QFT II - Problem Set 3

We would like to gain some more insight into scattering. Let us scatter two complex scalar fields ϕ and χ. The Lagrangian is

$$
-S=\int_{p}\left(p^{2}+m^{2}\right) \phi^{*}(p) \phi(p)+\left(p^{2}+M^{2}\right) \chi^{*}(p) \chi(p)+\lambda \int_{p_{1} \ldots p_{4}} \delta\left(p_{1}-p_{2}+p_{3}-p_{4}\right) \phi\left(p_{1}\right) \phi^{*}\left(p_{2}\right) \chi\left(p_{3}\right) \chi^{*}\left(p_{4}\right)
$$

where $p^{2}=p_{\mu} p^{\mu}$ as usual. In terms of annihilation and creation operators, the fields are given by

$$
\begin{align*}
\phi_{+}(\omega, \boldsymbol{p}) & =\frac{1}{\sqrt{2 E(\boldsymbol{p})}} a_{\phi}(\boldsymbol{p}) \tag{1}\\
\phi_{-}(\omega, \boldsymbol{p}) & =\frac{1}{\sqrt{2 E(\boldsymbol{p})}} b_{\phi}^{\dagger}(-\boldsymbol{p}) \tag{2}\\
\chi_{+}(\omega, \boldsymbol{p}) & =\frac{1}{\sqrt{2 E(\boldsymbol{p})}} a_{\chi}(\boldsymbol{p}) \tag{3}\\
\chi_{-}(\omega, \boldsymbol{p}) & =\frac{1}{\sqrt{2 E(\boldsymbol{p})}} b_{\chi}^{\dagger}(-\boldsymbol{p}) \tag{4}\\
\phi(\omega, \boldsymbol{p})=\phi_{+} \theta(\omega)+\phi_{-} \theta(-\omega) & =\frac{1}{\sqrt{2 E(\boldsymbol{p})}}\left[a_{\phi}(\boldsymbol{p}) \theta(\omega)+b_{\phi}^{\dagger}(\boldsymbol{p}) \theta(-\omega)\right] \tag{5}\\
\chi(\omega, \boldsymbol{p})=\chi_{+} \theta(\omega)+\chi_{-} \theta(-\omega) & =\frac{1}{\sqrt{2 E(\boldsymbol{p})}}\left[a_{\chi}(\boldsymbol{p}) \theta(\omega)+b_{\chi}^{\dagger}(\boldsymbol{p}) \theta(-\omega)\right] \tag{6}
\end{align*}
$$

where a_{ϕ}^{\dagger} and a_{ϕ} create and destrory ϕ particles and b_{ϕ}^{\dagger} and b_{ϕ} create and destroy ϕ antiparticles. The same is true for the χ field. Please note that the hermitian conjugate operators of the fields are simply

$$
\begin{align*}
\phi^{\dagger}(\omega, \boldsymbol{p}) & =\phi_{+}^{\dagger} \theta(\omega)+\phi_{-}^{\dagger} \theta(-\omega) \tag{7}\\
\chi^{\dagger}(\omega, \boldsymbol{p}) & =\chi_{+}^{\dagger} \theta(\omega)+\chi_{-}^{\dagger} \theta(-\omega) \tag{8}
\end{align*}
$$

So for instance in order to create one ϕ particle, you have to act with the creation operator on the vacuum:

$$
a_{\phi}^{\dagger}(\boldsymbol{p})|0\rangle=\sqrt{2 E} \phi_{+}^{\dagger}(\omega, \boldsymbol{p})|0\rangle
$$

Let us now scatter four particles: a ϕ particle (momentum $=p_{1}$), and a χ antiparticle (momentum $=p_{2}$) coming in and leaving again (momentum of χ leaving is p_{3}, momentum of ϕ leaving is p_{4}).
a) Convince yourself that the S-matrix we have to compute is

$$
S_{\beta, \alpha}=\left[2 E\left(\boldsymbol{p}_{\mathbf{1}}\right) 2 E\left(\boldsymbol{p}_{\mathbf{2}}\right) 2 E\left(\boldsymbol{p}_{\mathbf{3}}\right) 2 E\left(\boldsymbol{p}_{\mathbf{4}}\right)\right]^{1 / 2} \lim _{\substack{t^{\prime} \rightarrow \infty \\ t \rightarrow-\infty}}\left\langle\phi_{+}\left(t^{\prime}, \boldsymbol{p}_{\mathbf{4}}\right) \chi_{-}^{\dagger}\left(t^{\prime},-\boldsymbol{p}_{\mathbf{3}}\right) \chi_{-}\left(t,-\boldsymbol{p}_{\boldsymbol{2}}\right) \phi_{+}^{\dagger}\left(t, \boldsymbol{p}_{\mathbf{1}}\right)\right\rangle .
$$

