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1 Quantum Fields

1.1 Introduction

Quantum field theory (QFT) is a theory that is useful not only for elementary particle
physics, but also for understanding certain aspects of e.g. atoms, gases or solids. One
can say that

QFT is quantum mechanics (QM) for systems with many (sometimes in-
finitely many) degrees of freedom.

QFT is conceptually not beyond QM. But the large number of degrees of freedom create
qualitatively new effects. The relationship between QFT and QM is similar to the
relationship between statistical mechanics and mechanics.

The basic problem of QFT is how to treat these infinitely many degrees of
freedom.

A good theory should be independent of how exactly this limit process is done.
One topic in QFT is the renormalization group. It is concerned with the question of

how to translate microscopic, short distance laws to larger systems. Only part of the
information is appearing on larger scales.

The key method to make QFT simple is functional integrals. We will however start
with the more familiar creation/annihilation operators in this chapter and then move on
to functional integrals in chapter 2.

1.2 Units

We use units in which

~ = c = 1. (1.1)

From c = 1 it follows that 1 s = 299792458m and that mass and energy have the same
units (E = mc2). We measure mass and energy in eV. The mass of an electron is there-
fore me = 510 998.902(12) eV ≈ 9.1 · 10−31 kg. Obviously, velocities are dimensionless.
Momentum is therefore also measured in eV.

¿From ~ = 1 it follows that the unit of length is the inverse of the unit of energy.
Knowing that ~c ≈ 197GeV m in the SI system we can easily convert between units, for
example:

1 fm = 10−15 m =
1

197MeV
≈ 5GeV−1

1Hz = 1 s−1 = 6.66 · 10−16 eV (1.2)
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1 Quantum Fields

As an example of how our new units make life simple consider the commutator rela-
tion between the position operator Q and the momentum operator P , which used to be
[Q,P ] = i~ and now simply is [Q,P ] = i, i.e. QP is dimensionless.

Exercise: Express the Bohr radius a0 ≈ 0.5 · 10−10 m in eV−1.

1.3 Non-Relativistic Many-Body Systems 1: Phonons

We will treat these systems now with the so called operator formalism, which is also
called canonical quantization, because students already know this method from QM. In
chapter 2 we will do the same problem again with a new, better method called functional
formalism.

1.3.1 One Dimensional Crystal

The reason why we start with this system is that all the basic concepts of QFT are
already present here. Doing it in three dimensions would only increase the number of
indices and give nothing conceptually new.

We consider a one dimensional lattice with N lattice sites (N even) and one atom
at every lattice site j. For simplicity we connect the lattice to a torus and identify
N/2 with −N/2. For large N that is physically the same as the linear lattice, but is
mathematically more simple because there are no boundaries.

Let Qj be the displacement from the equilibrium position and Pj the momentum of
the atom at lattice site j. Then we have the following commutator relations:

[Qi, Pj ] = iδij ,

[Qi, Qj ] = 0,

[Pi, Pj ] = 0. (1.3)

They express that different atoms are completely independent, but position and momen-
tum of one particle are related.

As a first dynamical model for our crystal we treat the atoms as independent harmonic
oscillators. This is described by the simple Hamiltonian

H0 =
∑

j

(
D

2
QjQj +

1

2M
PjPj

)
(1.4)

which has N degrees of freedom and no interaction between lattice sites. To solve this
problem we define for each lattice site j two operators which are linear combinations of
the position and the momentum operator of that site:

annihilation operator : aj =
1√
2

(
(DM)

1
4Qj + i(DM)−

1
4Pj

)
,

creation operator : a†j =
1√
2

(
(DM)

1
4Qj − i(DM)−

1
4Pj

)
. (1.5)
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1.3 Non-Relativistic Many-Body Systems 1: Phonons

The fact that a†j is the adjoint of aj, i.e. that a†j = (aj)
†, justifies the notation a†j. These

operators satisfy the following relations:

[ai, a
†
j ] = δij ,

[ai, aj ] = 0,

[a†i , a
†
j ] = 0. (1.6)

We can express the Hamiltonian in terms of the annihilation and creation operators:

H0 = ω0

∑

j

(a†jaj +
1

2
) = ω0

∑

j

a†jaj +
N
2
ω0,

where ω0 : =
√
D/M. (1.7)

For N → ∞, the second term in the Hamiltonian goes to infinity. However, this di-
vergence is not problematic, since we measure only differences in energy and the point
of zero energy is a matter of definition. We simply subtract the term to get the right
result. But this is a phenomenon we will encounter quite often in QFT and we always
have to make sure that the divergent terms are not connected to observable quantities,
otherwise we will be in trouble.

