
QFT II - Problem Set 8

(44) Thermal field theory and critical temperature

Consider a scalar φ4 theory. We computed in (39) that the effective potential is
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and derivative w.r.t ρ
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In thermal field theory, we substitute∫
q

→ T
∑

n

∫
d3q
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and
q2 = (q0)2 + q2 → (2πnT )2 + q2.

a) Use the formula ∑
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to perform the Matsubara sum in the expression for U ′, Equation (1).

b) Your result so far is
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where ωq ≡
√

q2 + m2
0 + 3λρ and β ≡ T−1. The first integral above is temperature independent,

i.e. contributes at T = 0.

i) Use a cut-off Λ to regularize this integral, to obtain and expression in leading order of Λ.
Use this to define a renormalized mass m2

R that absorbs the T = 0 contribution, i.e U ′(T, ρ) =
m2

R + λρ + Rest(T, ρ).

ii) Show that the T = 0 integral is indeed the one you get for the usual (T = 0) field theory i.e
compare to
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c) Having regularize the mass, we may substitute it in ωq, i.e ωq =
√

q2 + m2
R + 3λρ. For the

T-dependent integral
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i) scale q to make it dimensionless, i.e. q → q̃ = q/T , and expand the integrand in orders of
(m2

R + 3λρ)/T 2 to convince yourself that the leading order behaviour in the large T limit, i.e.

1



T � m2
R + 3λρ is constλT 2.

ii) At vanishing m2
R and in the symmetric phase ρ = 0, i.e. ωq = q which corresponds to the

T →∞ limit, perform the d3q integration to get U ′(T, ρ = 0) in the neighbourhood of m2
R = 0.

For this, you will most probably need a table of integrals or a computer algebra system.

d) As you know, a phase transition from the symmetric ρ = 0 to the broken phase will occur
when U ′(T, ρ = 0) = m2(T ) → 0 signaling an ever growing interaction range R ∝ m−1. In
other words, the phase transition is a long range infra red phenomenon. From your expression
for U ′(T, ρ = 0), what is the critical temperature Tc defined as m2(Tc, ρ = 0) = 0 for which this
happens ?

e) The pressure P (T ) is given by
P (T ) = −U(T ).

Integrate your expression for
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over ρ to obtain an expression for U(ρ, T ). This, you can do by hand using some substitutions
etc. But you might also ask a computer or book in case you don’t have time.

f) Your result so far is

U(T, ρ) = m2
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Again, at vanishing m2
R and ρ, i.e. ωq = q, perform the d3q integration to obtain the pressure

in the vicinity of m2
R = 0 up to an additive constant. This constant can be subtracted by

subtracting the potential at T = 0, i.e.

P (T )− P (T = 0) = −U(T )− U(T = 0).

h) From your thermodynamics course or your knowledge of particle physics, what result do you
expect for photons ?
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