QFT II - Problem Set 9

Mass beats loops
Consider a scalar ϕ^{4} theory. We computed in (39) that the one-loop correction to $U^{\prime}(\rho)$ is

$$
\begin{equation*}
U^{\prime}(\rho)_{1 l}=\frac{\partial U(\rho)}{\partial \rho}_{1 l}=\frac{3}{2} \lambda \int_{q} \frac{1}{q^{2}+m^{2}+3 \lambda \rho} . \tag{1}
\end{equation*}
$$

a) For a fixed UV-cutoff Λ, what is $U^{\prime}(\rho)_{1 l}$ if the mass $m^{2} \rightarrow \infty$, i.e. $m^{2} \gg \Lambda^{2}$?
b) Just qualitatively, what about diagrams with more than one loop ?

Momentum depended additional mass
As we have seen in (45), we can suppress quantum corrections using large masses. So suppose we add a momentum depended mass term $R_{k}(p)$ to the Lagrangian

$$
\mathcal{L}=\frac{1}{2}\left[p^{2}+m^{2}+R_{k}(p)\right] \Phi^{2}+\frac{\lambda}{8} \Phi^{4} .
$$

a) Suppose that

$$
R_{k}(p)=\frac{Z_{k}(p) p^{2}}{e^{p^{2} / k^{2}}-1},
$$

where $Z_{k}(p)$ is supposed to vary only mildly. Sketch $R_{k}(p)$ as a function of p^{2}. What happens for $p^{2} \lesssim k^{2}$?
b) Sketch the behavior of another choice for $R_{k}(p)$

$$
R_{k}(p)=Z_{k}(p)\left(k^{2}-p^{2}\right) \theta\left(k^{2}-p^{2}\right)
$$

c) Finally, sketch the behavior of

$$
R_{k}(p)=\frac{Z_{k}(p) p^{2}}{e^{-p^{2} / \Lambda^{2}}-e^{-p^{2} / k^{2}}}\left[1-e^{-p^{2} / \Lambda^{2}}+e^{-p^{2} / k^{2}}\right] .
$$

What happens in the limits of:
(i) $k^{2} \ll p^{2} \ll \Lambda^{2}$
(ii) $p^{2} \ll k^{2} \ll \Lambda^{2}$
(iii) $k^{2} \rightarrow \Lambda^{2}$

A flow equation for the effective action is

$$
\partial_{t} \Gamma_{k}=\frac{1}{2} \operatorname{Tr} \frac{\partial_{t} R_{k}}{\Gamma^{(2)}+R_{k}},
$$

where $t=\ln k$ and e.g. for a scalar field theory

$$
\Gamma^{(2)}=\frac{\delta^{2} \Gamma}{\delta \varphi \delta \varphi}
$$

We would like to consider the running of the parameters of a φ^{4} theory. For simplicity, let us consider

$$
\Gamma[\rho]=\int \frac{\mathrm{d}^{d} q}{(2 \pi)^{d}}\left\{Z_{k}(\rho, q) q^{2} \rho+\frac{\lambda_{k}}{2}\left(\rho-\rho_{0}(k)\right)^{2}\right\}
$$

where as usual $\rho=\frac{1}{2} \varphi^{2}$.
a) Convince yourself that for constant φ, this leads to the running of the potential according to

$$
\begin{equation*}
\partial_{t} U_{k}(\rho)=\frac{1}{2} \int \frac{\mathrm{~d}^{d} q}{(2 \pi)^{d}} \frac{\partial_{t} R_{k}(q)}{U^{\prime}+2 \rho U^{\prime \prime}+Z_{k}\left(\rho, q^{2}\right) q^{2}+R_{k}(q)} \tag{2}
\end{equation*}
$$

where ' denotes derivatives with respect to ρ.
b) Let us take the Litim cut-off

$$
R_{k}(p)=Z_{k}(p, \rho)\left(k^{2}-p^{2}\right) \theta\left(k^{2}-p^{2}\right) .
$$

Compute $\partial_{t} R_{k}$. You can neglect the derivative of θ (why?).
c) Use

$$
\eta \equiv \frac{\partial_{t} Z_{k}}{Z_{k}}
$$

to re-write your expression of $\partial_{t} R_{k}$.
d) Plug your result for $\partial_{t} R_{k}$ and the expression for R_{k} into Equation (2)
e) Suppose that Z_{k} does not depend on p, i.e. $Z_{k}=Z_{k}(\rho)$. Perform the q-integration in the flow equation using the θ function and

$$
\int \frac{\mathrm{d}^{d} q}{(2 \pi)^{d}}=\frac{\Omega_{d}}{(2 \pi)^{d}} \int \mathrm{~d} q q^{d-1}
$$

f) To get a flow equation for λ_{k}, we use the fact that

$$
U^{\prime \prime}=\lambda,
$$

i.e. to get a flow equation for λ_{k}, derive your result of (e) twice with respect to ρ. For convenience, we set $Z_{k}=$ const, i.e. it does not depend on ρ.