Occupation Number Representation

A basis vector in the occupation number representation contains for each possible state
of a system the number of particles that occupy it. We can describe the state |Ψ〉 in the
occupation number basis by

|Ψ〉 = |n−N
2
, . . . , n−1, n0, n1, . . . , nN

2
−1〉. (1.8)

The particle number operator for the lattice site j can be expressed as

n̂j = a†jaj. (1.9)

It counts the number of phonons at lattice side j

n̂j| . . . , nj, . . . 〉 = nj| . . . , nj, . . . 〉. (1.10)

The total occupation number operator is given by

N̂ =
∑

j

n̂j . (1.11)

Note the different meaning of N and N :

N = number of degrees of freedom of the system (here the number of lattice sites)

N = total number of excitations in the system (here the number of phonons)
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1 Quantum Fields

QFT deals with large N , not necessarily with large N . For example QFT can de-
scribe phonon-phonon scattering in a crystal. There you have N ≈ 1023 and N = 2.
The situation is similar for processes like electron-photon or electron-electron scattering.
They involve only N = 2 particles (particles are described as excitations of the vacuum),
but N = ∞ degrees of freedom, namely the possible momenta of the outgoing particles.
Even the ground state |0〉, where N = 0, is often a very complicated object in QFT!

N can be large too in QFT, e.g. if you want to describe a cold atom gas you can easily
have N ≈ 105. But the important characteristic of all systems studied in QFT is that
they have very many degrees of freedom.

Basic Concepts of QFT

By now we have already met all the basic concepts of QFT:

vacuum = ground state: We call the ground state of our world the vacuum. The vac-
uum state |0〉 = |0, 0, 0, . . . , 0, . . . , 0〉 is a normalized state in Hilbert space. It is
the state of lowest energy, not necessarily zero energy. |0〉 6= 0, the vacuum is not
empty, it can be very complicated.

particles = excitations of ground state: The excitations of the ground state are the
particles. Particle properties depend on the ground state. For a solid that is
obvious, the phonons depend on D and M . But for any system they depend on
the Hamiltonian.

• 〈n̂j〉 = 0.3 says that the expectation value of finding a phonon at site j is 0.3

• If a state has a sharp number of nj phonons at site j then the equation
n̂j|Ψ〉 = nj|Ψ〉 says that |Ψ〉 is a superposition of states | . . . , nj, . . . 〉 which
all have nj atoms at site j.

operator fields: We have a field of operators aj ≡ a(j) ≡ a(x) with x = j · a (a de-
notes the distance between adjacent lattice sites). That is a new concept, e.g. in
electrodynamics of quantum mechanics we just dealt with scalar of vector fields.
You can’t measure these operators because they are not Hermitian, but Hermitian
fields are easily constructed from a(x) and a†(x):

q(x) =
1√
2

(
a(x) + a†(x)

)
= (DM)

1
4Q(x),

p(x) = − i√
2

(
a(x) − a†(x)

)
= (DM)−

1
4P (x) (1.12)

are observables with real expectation values and [qi, pj ] = iδij .

QFT is conceptually very simple, but it is technically difficult because the Hamiltonians
describing real physical systems are complicated.
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1.3 Non-Relativistic Many-Body Systems 1: Phonons

1.3.2 Propagating Phonons

So far our “phonons” are quite boring: Eigenstates of H0 are confined to a given lattice
site. Each lattice site can be treated independently of other sites. It is only a collection of
one particle systems, we need interaction between lattice sites for propagation. Therefore
we introduce next neighbor interaction into our Hamiltonian.

H = H0 +Hnn,

Hnn = −B
2

∑

j

Qj+1Qj = −B
4

∑

j

(Qj+1Qj +Qj−1Qj) (1.13)

Now we have coupled oscillators! We consider B > 0 so the “alignment” of Qj is favored
because it needs less energy. The solution is still simple because this is a linear system.
The diagonalization of H is possible.

Classical System

We will setup and solve the equations of motion for the classical system. The equations
are

Q̇j =
1

M
Pj ,

Ṗj = − ∂H

∂Qj
. (1.14)

The equation of motion is given by

MQ̈j = −DQj +
B

2
(Qj+1 +Qj−1) (1.15)

and the Fourier transform of Qj is

Fq =
∑

j

e−iqajQj . (1.16)

Here we used the same definitions as already introduced in chapter 1.3.1. a is the
periodicity constant of our lattice such that a · j = x is the continuous spacial variable.
The classical momentum is q. Inserting the Fourier transform into the equation of motion
gives

MF̈q =
∑

j

e−iqaj(−DQj +
B

2
(Qj+1 +Qj−1))

= −{D
∑

j

e−iaqjQj −
B

2

∑

j

e−iqa(j−1)Qj −
B

2

∑

j

e−iqa(j+1)Qj}

= −
∑

j

e−iqajQj{D − B

2
(eiqa + e−iqa)} = −Fq · (D −B cos qa). (1.17)

This equation is solvable with the ansatz

Fq(t) = eiωqtFq1 + e−iωqtFq2, where ω2
q =

D −B cos qa

M
and |B| ≤ D. (1.18)
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1 Quantum Fields