b) Fourier transform the times t and t^{\prime}. You should get

$$
S_{\beta, \alpha}=\lim _{\substack{t^{\prime} \rightarrow \infty \\ t \rightarrow-\infty}} \prod_{i=1 \ldots 4} \int_{-\infty}^{\infty}\left(\sqrt{2 E_{i}} \frac{\mathrm{~d} \omega_{i}}{2 \pi}\right) e^{-i t^{\prime}\left(\omega_{4}-\omega_{3}\right)} e^{-i t\left(\omega_{2}-\omega_{1}\right)}\left\langle\phi_{+}\left(\omega_{4}, \boldsymbol{p}_{4}\right) \chi_{-}^{\dagger}\left(\omega_{3},-\boldsymbol{p}_{\mathbf{3}}\right) \chi_{-}\left(\omega_{2},-\boldsymbol{p}_{\mathbf{2}}\right) \phi_{+}^{\dagger}\left(\omega_{1}, \boldsymbol{p}_{\mathbf{1}}\right)\right\rangle .
$$

c) Express ϕ_{+}etc. in terms of the fields ϕ and χ. In other words, use $\chi_{-}^{\dagger}=\chi^{\dagger} \theta\left(-\omega_{3}\right)$ etc.
d) Use the θ functions and convince yourself that you can write $S_{\beta, \alpha}$ as
$S_{\beta, \alpha}=\lim _{\substack{t^{\prime} \rightarrow \infty \\ t \rightarrow-\infty}} \prod_{i=1 \ldots 4} \int_{0}^{\infty}\left(\sqrt{2 E_{i}} \frac{\mathrm{~d} \omega_{i}}{2 \pi}\right) e^{-i t^{\prime}\left(\omega_{4}+\omega_{3}\right)} e^{i t\left(\omega_{2}+\omega_{1}\right)}\left\langle\phi\left(\omega_{4}, \boldsymbol{p}_{4}\right) \chi^{\dagger}\left(-\omega_{3},-\boldsymbol{p}_{\mathbf{3}}\right) \chi\left(-\omega_{2},-\boldsymbol{p}_{\mathbf{2}}\right) \phi^{\dagger}\left(\omega_{1}, \boldsymbol{p}_{\mathbf{1}}\right)\right\rangle$.
e) To proceed, we have to compute the 4 -point function

$$
\left\langle\phi\left(\omega_{4}, \boldsymbol{p}_{\mathbf{4}}\right) \chi^{\dagger}\left(-\omega_{3},-\boldsymbol{p}_{\mathbf{3}}\right) \chi\left(-\omega_{2},-\boldsymbol{p}_{\mathbf{2}}\right) \phi^{\dagger}\left(\omega_{1}, \boldsymbol{p}_{\mathbf{1}}\right)\right\rangle .
$$

We know from last term that these can be found by acting with $i \frac{\delta}{\delta J}$ etc. on the generating functional $Z[J]$. As we have two complex fields, we will need two complex sources, say J for ϕ and η for χ :

$$
Z\left[j^{\star}, j, \eta^{\star}, \eta\right]=\int \mathcal{D} \phi \mathcal{D} \chi \exp \left(i S-i \int_{p} j^{*}(p) \phi(p)-j(p) \phi^{*}(p)-\eta^{*}(p) \chi(p)-\eta(p) \chi^{*}\right) .
$$

In principle, we would have to normalize by $Z[j=0]$, but we skip this here. As you have learned last term, you can express $Z[j]$ as

$$
Z\left[j^{\star}, j, \eta^{\star}, \eta\right]=\exp \left(i S_{i n t}\left[i \frac{\delta}{\delta j^{*}}, i \frac{\delta}{\delta j}, i \frac{\delta}{\delta \eta^{*}}, i \frac{\delta}{\delta \eta}\right]\right) \exp \left\{-\int_{p} j^{*} \bar{G}_{\phi} j-\int_{p} \eta^{*} \bar{G}_{\chi} \eta\right\}
$$

where $\bar{G}_{\phi}=\frac{-i}{p^{2}+m^{2}}$ and $\bar{G}_{\chi}=\frac{-i}{p^{2}+M^{2}}$.
f) Expand the interaction $S_{i n t}$ to first order in λ.
g) Compute the non-trivial (i.e. scattering) part to this order using

$$
\begin{aligned}
& \left\langle\phi\left(\omega_{4}, \boldsymbol{p}_{\mathbf{4}}\right) \chi^{\dagger}\left(-\omega_{3},-\boldsymbol{p}_{\mathbf{3}}\right) \chi\left(-\omega_{2},-\boldsymbol{p}_{\mathbf{2}}\right) \phi^{\dagger}\left(\omega_{1}, \boldsymbol{p}_{\mathbf{1}}\right)\right\rangle \\
& \quad=\left(i \frac{\delta}{\delta j^{*}\left(\omega_{4}, \boldsymbol{p}_{4}\right)}\right)\left(i \frac{\delta}{\delta \eta\left(-\omega_{3},-\boldsymbol{p}_{3}\right)}\right)\left(i \frac{\delta}{\delta \eta^{*}\left(-\omega_{2},-\boldsymbol{p}_{2}\right)}\right)\left(i \frac{\delta}{\delta j\left(\omega_{1}, \boldsymbol{p}_{1}\right)}\right) Z\left[j^{\star}, j, \eta^{\star}, \eta\right]
\end{aligned}
$$

h) Substitute this expression back into our formula for $S_{\beta, \alpha}$.
i) Just like in the lecture, perform the integrals over ω using the resiudal theorem. For this, use

$$
\frac{-i}{p^{2}+m^{2}} \rightarrow \frac{i}{\omega^{2}-E^{2}(\boldsymbol{p})+i \epsilon}
$$

j) Think a bit which graphs would contribute to order λ^{2}.

