
QFT II - Problem Set 5

(35) Feynman Parameters

As you have seen in problem set 4, there are powerful formulae to evaluate loop terms. Sometimes, however,
you need to reduce the form of these integrals to some standard form. This can be achieved due to a neat trick
invented by Feynman.

a) To start, show the following idendity

1

ab
=

1

b − a

∫ b

a

dt

t2

b) Make a substitution t = b + (a − b)x, where x is the Feynman parameter and express the idendity above by
an integral over z.

c) You have just shown that

1

ab
=

∫ 1

0

dx

(xa + (1 − x)b)2
=

∫ 1

0

dx dy δ(x + y − 1)
1

[xa + yb]2
(1)

d) Use this expression (1) to re-write a typical loop term

1

[(k + q)2 + m2] [k2 + m2]
.

e) Show that
1

abn
=

∫ 1

0

dx dy δ(x + y − 1)
nyn−1

[xa + yb]n+1
(2)

d) Given the formulae (1) and (2), show by induction that

1

a1 a2 . . . an
=

∫

dx1 dx2 . . . dxnδ
(

∑

xi − 1
) (n − 1)!

[x1a1 + x2a2 + . . . xnan]n
.

(36) Symmetric integrals from Minkowski to Euclidian

In exercise (34), you derived results for Euclidian space times. In order to use these for Minkowski amplitudes,
you need to Wick rotate. We will need the following result for exercise (37) below. Suppose you need to integrate

∫

dN l
lµlν

f(l2)
,

where you can take N = 4.

a) Perform a wick rotation i.e. substitute l0 = −il0E for the above integral.

b) Show that
∫

dN l
lµlν

f(l2)
=

−i

N

∫

dN lE
l2Egµν

f(l2E)
(3)

c) Show that
∫

dN l
l2

f(l2)
= −i

∫

dN lE
l2E

f(l2E)
(4)

1



(37) Vacuum Polarisation and dimensional regularization

Consider the following process contributing toward the scattering of two electrons, depicted below.

γα γβ

q
→

q
→

k

k + q

The fermion loop in the middle surely modifies the tree level result. There will be many more graphs of this
type with many more loops that all lead to the same effect: the interaction of two electrons in the full theory
is different from that at tree level. Put another way: the coupling strengths, i.e. the electron charge that is
physically measured will surely differ from the bare e0 that enters the interaction Lagrangian Lint = e0Ψ̄AµγµΨ.
This effect is called vacuum polarization or photon self energy. Virtual fermion pairs shield the bare coupling
e0 and shift its value. By how much, you will compute now. The propagation from vertex α to β above can be
cast in the form

−igαβ

q2
+

−igαµ

q2
iΠµν(q)

−igνβ

q2
+ . . . ,

where the diagram gives the lowest order contribution, which is (verify this!)

iΠµν(q) = (−ie)2(−1)i2
∫

dNk

(2π)4
Tr

[

γµ /k + im

k2 + m2
γν /k + /q + im

(k + q)2 + m2

]

We have written dNk on purpose, because we want to evaluate this expression using dimensional regularization,
i.e. we work in N = 4 − ε dimensions.

a) Perform the trace. For this, assume that the trace formulae in N = 4 hold in arbitrary dimensions. That’s
not perfectly true, but in our case sufficient. You should find

iΠµν(q) = −4e2

∫

dNk

(2π)4
kµ(kν + qν) + kν(kµ + qµ) − gµν [kα(kα + qα) + m2]

[k2 + m2][(k + q)2 + m2]

b) Use the result of (35 d) to re-write the denominator. Hint: remember that x+y=1.

c) Substitute l ≡ k + xq and express the denominator using l.

d) Re-write the numerator in terms of l.

e) All terms linear in l in the numerator will cancel when integrated over d4k. So what is the numerator
neglecting terms linear in l ?

f) Keeping only the linear pieces of the numerator, the result is

Numerator = 2lµlν − gµν l2 − 2x(1 − x)qµqν + gµν [x(1 − x)q2
− m2]

Move to Euclidian space and use Equation (3) and (4) to re-write the numerator as well as the denominator.

g) A useful formula you didn’t compute in (34) (but you could, if you like to) is

∫

dN lE
l2E

(l2E + a2)A
= πN/2 N

2

Γ(A − 1 − N/2)

Γ(A)

(

1

a2

)A−1−N/2

.

In addition, you showed in (34) that

∫

dN lE
1

(l2E + a2)A
= πN/2 Γ(A − N/2)

Γ(A)

(

1

a2

)A−N/2

.

So far, your result can be cast in the form

iΠµν(q) = −4ie2

∫ x

0

∫

dN lE
(2π)4

Iµν
1 + Iµν

2 + Iµν
3

(l2E + a2)2
,

2



where Iµν
1 ≡ (1 −

2

N )gµν l2E , Iµν
2 ≡ gµν [x(1 − x)q2 + m2] and Iµν

3 ≡ 2x(1 − x)
[

qµqν − q2gµν
]

. For each of these

three contributions Iµν
j , perform the integration over dN lE . Hint: Two of them cancel nicely.

h) Express the result of (g) in the following form

iΠµν(q) = (q2gµν
− qµqν) · iΠ(q2)

Convince yourself that qµΠµν = 0. As such, this is a result of the so called Ward-Takahashi idendity which is
linked to gauge invariance. What’s non-trivial and nice is that dimensional regularization did not destroy the
idendity. A momentum cut-off would by the way not have preserved the idendity.

i) As said, we have worked in N = 4 − ε dimensions so far. The Gamma function in Π(q2) diverges as ε → 0:

Γ[2 − N/2] = Γ[ε/2] =
2

ε
− γ,

where γ = 0.5772 is the Euler-Mascheroni constant. Use this (and x2−N/2 = x−ε/2 = exp(− ε
2

ln x) = . . . ) to
perform the limit N → 4 in the expression for Π(q2). Retain terms of order 1/ε and constant terms, discard all
terms that vanish for ε → 0.

j) As said, the propagation of the photon is modified according to

−igαβ

q2
+

−igαµ

q2
iΠµν(q)

−igνβ

q2
+ . . . =

−igαβ

q2
+

−igαµ

q2
i
(

q2gµν
− qµqν

)

Π(q2)
−igνβ

q2
+ . . .

=
−i

q2(1 − Π(q2))

(

gαβ −
qαqβ

q2

)

+
−i

q2

qαqβ

q2
,

where the last equal sign holds, because of the terms hidden in the “. . . ” in the equation above. It’s common
to absorb this modification at q2 = 0 in a redefinition of the electric charge e in terms of the bare coupling e0

which we used to call e
e =

√

Z3e0

where

Z3 =
1

1 − Π(0)
.

At some different momentum q2, the amplitude for the process will then involve

−igαβ

q2

(

e2
0

1 − Π(q2)

)

,

instead of the simple tree-level propagator −igαβ/q2.

(i) Replace e0 by e and Π according to the formulae above.

(ii) Compute the running (q2-dependence) of the electric charge, or put another way, what is

Π(q2) − Π(0)
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