Quantum System

For the quantum system, we need to make a finite Fourier transform. This gives us the
creation and annihilation operator of a wave mode (phonon) with momentum q:

aq =
1√
N
∑

j

e−iqajaj ,

a†q =
1√
N
∑

j

eiqaja†j . (1.19)

Note that this isn’t the Fourier transform of the momenta Pj and the space variables
Qj . We are interested in the momentum properties of a discrete torus lattice. The
circumference is L = aN , the longest wavelength possible is L/2 and the shortest is
2a. Thus the momenta are q = 2π kL , where all integers k =, 0,±1,±2,±3, . . . ,±N

2 are
possible. One finds the periodicity in j

e−iqa(j+N ) = e−iqaj (1.20)

and the periodicity in q

q′ = q +
2π

a
→ aq′ = aq → identify q and q +

2π

a
k. (1.21)

Let’s calculate the commutator of a†q and aq′ :

a†qaq′ =
1

N
∑

j

∑

j′

eia(qj−q
′j′)a†jaj′

aq′a
†
q =

1

N
∑

j

∑

j′

eia(qj−q
′j′)aj′a

†
j ,

[aq′ , a
†
q] =

1

N
∑

jj′

eia(qj−q
′j′)[aj′ , a

†
j ] (1.22)

We know that [aj′ , a
†
j ] = δj′j and thus we have (m integer)

[aq′ , a
†
q] =

1

N
∑

j

eiaj(q−q
′) = δ̃(q − q′) =

{
1 for q′ = q + 2mqmax where qmax = π

a

0 otherwise.

(1.23)

Proof: A useful identity is 1
N
∑

j e
2πi
N
kj = δ̃k,0 for: j, k integer, |j| ≤ N

2 ,

j = ±N
2 identified, N even, δ̃k,0 = 1 for k = 0 modN , 0 otherwise.

The number operator for a phonon in q-mode is given by n̂q = a†qaq, with the conditions

−π
a ≤ q ≤ π

a , with −π
a and π

a identified (momenta on torus!). It follows that [aq, a
†
q] = 1

and that all other commutators vanish.
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1.3 Non-Relativistic Many-Body Systems 1: Phonons

The inverse finite Fourier transformation is given by

aj =
1√
N
∑

q

eiaqjaq


with

∑

q

=
∑

|q|≤π
a

=
∑

|k|≤kmax
=
∑

|k|≤N
2


 (1.24)

Proof: Insert the definition of aq.

We now want to express Hnn in terms of aq and a†q:

Hnn = −B
2

∑

j

Qj+1Qj,

Qj =
1√
2
(DM)−

1
4 (aj + a†j),

⇒ Hnn = −B
2

(DM)−1/2

2

∑

j

(aj+1 + a†j+1)(aj + a†j). (1.25)

Setting β = B(DM)−1/2

4 gives

Hnn = −
∑

j

∑

qq′

β

N (eiaq(j+1)aq + e−iaq(j+1)a†q)(e
iaq′jaq′ + e−iaq

′ja†q′) (1.26)

replace q by −q for a†, this is just rearranging the sums

Hnn = − β

N
∑

qq′

∑

j

eia(q(j+1)+q′j)(aq + a†−q)(aq′ + a†−q′)

= − β

N
∑

qq′

eiaq
∑

j

eia(q+q
′)j(aq + a†−q)(aq′ + a†−q′). (1.27)

Using formula (1.23)
∑

j e
ia(q+q′)j = N δq,−q′ we get

Hnn = −β
∑

q

eiaq(aq + a†−q)(a−q + a†q) (1.28)

With aq, a
†
q′ = a†q′aq + δq,q′ one finds

Hnn = −β
∑

q

eiaq(a†−qa−q + a†qaq + 1 + aqa−q + a†qa
†
−q). (1.29)
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1 Quantum Fields

With
∑

q e
iaq = 0 follows

Hnn = −β
∑

q

(eiaq + e−iaq){a†qaq +
1

2
(aqa−q + a†qa

†
−q)},

= −B(DM)−1/2

2

∑

q

cos aq{a†qaq +
1

2
(aqa−q + a†qa

†
−q)}, (1.30)

H0 =

√
D

M

∑

j

a†jaj =

√
D

M

∑

q

a†qaq. (1.31)

Proof: The reader should verify this!

The general Hamiltonian H is then given by

H = H0 +Hnn =

√
D

M

∑

q

hq,

hq = (1 − B

2D
cos aq)a†qaq −

B

4D
cos aq(aqa−q + a†qa

†
−q). (1.32)

As we now see, H separates into contributions from individual |q| modes, but it still

mixes between aq and a†−q!

