
QFT II - Problem Set 6

(38) One Loop Effective Potential

Consider the generating functional for some scalar field ϕ̂,

Z[j(x)] =
∫
Dϕ̂ exp

(
−S[ϕ̂] +

∫
x

jϕ̂

)
.

As you know from the lecture, the generating functional for connected Greens functions is

W [j(x)] ≡ lnZ[j(x)],

and the expectation value of ϕ̂ is given by

ϕ(x) =
δ

δj(x)
W [j(x)].

The Legrendre transform with respect to ϕ is the 1-PI effective action

Γ[ϕ(x)] ≡ −W [j[ϕ(x)]] +
∫

x

j(x)ϕ(x).

a) Convince yourself that
δΓ
δϕ

= j.

b) Show that in terms of a shifted fluctuating field χ ≡ ϕ̂− ϕ, the effective action is

Γ[ϕ] = − ln
∫
Dχ exp

(
−S[ϕ + χ] +

∫
x

δΓ
δϕ

χ

)
(1)

c) Suppose we pick ϕ(x) such that it solves the classical equation of motion, i.e.

δS

δϕ̂ |ϕ̂=ϕ

= 0.

Expand S around such a saddle point up to second order and use this to rewrite Equation (1) as Γ = S + . . .
(please denote the second derivative of S by S(2)).

d) Use ∫
Dχ exp

(
−1

2
S(2)χ2

)
=

const.√
det S(2)

,

and ln det A = tr lnA to simplify your result.

e) What changes for a complex scalar or fermionic field ?

(39) Mass corrections

a) We would like to compute corrections to the mass. We have defined what we call “mass” by the second
derivative of the potential with respect to the field evaluated at the vacuum value of the field at vanishing
momentum, i.e. constant field value. The action is

S =
∫

x

1
2
∂µϕ̂(x)∂µϕ̂(x) +

1
2
m2

0ϕ̂(x)2 +
λ0

8
ϕ̂(x)4,

what is
δ2S

δϕ̂(p)δϕ̂(p′) |ϕ̂=ϕ

,

i.e what is the inverse (classical) propagator?

b) In order to find an expression for the mass, we can use a constant background field ϕ(x) = ϕ = const, for

1



which ϕ(p) = ϕδ(p). In doing so, we will only be able to pick up corrections that are independent of momentum,
but that’s ok, because the mass is defined at vanishing momentum. Write your result in terms of the inverse
propagator G−1

0 (q) as
S(2)(q, q′) = G−1

0 (q)δ(q + q′)

and use the formula from (38) and the lecture

Γ1l =
1
2
V4

∫
q

ln
(
G−1

0

)
to write down the full effective action at one loop, i.e. Γ = S + Γ1l.

c) Express your result in terms of the effective Potential, i.e. bring it into the form

Γ =
∫

x

1
2
∂µϕ(x)∂µϕ(x) + U(ϕ)

You should find
U(ρ) = m2

0ρ +
λ0

2
ρ2 +

1
2

∫
q

ln
(
q2 + m2

0 + 3λ0ρ
)
,

where ρ ≡ 1
2ϕ2.

d) Evaluating at constant background field in the symmetric phase, (but still using the kinetic term, of course),
the inverse propagator will be

G−1(p) = p2 + m2 = p2 +
∂U(ρ)

∂ρ |ρ=0

.

i) Compute m2 at one loop level in the symmetric phase for which ϕ = 0, i.e.

m2 =
∂U(ϕ)

∂ρ |ρ=0

ii) Compute λ at one loop level in the symmetric phase, i.e.

λ =
∂2U(ϕ)

∂ρ2
|ρ=0

and draw a diagram corresponding to the two contributions you’ll get.

iii) In the symmetric phase, express G(p) in terms of G0(p) =
[
p2 + m2

0

]−1. Hint: use (1 + x)−1 = 1− x, where
x contains the loop term.

(40) Symmetry breaking

In (39), you computed the effective potential at one loop order

U(ρ) = m2
0ρ +

λ0

2
ρ2 +

1
2

∫
2π2q3dq

(2π)4
ln

(
q2 + m2

0 + 3λ0ρ
)

The integral is of the form ∫
q3dq

2(2π)2
ln

(
q2 + µ2

)
a) Perform this integral using an ultra violett cut-off Λ and expand in powers of µ/Λ.

b) The largest term is a constant and won’t influence the dynamics. Hence, we discard it here. But what about
gravity, shouldn’t it see this vacuum energy? Think a bit about this.

c) The leading order term proportional to µ2 is the second term below:∫
q3dq

2(2π)2
ln

(
q2 + µ2

)
= const +

1
16π2

Λ2µ2 + . . . .

Substitute µ2 = m2
0 + 3λ0ρ to obtain an expression for U(ρ).

d) Suppose that m2
0 < 0, how does U(ϕ) look like for small Λ and large Λ ?
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