QFT II - Problem Set 8

Consider a scalar ϕ^{4} theory. We computed in (39) that the effective potential is

$$
U(\rho)=m_{0}^{2} \rho+\frac{\lambda}{2} \rho^{2}+\frac{1}{2} \int_{q} \ln \left(q^{2}+m_{0}^{2}+3 \lambda \rho\right),
$$

and derivative w.r.t ρ

$$
\begin{equation*}
U^{\prime}(\rho)=\frac{\partial U(\rho)}{\partial \rho}=m_{0}^{2}+\lambda \rho+\frac{3}{2} \lambda \int_{q} \frac{1}{q^{2}+m_{0}^{2}+3 \lambda \rho} \tag{1}
\end{equation*}
$$

In thermal field theory, we substitute

$$
\int_{q} \rightarrow T \sum_{n} \int \frac{d^{3} q}{(2 \pi)^{3}}
$$

and

$$
q^{2}=\left(q^{0}\right)^{2}+\boldsymbol{q}^{2} \rightarrow(2 \pi n T)^{2}+\boldsymbol{q}^{2} .
$$

a) Use the formula

$$
\sum_{n} \frac{1}{n^{2}+\frac{x}{(2 \pi)^{2}}}=\frac{2 \pi^{2}}{\sqrt{x}}\left(1+\frac{2}{\exp (\sqrt{x})-1}\right)
$$

to perform the Matsubara sum in the expression for U^{\prime}, Equation (1).
b) Your result so far is

$$
U^{\prime}(T, \rho)=m_{0}^{2}+\lambda \rho+\frac{3}{4} \lambda \int \frac{\mathrm{~d}^{3} q}{(2 \pi)^{3}} \frac{1}{\omega_{q}}+\frac{3}{2} \lambda \int \frac{\mathrm{~d}^{3} q}{(2 \pi)^{3}} \frac{1}{\omega_{q}} \frac{1}{\exp \left(\beta \omega_{q}\right)-1},
$$

where $\omega_{q} \equiv \sqrt{\boldsymbol{q}^{2}+m_{0}^{2}+3 \lambda \rho}$ and $\beta \equiv T^{-1}$. The first integral above is temperature independent, i.e. contributes at $T=0$.
i) Use a cut-off Λ to regularize this integral, to obtain and expression in leading order of Λ. Use this to define a renormalized mass m_{R}^{2} that absorbs the $T=0$ contribution, i.e $U^{\prime}(T, \rho)=$ $m_{R}^{2}+\lambda \rho+\operatorname{Rest}(T, \rho)$.
ii) Show that the $T=0$ integral is indeed the one you get for the usual $(T=0)$ field theory i.e compare to

$$
\frac{3}{2} \lambda \int \frac{\mathrm{~d}^{4} q}{(2 \pi)^{4}} \frac{1}{q^{2}+m^{2}+3 \lambda \rho}
$$

c) Having regularize the mass, we may substitute it in ω_{q}, i.e $\omega_{q}=\sqrt{\boldsymbol{q}^{2}+m_{R}^{2}+3 \lambda \rho}$. For the T-dependent integral

$$
\frac{3}{2} \lambda \int_{0}^{\infty} \frac{\mathrm{d}^{3} q}{(2 \pi)^{3}} \frac{1}{\omega_{q}} \frac{1}{\exp \left(\beta \omega_{q}\right)-1}
$$

i) scale q to make it dimensionless, i.e. $q \rightarrow \tilde{q}=q / T$, and expand the integrand in orders of $\left(m_{R}^{2}+3 \lambda \rho\right) / T^{2}$ to convince yourself that the leading order behaviour in the large T limit, i.e.
$T \gg m_{R}^{2}+3 \lambda \rho$ is const λT^{2}.
ii) At vanishing m_{R}^{2} and in the symmetric phase $\rho=0$, i.e. $\omega_{q}=q$ which corresponds to the $T \rightarrow \infty$ limit, perform the $\mathrm{d}^{3} q$ integration to get $U^{\prime}(T, \rho=0)$ in the neighbourhood of $m_{R}^{2}=0$. For this, you will most probably need a table of integrals or a computer algebra system.
d) As you know, a phase transition from the symmetric $\rho=0$ to the broken phase will occur when $U^{\prime}(T, \rho=0)=m^{2}(T) \rightarrow 0$ signaling an ever growing interaction range $R \propto m^{-1}$. In other words, the phase transition is a long range infra red phenomenon. From your expression for $U^{\prime}(T, \rho=0)$, what is the critical temperature T_{c} defined as $m^{2}\left(T_{c}, \rho=0\right)=0$ for which this happens?
e) The pressure $P(T)$ is given by

$$
P(T)=-U(T)
$$

Integrate your expression for

$$
\frac{\partial U}{\partial \rho}=m_{R}^{2}+\lambda \rho+\frac{3}{2} \lambda \int \frac{\mathrm{~d}^{3} q}{(2 \pi)^{3}} \frac{1}{\omega_{q}} \frac{1}{\exp \left(\beta \omega_{q}\right)-1}
$$

over ρ to obtain an expression for $U(\rho, T)$. This, you can do by hand using some substitutions etc. But you might also ask a computer or book in case you don't have time.
f) Your result so far is

$$
U(T, \rho)=m_{R}^{2} \rho+\frac{\lambda}{2} \rho^{2}-\frac{1}{\beta} \int \frac{\mathrm{~d} q^{3}}{(2 \pi)^{3}} \ln \frac{\exp \left(\beta \omega_{q}\right)}{\exp \left(\beta \omega_{q}\right)-1} .
$$

Again, at vanishing m_{R}^{2} and ρ, i.e. $\omega_{q}=q$, perform the $\mathrm{d}^{3} q$ integration to obtain the pressure in the vicinity of $m_{R}^{2}=0$ up to an additive constant. This constant can be subtracted by subtracting the potential at $T=0$, i.e.

$$
P(T)-P(T=0)=-U(T)-U(T=0)
$$

h) From your thermodynamics course or your knowledge of particle physics, what result do you expect for photons ?