1.3.3 Block Diagonalization

Until now, we have been able to decompose all modes of H, with different |q|. To
decompose the terms with q and −q, we introduce new operators Aq and A−q for α, β ∈ R

via

aq = αAq + βA†
−q, a†q = αA†

q + βA−q,

a−q = αA−q + βA†
q, a†−q = αA†

−q + βAq. (1.33)

At first glance, one assumes, that this is an orthogonal transformation, but we’ll see
it’s NOT. The reason is, that we would like the algebra (commutator relation) to be

preserved, this means: [aq, a
†
q] = [Aq, A

†
q] = 1. Let’s compute [aq, a

†
q]:

a†qaq = α2A†
qAq + αβ(AqA−q +A†

qA
†
−q) + β2A−qA

†
−q

= α2A†
qAq + αβ(AqA−q +A†

qA
†
−q) + β2(A†

−qA−q + 1)

aqa
†
q = α2AqA

†
q + αβ(AqA−q +A†

qA
†
−q) + β2A†

−qA−q

= α2(A†
qAq + 1) + αβ(AqA−q +A†

qA
†
−q) + β2A†

−qA−q

⇒ [aq, a
†
q] = α2 − β2 = 1 (1.34)

Obviously, this transformation isn’t orthogonal (α2 + β2 6= 1). The transformation
group with this property is called the symplectic group. We’ll discuss it later on.
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1.3 Non-Relativistic Many-Body Systems 1: Phonons

We can now express H in terms of Aq and A†
q. We define H̃ by

hq =
1

2

(
1 − B

2D
cos(qa)

)
H̃ (see (1.32))

⇒ H̃ = a†qaq + a†−qa−q + c(aqa−q + a†qa
†
−q) (1.35)

We compute all the terms using the commutator relations for A†
q and Aq,

a†qaq + a†−qa−q = (α2 + β2)(A†
qAq +A†

−qA−q) + 2αβ(AqA−q +A†
qA

†
−q) + α2 + β2,

aqa−q = α2AqA−q + β2A†
−qA

†
q + αβ(AqA

†
q +A†

−qA−q),

a†qa
†
−q = α2A†

qA
†
−q + β2A−qAq + αβ(A†

qAq +A−qA
†
−q). (1.36)

Since we don’t want any ‘mixed terms’ (AqA−q) in H, the following equation must be
true:

2αβ + c(α2 + β2) = 0. (1.37)

Using β2 = α2 − 1, we solve for α2:

α2 =
1

2
± 1

2
√

1 − c2
(1.38)

Only ’+’ is possible, since α2 ≥ 0. Taking α ≥ 0, we finally get the result

H̃ =
√

1 − c2(A†
qAq +A†

−qA−q) (1.39)

with

Aq = αaq − βa†−q, A−q = αa−q − βa†q,

A†
q = αa†q − βa−q, A†

−q = αa†−q − βaq. (1.40)

1.3.4 One Dimensional Phonons

Now we assume a one dimensional lattice. We write down the full Hamiltonian

H =
∑

q

√
D

M
(
1

2
− B

4D
cos aq)H̃, (1.41)

c = − B

4D
cos aq(

1

2
− B

4D
cos aq)−1. (1.42)

Writing

H =
∑

q

ωqA
†
qAq (1.43)

we find the expression

ω2
q =

D

M
(1 − B

D
cos aq) (1.44)

This is exactly the expression one gets in the classical limit, see (1.18).
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1 Quantum Fields

1.3.5 Summary

• Now we have entirely diagonalized H into phonon modes with momenta q. The
eigenstates |n〉 of H are also eigenstates of A†

qAq. Because of the commutator

relation, A†
qAq is an occupation number operator (its eigenvalue is the number of

phonons with mode q. Remember: its possible to have more phonons with the
same momentum q. In this picture the phonons are the particles!).

• The transformation we applied is not orthogonal. The underlying group is called
the symplectic group. It has the property of preserving the commutator.

• We have ωq = ω(q). This is called the dispersion relation. It embodies all micro-
physics.

For example we can calculate the energy of the system:
The canonical sum is given by

Zc = Tr(e−βH) =
∑

nq

〈nq|e−β
P

q ωqA
†
qAq |nq〉. (1.45)

Here
∑

nq
means

∑
n1

∑
n2
. . .. We normally would have the restriction

∑
q nq = N

(N = number of phonons). But since N is not constant, we can omit this restric-
tion! We assume

A†
qAq|nq〉 = nq|nq〉 (1.46)

and can now calculate Zc:

Zc =
∑

{nq}
e−β

P

q ωqnq =
∑

nq1

∑

nq2

. . . e−β
P

q ωqnq =
∏

q

1

1 − e−βωq
. (1.47)

In the last step we used the geometric series. So the energy of the system is

E =
1

Zc
(−∂βZc) =

∑

q

ωq
e−βωq − 1

. (1.48)

Here we can see that the macroscopic quantity energy is entirely determined by
the ωq’s!

1.3.6 The Symplectic Group Sp(V )

The symplectic group Sp(V ) is the group of transformations, which preserve any non-
degenerate, skew symmetric form ω : V × V → K.

