4 j′s, four with 2 j′s and two with no j′s. If you depict each
K by a line, λ by a point where four lines meet and identify the number of j′s with the number of external
lines, you result is roughly speaking

δ

δj(p1)
δ

δj∗(p2)
δ

δj(p3)
δ

δj∗(p4)
exp

(∫
p

j∗(p)K(p)j(p)
)

= [1 + 4 + 2 ] exp
(∫

p

j∗(p)K(p)j(p)
)

1



b4) Collect all pieces to get an expression for the numerator of (2) to order λ. If you did not do it already:
perform the integration over all momenta to get rid of as many δ functions as possible, except for the overall
momentum conservation δ(p1 − p2 + p3 − p4). By changing the names of the momentum variables, you can
group the 7 terms in the aforementioned 3 distinct ones.

c) The denominator of (2) is computed like the numerator but it is evaluated at j = j∗ = 0, so only one of
the three diagrams above appears. Convince yourself that to order λ, this term cancels in (2) (essentially using
1/(1 + x) = 1− x + . . . )

d) The Propagator is given by

〈φ∗(p)φ(p′)〉 =
(
i

δ

δj(p)

)(
i

δ

δj∗(p′)

)
Znorm[j∗, j]

∣∣∣
j=j∗=0

Compute it to first order in λ. To do this . . .

d1) Act with (i δ
δj(p) )(i

δ
δj∗(p′) ) on the expression for Znorm[j∗, j] that we have just computed in (c). Set

j = j∗ = 0. Then perform all momentum integrations.

d2) re-substitute K(p) = i
ω−p2/(2M) to appreciate your result in full glory.

e) When you identify each of the i
ω−p2/(2M) free propagators with a line, the λ with a point where four lines

meet (interact) and an integral over momentum with a corresponding free propagator as a closed loop, convince
yourself that diagrammatically, your result is

〈φ∗(p)φ(p′)〉 =

2


