## QFT II - Problem Set 4

Consider the vertex in $\phi^{4}$ theory. We will use Euclidian path integrals. The vertex at arbitrary momenta $p_{i}$ is obtained by computing the connected part of $\tilde{G}_{4}\left(p_{1}, p_{2}, p_{3}, p_{4}\right) \equiv\left\langle\phi\left(p_{1}\right) \phi\left(p_{2}\right) \phi\left(p_{3}\right) \phi\left(p_{4}\right)\right\rangle$ with external propagators amputated. To leading order, this simply gives $\left\langle\phi\left(p_{1}\right) \phi\left(p_{2}\right) \phi\left(p_{3}\right) \phi\left(p_{4}\right)\right\rangle=\lambda$.
a) At second order in $\lambda$, you get three connected diagrams. Draw them!

One of the diagrams is:

b) Use the Feynman rules

- Propagator: $\bar{G}=\left(p^{2}+m^{2}\right)^{-1}$
- Vertex: $\lambda$
- Internal loop: $\int d^{4} k /(2 \pi)^{4}$ over the internal momentum $k$
to find an expression for the above diagram. Denote $p_{1}+p_{2}=p$.
c) Taking into account only the leading order $\lambda$ and the diagram above, what is $\tilde{G}_{4}(p / 2, p / 2, p / 2, p / 2)$ to order $\lambda^{2}$ ? Hint (but try first yourself): the result is on the back of this page
d) Let us define $\lambda_{R}$ as the coupling at vanishing momentum $p$ :

$$
\lambda_{R} \equiv \tilde{G}_{4}(0,0,0,0)
$$

Without evaluating the integral, what is $\lambda_{R}$ ?
e) Suppose that the momentum integral $\int d^{4} k /(2 \pi)^{4}$ is cut-off at some UV-scale $\Lambda$ and that the cut-off is low enough to ensure that the second order term contributing towards $\lambda_{R}$ is indeed smaller than $\lambda$. Using an expansion

$$
\lambda=a \lambda_{R}+b \lambda_{R}^{2}
$$

invert the expression for $\lambda_{R}$, i.e. obtain $\lambda\left(\lambda_{R}\right)$. Hint: say $\lambda_{R}=\lambda+c \lambda^{2}$, then $\lambda_{R}=a \lambda_{R}+b \lambda_{R}^{2}+c a \lambda_{R}^{2}+\mathcal{O}\left(\lambda_{R}^{3}\right)$, which fixes $a$ and $b .$.
f) In terms of $\lambda_{R}$, what is the coupling at arbitrary momentum $p=2 p_{1}=2 p_{2}$ that you obtained in (c)? Hint: don't evaluate the integral(s).
g) Show that the result of (f) is finite for $\Lambda \rightarrow \infty$ by showing that the integrand becomes proportional to $1 / k^{2}$ for $k \rightarrow \infty$.
h) Using a momentum cut-off $\Lambda$ and the following simple formula for the momentum integration

$$
\int_{k^{2}<\Lambda} d^{4} k=2 \pi^{2} \int_{0}^{\Lambda} k^{3} d k
$$

where $k$ on the r.h.s is of course $k=\sqrt{k \cdot k}=\sqrt{k_{\mu} k_{\nu} \delta^{\mu \nu}}$, evaluate the integral in the expression for $\lambda_{R}$, i.e. finish the job of you started in (d).

In (33), we used a simple momentum cut-off $\Lambda$ to regularize our theory. There are other ways to regularize, a useful one is the so called dimensional regularization. The main idea is to work in $4+\epsilon$ dimension, perform the integral there and then let $\epsilon \rightarrow 0$. In order to do this, it's useful to know some formulae. We will derive them in the following. Consider

$$
I_{N}=\int d^{N} l F(l)
$$

where $F(l)$ depends only on the length of $l_{\mu}$ and $N$ is an integer. Defining $L^{2}=l_{\mu} l_{\nu} \delta^{\mu \nu}$, the integration meassure is

$$
d^{N} l=L^{N-1} \mathrm{~d} L \mathrm{~d} \phi \sin \theta_{1} \mathrm{~d} \theta_{1} \sin ^{2} \theta_{2} \mathrm{~d} \theta_{2} \ldots \sin ^{N-2} \theta_{N-2} \mathrm{~d} \theta_{N-2}
$$

with $0<L<\infty, 0<\phi<2 \pi$ and $0<\theta_{i}<\pi$. Hence

$$
\begin{equation*}
I_{N}=2 \pi \prod_{k=1}^{N-2} \int_{0}^{\pi} \sin ^{k} \theta_{k} \mathrm{~d} \theta_{k} \int_{0}^{\infty} L^{N-1} \mathrm{~d} L F(L) \tag{1}
\end{equation*}
$$

a) Use the formula

$$
\int_{0}^{\pi / 2}(\sin t)^{2 x-1}(\cos t)^{2 y-1} \mathrm{~d} t=\frac{1}{2} \frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}
$$

and $\Gamma(1 / 2)=\sqrt{\pi}$ to simplify Equation (1).
b) Re-write this in terms of $x \equiv L^{2}$.
c) From now on, consider functions that will actually occur in loop integrals, namely

$$
F(x)=\left(x+a^{2}\right)^{-A}
$$

Make a variable substitution $x \rightarrow y$ such that you can use the following relation for the beta function

$$
B(N / 2, A-N / 2)=\frac{\Gamma\left(\frac{N}{2}\right) \Gamma\left(A-\frac{N}{2}\right)}{\Gamma(A)}=\int_{0}^{\infty} \mathrm{d} y y^{\frac{N}{2}-1}(1+y)^{-A}
$$

d) Re-express $x$ by $l^{2}$. This yields the final expression for

$$
\int \frac{\mathrm{d}^{N} l}{\left(l^{2}+a^{2}\right)^{A}}
$$

e) Let $l=l^{\prime}+p$ and $b^{2}=a^{2}+p^{2}$, what relation do you get now?
f) Derive the relation of (e) with respect to $p_{\mu}$ to get an expression for

$$
\int \mathrm{d}^{N} l \frac{l_{\mu}}{\left(l^{2}+2 p \cdot l+a^{2}\right)^{A}},
$$

where $p \cdot l=p_{\mu} l_{\nu} \delta^{\mu \nu}$ as usual in euclidian space.
Solution to (33c): $\tilde{G}_{4}=\lambda-\frac{\lambda^{2}}{2} \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{1}{k^{2}+m^{2}} \frac{1}{(k+p)^{2}+m^{2}}$