ω(Mu,Mv) = ω(u, v) (1.49)

with u, v ∈ V and M ∈ Sp. If we express ω within a certain basis by a skew symmetric
matrix J, the elements M ∈ Sp must then fulfill the following condition:

MTJM = J (1.50)
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1.3 Non-Relativistic Many-Body Systems 1: Phonons

Another property of Sp(V ) is that its elements also preserve so called volume forms
ṽ = vijk ei ∧ ej ∧ ek. It follows that the orientation of the given vector space is also
preserved.

1.3.7 Further Discussion of Phonons

Now, that we have diagonalized the Hamiltonian of the one dimensional solid and that
we have found the dispersion relation (1.44) for the phonons, we want to discuss these
quasi-particles a little bit more, although they are not one of our major interests in this
lecture on QFT.

Real Phonons in a Cubic Lattice

To come to the “real world”, we have to consider a 3D lattice. This is a little bit more
complicated, as we may have several sorts of phonons with different dispersion relations
ωα(q). But if we restrict ourselves to cubic lattices and consider only longitudinal waves,
the planes of lattice sites (atoms) oscillate as a whole, so our problem becomes one-
dimensional, just as we discussed it on the previous pages.

Let us consider the dispersion relation a little bit more in detail: What does it look
like in the following cases:

D = B, D = B + ∆ > B, D < B. (1.51)

A) Remember our original Hamiltonian,

H =
∑

j

{
D

2
QjQj −

B

2
Qj+1Qj +

1

2M
PjPj

}
. (1.52)

Setting B = D gives

H =
∑

j

{
B

2
Q2
j −

B

2
Qj+1Qj +

P 2
j

2M

}

=
∑

j

{
B

4
Q2
j +

B

4
Q2
j+1 −

B

2
Qj+1Qj +

P 2
j

2M

}

=
∑

j

{
B

4
(Qj+1 −Qj)

2 +
P 2
j

2M

}
(1.53)

In equation (??) we observe that this Hamiltonian corresponds to a potential
energy that is only dependent on the distance between two next neighbors (atoms
in 1D, planes of atoms in 3D).

The dispersion relation is now

ωq =

√
B

M

√
1 − cos(aq). (1.54)
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For small values of q we use the Taylor expansion of the cosine and find

ωq =

√
B

2M
a|q|. (1.55)

The group velocity of longitudinal waves (sound velocity in solids) can also be
calculated

vg =
∂ωq
∂q

= sgn(q) · a
√

B

2M
. (1.56)

So we found the result, that the sound velocity is constant for small |q|. Remember
that we only considered longitudinal and no transversal waves, which usually have
higher sound velocities. Dealing with transversal waves we would be confronted
with the problem, that we do no longer have oscillating planes of atoms - and with
this, we can no longer say that our problem is one dimensional.

B) Let us come to the second case, D = B + ∆ with a positive ∆. In this case we
have the Hamiltonian

H =
∑

j

{
B + ∆

2
Q2
j −

B

2
Qj+1Qj +

P 2
j

2M

}

=
∑

j

{
∆

2
Q2
j +

B

4
(Qj+1 −Qj)

2 +
P 2
j

2M

}
. (1.57)

The additional term is looking like the harmonic oscillator potential, and its effect
is to “remind” every oscillator of its equilibrium position. An example would be
a lattice with two different atoms in the fundamental cell, a very heavy and a
relatively light one. The heavier atoms then may have fixed positions while only
the light ones are oscillating. Due to a coupling between the two atoms in the
fundamental cell, the light atoms are always “feeling” a reacting force towards the
equilibrium position.

What about the dispersion relation? Well, this time we have

ωq =

√
B + ∆

M

√
1 − B

B + ∆
cos(aq)

Taylor≈
√
B + ∆

M

√
1 − B

B + ∆
+

B

B + ∆

a2q2

2

=

√
1

M

√
∆ +B

a2q2

2
. (1.58)

So even for q = 0 we get a finite frequency ωq (“gap”).

For ∆ → 0, D → B we get the same result as we had in case A).
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1.3 Non-Relativistic Many-Body Systems 1: Phonons

C) For D < B or D = B − ∆, we use the result (1.57) from case B), and just switch
the sign of ∆. We find

H =
∑

j

{
−∆

2
Q2
j +

B

4
(Qj+1 −Qj)

2 +
P 2
j

2M

}
. (1.59)

Notice that this time we have an additional, quadratic potential energy with neg-
ative sign. At this point we get into trouble, because this means that our ground
state is unstable.

Actually, this is not just a mathematical problem: For example phonon-phonon
interaction is described by a negative, linear quadratic term, but also with an
additional term ∝ λQ4

j . Transforming this into creation and annihilation operators
we get

HW ∝ λaqaqa
†
qa

†
q. (1.60)

This is not a linear system anymore! It causes very difficult problems to find the
ground state and to classify, what an excitation is. A possibility is to do small λ
perturbation theory, but even this method fails for B ≈ D.

