QFT I - Problem Set 9

(16) A little more on problem (15): the 4-point function

If you did not yet solve problem (15), it might be a good time to do it now...Finished? Ok. You have shown in (15) that the partition function to first order in the coupling λ is

$$
\begin{align*}
& Z_{\text {norm. }}\left[j^{*}, j\right]=\left\{1+\frac{i \lambda}{2}\left[4 \int_{p_{1} p_{2} p_{3}} \delta\left(p_{3}-p_{2}\right) K\left(p_{1}\right) K\left(p_{2}\right) K\left(p_{3}\right) j\left(p_{2}\right) j^{*}\left(p_{3}\right)\right.\right. \\
& \left.\left.+\int_{p_{1} \ldots p_{4}} \delta\left(p_{1}-p_{2}+p_{3}-p_{4}\right) K\left(p_{1}\right) K\left(p_{2}\right) K\left(p_{3}\right) K\left(p_{4}\right) j^{*}\left(p_{1}\right) j\left(p_{2}\right) j^{*}\left(p_{3}\right) j\left(p_{4}\right)\right]\right\} \exp \left(\int_{p} j^{*}(p) K(p) j(p)\right) \tag{1}
\end{align*}
$$

Given this expression, compute the 4-point function

$$
\left\langle\phi^{*}\left(p_{1}\right) \phi\left(p_{2}\right) \phi^{*}\left(p_{3}\right) \phi\left(p_{4}\right)\right\rangle=\left(i \frac{\delta}{\delta j\left(p_{1}\right)}\right)\left(i \frac{\delta}{\delta j^{*}\left(p_{2}\right)}\right)\left(i \frac{\delta}{\delta j\left(p_{3}\right)}\right)\left(i \frac{\delta}{\delta j^{*}\left(p_{4}\right)}\right) Z_{n o r m .}\left[j^{*}, j\right]_{\mid j=j^{*}=0}
$$

where $j=j^{*}=0$ is of course taken after the derivatives have acted.

(17)

 Working with the Fermionic Functional IntegralConsider the action with an interacting fermionic field

$$
\begin{aligned}
S[\psi, \bar{\psi}] & =S_{0}[\psi, \bar{\psi}]+S_{I}[\psi, \bar{\psi}] \\
& =\int d t d^{3} x\left\{\bar{\psi}_{\alpha}(t, \boldsymbol{x})\left(i \partial_{t}+\frac{\triangle}{2 M}\right) \psi_{\alpha}(t, \boldsymbol{x})+\lambda\left(\bar{\psi}_{\alpha}(t, \boldsymbol{x}) \psi_{\alpha}(t, \boldsymbol{x})\right)^{2}\right\}
\end{aligned}
$$

where S_{0} stands for the first term which is quadratic in the fields and S_{I} for the remaining interacting part. Keep in mind that we sum over the repeated spin indices α.

We define the partition function as

$$
Z[\bar{\eta}, \eta]=\int \mathcal{D}(\psi, \bar{\psi}) \exp \left\{i S[\psi, \bar{\psi}]-i \int\left(\bar{\eta}_{\alpha} \psi_{\alpha}-\bar{\psi}_{\alpha} \eta_{\alpha}\right)\right\}
$$

where the sources $\eta, \bar{\eta}$ are Grassmann valued.
(a) Show

$$
Z[\bar{\eta}, \eta]=\exp \left[i S_{I}\left[i \frac{\delta}{\delta \bar{\eta}}, i \frac{\delta}{\delta \eta}\right]\right] Z_{0}[\bar{\eta}, \eta]
$$

with

$$
Z_{0}[\bar{\eta}, \eta]=\int \mathcal{D}(\psi, \bar{\psi}) \exp \left\{i S_{0}[\psi, \bar{\psi}]-i \int\left(\bar{\eta}_{\alpha} \psi_{\alpha}-\bar{\psi}_{\alpha} \eta_{\alpha}\right)\right\}
$$

(b) Perform a Fourier transform for S_{0} and the source terms. Then, evaluate Z_{0} explicitly by completion of the square.
(c) Compute the free (i.e. $\lambda=0$) fermionic two- and four-point functions.

Hint: Use the normalized generating functional $Z[\bar{\eta}, \eta] /\left(Z[\bar{\eta}, \eta]_{\mid \eta, \bar{\eta}=0}\right)$ similarly as in exercise (14).
a) A basis for the orthochronous Lorentz group is given by the six generators of rotations and boosts,

$$
\begin{aligned}
i J_{1}= & \left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right), \quad i J_{2}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right), \quad i J_{2}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \\
-i K_{1} & =\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad-i K_{2}=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad-i K_{3}=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

Show that these generators fulfill the following Lie-algebra relations,

$$
\begin{aligned}
{\left[J_{i}, J_{j}\right] } & =i \epsilon_{i j k} J_{k}, & {\left[N_{i}, N_{j}\right]=i \epsilon_{i j k} N_{k}, } \\
{\left[J_{i}, K_{j}\right] } & =i \epsilon_{i j k} K_{k}, & {\left[N_{i}^{\dagger}, N_{j}^{\dagger}\right]=i \epsilon_{i j k} N_{k}^{\dagger}, } \\
{\left[K_{i}, K_{j}\right] } & =-i \epsilon_{i j k} J_{k}, & {\left[N_{i}, N_{j}^{\dagger}\right]=0, }
\end{aligned}
$$

where on the right hand side we have introduced the basis $N_{i}=\left(J_{i}+i K_{i}\right) / 2$.
Remark: These relations can be written in closed form as

$$
\begin{aligned}
M_{0 i} & =-M_{i 0}=K_{i}, \quad M_{i j}=\epsilon_{i j k} J_{k} \\
{\left[M_{\mu \nu}, M_{\rho \sigma}\right] } & =-i\left(M_{\mu \rho} \eta_{\nu \sigma}-M_{\mu \sigma} \eta_{\nu \rho}-M_{\nu \rho} \eta_{\mu \sigma}+M_{\nu \sigma} \eta_{\mu \rho}\right)
\end{aligned}
$$

(with $\eta=\operatorname{diag}(1,-1,-1,-1)$) and all Lorentz transformations can be written as $\Lambda(\omega)=\exp \left(i \omega^{\mu \nu} M_{\mu \nu} / 2\right)$. The antisymmetric tensor ω contains the six real parameters of the Lorentz transformation.
b) The Pauli Lubanski vector W is given by

$$
W_{\mu}=\frac{1}{2} \epsilon_{\mu \nu \rho \sigma} P^{\nu} M^{\rho \sigma} .
$$

Show

$$
\begin{array}{rll}
W^{\mu} P_{\mu} & =0, & {\left[M_{\mu \nu}, W_{\sigma}\right]=i\left(\eta_{\mu \sigma} W_{\nu}+\eta_{\nu \sigma} W_{\mu}\right),} \\
{\left[W_{\mu}, P_{\nu}\right]} & =0, & {\left[W_{\mu}, W_{\nu}\right]=\frac{1}{2} \epsilon_{\mu \nu \rho \sigma} W^{\rho} P^{\sigma} .}
\end{array}
$$