For the moment, this is too complicated for us. We will come back to this point
later, when we have learned the method of path integrals.

Real Phonons, Arbitrary Lattices

So far we have only considered the cubic lattice. We transformed our Hamiltonian to

H =
∑

q

ω(q)A†(q)A(q) (1.61)

and realized, that all details of the lattice and interactions are reflected in the dispersion
relation ω(q). It depends strongly on the relation between B and D.

Now, in the more general case, we may have several “branches” H =
∑

αHα with
different dispersion relations ωα.

Application: For many purposes it is convenient to treat a solid as a phonon gas.
This is similar to the photon gas, but with a different dispersion relation: Photons have
ω(q) = |q|, and our phonons usually (for D > B) have ω(q) ∝ |q|2.

Real Phonons in Position Space

What happens if we are going back to position space? Let us transform our annihilation
operator A(q):

A(q) =
1√
N
∑

j

e−iaqjAj. (1.62)
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Please keep in mind that we do not really know what our Aj operators are, especially

not their relation to our original operators aj and a†j. We just define them to be the
Fourier coefficients of the Fourier series in (1.62). However, one thing we know is their
commutation relation, because we know those for the Aq and already proved that Fourier
transformations do not change them:

[Aj, A
†
k] = δ(j − k) = δj1k1δj2k2δj3k3 . (1.63)

This allows to write the Hamiltonian as

H =
∑

jj′

T (j, j′)A†
jAj′ , (1.64)

with a function T that is uniquely fixed by ω(q) (and vice versa) which can be seen by
Fourier transformation. An example would be the next neighbor interaction:

T (j, j′) ∝ δ(j − j′ − 1). (1.65)

IMPORTANT NOTE ON NOTATION: Because we don’t need our “old” aq and a†q
operators anymore, we will change our notation:

Aq → aq (1.66)

(and the same for creation operators).

Quasi-Momentum of Phonon States in one Dimension

In our new notation the Hamiltonian is

H =
∑

q

ω(q)a†qaq (1.67)

with the operators aq and a†q that annihilate or create phonons of a “quasi-momentum”
q. But what is the meaning of this “quasi-momentum”? To answer this question, let us
first define the total quasi momentum of a system,

q̂ =
∑

q

qa†qaq. (1.68)

This is obviously a reasonable definition, because a†qaq gives us the number of phonons

with quasi-momentum q, so qa†qaq will be the quasi-momentum of all phonons having q.
The sum over all q should then give us the total quasi-momentum of all quasi-particles.

Well, somehow we used the word “quasi” very often in the last sentences. The reason
is that q̂ has obviously nothing to do with the physical momentum P̂total =

∑
j P̂j .

Imagine, for instance, a solid that is fixed in space. In this case, we have surely no total
momentum P̂total =

∑
j P̂j (or, to be more precise, the eigenvalue of P̂total will be zero:

P̂total|ψ〉 = 0|ψ〉).
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1.3 Non-Relativistic Many-Body Systems 1: Phonons

Nevertheless, the atoms of the solid may oscillate, so the momenta of the individual
atoms are non-zero. This is where we originally had started: We defined our operators
a†j and aj , transformed them to a†q and aq, then transformed them to A†

q and Aq (which

we now again write as a†q and aq). So the number operators a†qaq will be non-zero for at
least some q, which gives us a non-zero eigenvalue for q̂: q̂|ψ〉 6= 0|ψ〉.

The commutation relation of q̂ with the Hamiltonian is

[q̂, H] = 0, (1.69)

which is true because q̂ is a conserved quantity (remember that operators of conserved
quantities commute with the Hamiltonian).

Interpretation: One-Phonon State with Quasi-Momentum q

We have already learned a lot about phonons so far, but still we do not have a very clear
idea of these quasi-particles. In order to change this, let’s consider a very simple system:
A solid where we have just one single phonon with momentum q:

|q〉 = a†q|0〉. (1.70)

The eigenvalue of the total quasi-momentum operator q̂ is q:

q̂|q〉 = q|q〉. (1.71)

And the eigenvalue equation of H is

H|q〉 =
∑

q

ωqa
†
qaq|q〉 = ωq|q〉. (1.72)

In the occupation number basis the system is obviously very simple, but it can be quite
complicated when we try to express it in terms of the (time dependent) positions of
every single atom in the lattice.

Nevertheless, this is exactly what we want to do now, because we want to get a better
idea of phonons. But to make the calculation as simple as possible, we will make one
further simplification: We set B = 0, which means that we are going back to uncoupled
lattice sites. With this, we also have Aq = aq.

The time-dependent Schrödinger equation looks like

i
∂

∂t
|q〉 = ωq|q〉, (1.73)

and the solution is

|q〉(t) = e−iωqt|q〉t=0 = e−iωqta†q|0〉, (1.74)

where we have chosen the phase to be 1 at t = 0.
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Now we express the operator a†q in terms of the aj and a†j similar to equations (1.19).
This leads to

|q〉 =
1√
N
∑

j

ei(qx−ωqt)a†j |0〉, where x = aj. (1.75)

Because we have an uncoupled system, the ground state wave function is a product of
the wave functions of the single lattice sites,

|0〉 =
∏

j

|0〉j =
∏

j

ψj,0(yj). (1.76)

In the last step, we’ve been a little bit sloppy with our notation, because now we have a
ket vector on the left-hand side and a function of spatial coordinates on the right-hand
side. To be more precise, we should have written 〈x|0〉 or something like that. Anyway,
don’t worry when we continue with this notation down below. Just keep in mind that
we identify our ket vectors with the spatial representation of the wave function.

The argument yj needs as well a little bit of explanation. With this, we mean the
deviations of the position of a lattice site xj to its equilibrium position xj,eq.,

yj = xj − xj,eq. (1.77)

Fortunately, we know the ψj,0(yj) from quantum mechanical harmonic oscillator:

ψj,0(yj) = Ce−κy
2
j . (1.78)

The operator Qj acts like

Qjψj,0(yj) = yjψj,0(yj). (1.79)

According to equation (1.75), we need to know how a†j acts.

a†jψj,0 = (c1yj − c2
∂

∂yj
)ψj,0 (c1, c2 defined by (??))

= σCyje
−κy2j = σyjψj,0. (1.80)

The second equality holds, because the derivative with respect to yj also gives us a term

proportional to yje
−κy2j .

We will now insert this into equation (1.75). But we have to keep in mind that in
(1.75) the creation operator acts on the product wave function |0〉 =

∏
j′ ψjprime,0(yj′)

and that only one single ψj,0 is changed by the operator. We therefore get

|q〉(t) =
1√
N
∑

j

ei(qx−ωqt)σyjCe
−κy2j

∏

j′ 6=j
Ce

−κy2
j′ . (1.81)
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The relative phase factor ei(qx−ωqt) is important. If we have, for instance, a difference of

x2 − x1 =
π

q
(1.82)

between two oscillators, they will have a phase difference of π. Furthermore, this relative
phase between two oscillators is constant in time.

Well, this is now a good moment to discuss the meaning of the quasi-momentum
q. In equation (1.82) we see, that q plays the role of a wave number, and as we set
~ = 1, this is equal to a momentum. So a phonon with momentum q is not a localized
particle somewhere in the lattice, traveling with a velocity that corresponds to the given
momentum. It can be better understood as the vibration of the whole lattice. Every
atom within the lattice is oscillating, and we have fixed phase relations between them,
corresponding to the wave number (equals momentum) of the phonon. The frequency
of the oscillation of an atom is given by ω, which is a quantity that depends on q, but
also on the properties of the lattice.

We could even ask more questions on the interpretation of phonons. One would be:
What happens, if we have two phonons with the same quasi-momentum? Well, they
will cause the same type of oscillation, but the lattice sites will oscillate with a bigger
amplitude. More difficult situations, e.g. excitations of different q-modes or propagating
phonons (so a system with next neighbor interaction) are not discussed or interpreted
here.

To finish this paragraph, we make some additional remarks:

• The difference ∆x = π
q can be transformed into a difference ∆j (number of lattice

sites):

π

q
=

π

2πk/L
=

Na

2k
⇒ ∆j =

N
2k
. (1.83)

• We have constant phase for qx = ωqt.

• The phase velocity is vph =
ωq
q .

Correlation Function in q-Mode

We are now coming to the last point in the discussion of solids: the correlation function.
Let’s first define it for our very particular case (we will define it more generally later):

F (∆j) := 〈q|QjQj+∆j|q〉. (1.84)

In order to interpret this quantity, we compute it for our one-phonon state.

F (∆j) = 〈q|QjQj+∆j |q〉

=
1

N
∑

k,k′

e−i(qak−ωqt)ei(qak
′−ωqt)〈0|akQjQj+∆ja

†
k′ |0〉

=
1

N
∑

k,k′

eiqa(k
′−k)σ2

∫
ykyk′yjyj+∆j

∏

i

(
C2e−2κy2i dyi

)
(1.85)
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The integral is non-zero only if the integrand is not antisymmetric in any of the integra-
tion variables. This is only realized for k = j, k ′ = j + ∆j or k = j + ∆j, k

′ = j. So we
get

F (∆j) =
2σ2

N
∑

k,k′

cos(qa[k′ − k])δk,jδk′,j+∆j

∫
y2
jy

2
j+∆j

∏

i

(
C2e−2κy2i dyi

)

=
2

σ2N

∫
dyjσ

2C2y2
j e

−2κy2j

∫
dyj+∆jσ

2C2y2
j+∆j

e
−2κy2j+∆j cos(qa∆j)

⇒ F (∆j) =
2

Nσ2
cos(qa∆j). (1.86)

In the last step we used the normalization of the first excited states.

Let us come to the interpretation: The correlation function is a cosine with maximum
values for qa∆j = q∆x = 2πm. These are those lattice sites which are in exactly the
same phase as lattice site j. We call this a “coherent excitation”. Remember that this has
nothing to do with the coupling between the atoms—we have considered an uncoupled
system here! The correlation is just due to the fact, that we have an oscillation of the
whole lattice with fixed phase relations between the lattice sites.

If we do the same calculation for the ground state, we get

〈0|QjQj+∆j|0〉 = 0 (1.87)

for every ∆j 6= 0.

But this is not the case for a more complex ground state (vacuum). We will later
see examples where the correlation function is non-zero for ∆j 6= 0. So we see that the
correlation function is a good probe for the properties of the ground state (and also for
the excited states).

Exercise: How does the correlation function look like for a 1D system with B 6= 0?

1.4 Non-Relativistic Many-Body Systems 2: Atom Gas

1.4.1 Identical Bosonic Atoms in a Box

We discuss the behavior of a gas of Spin 0 particles like 4He atoms. By “many atoms”
we mean at least N = 105, but N could be much larger, like N = 1026. Applications are
e.g. Bose-Einstein condensates (BEC) and macroscopic waves.

We impose periodic boundary conditions

ψ(x1 + L, x2, x3) = ψ(x1, x2, x3),

ψ(x1, x2 + L, x3) = ψ(x1, x2, x3),

ψ(x1, x2, x3 + L) = ψ(x1, x2, x3). (1.88)

Therefore the momenta in each of the three directions, p = (p1, p2, p3), can only have
certain discrete values. This can be seen by looking for separable solutions ψ(x1, x2, x3) =
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1.4 Non-Relativistic Many-Body Systems 2: Atom Gas

ψ1(x1)ψ2(x2)ψ3(x3). Applying the boundary conditions to the general solutions gives:

eip1x1 = eip1(x1+L) ⇒ eip1L = 1 ⇒ p1L = 2πk1 with k1 ∈ Z (1.89)

Same procedure for the other two directions:

p = (p1, p2, p3) =
2π

L
(k1, k2, k3) =

2π

L
k. (1.90)

We want to consider atoms in continuous space, but for technical reasons we first put
them on a lattice. In this way, there will only be a finite number of points in our box
where the atoms can be. We do that because now our system only has a finite number
of degrees of freedom N and everything is well-defined.

Having this well-defined system, we can make the continuum limit by

a→ 0, N, L fixed, kmax → ∞, N → ∞. (1.91)

However, the resulting theory is only an effective theory of the atoms. The reason is
that they are treated as point-like particles, but of course real atoms will have a finite
size and therefore the theory will not make any sense at scales smaller than the atom size.
Going beyond this size, it is required to build a more complicated theory, describing the
interactions of the electrons with the nucleus or even the interactions between the single
protons and neutrons. According to the uncertainty principle, this minimum size in the
theory corresponds to a maximum momentum, which gives as a so-called ultraviolet
cutoff Λ. This means that we only consider momenta |p| < Λ. This is a very typical
situation in QFT, that there is an effective theory valid until a certain UV-cutoff. In
this case we know where to apply the cutoff, because we know the size of the atoms,
however there may be situations where we do not know the right cutoff, i. e. on which
scales the theory is valid. This is why physical meaningful results should be independent
of Λ. In practice, this can be a difficult problem and the predictions of effective theories
will depend on Λ.

To summarize: In QFT one usually works with effective theories, either because the
“true” theory is unknown or because you want to use a simple model where you can do
calculations. That one has to perform some kind of UV-cutoff simply reflects the fact
that the theory has a limited range of validity. The art of QFT is to do the UV-cutoff
right, i.e. in a way to get the right physics. These methods are called renormalization
techniques.

Now we can also do the infinite volume limit:

L→ ∞, N → ∞. (1.92)

As long as L was finite, the size of the box corresponded to a maximum length scale, i.
e. a minimal momentum. It served as a so-called infrared-cutoff. Now this cutoff goes
to zero. Of course, to have a well-defined limit, physical results may not depend on this
infrared-cutoff, but must be independent of L.
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1 Quantum Fields

1.4.2 N-Atom States

The Hamiltonian for a free gas of N atoms with mass M is

H0 =

N∑

i=1

1

2M
p2
i =

N∑

i=1

1

2M
(p2
i,1 + p2

i,2 + p2
i,3). (1.93)

We have bosons, so the wave function is symmetric, and the basis of momentum
eigenstates of H0 is given by

N = 1 : |p〉,

N = 2 :
1√
2

(|p1〉|p2〉 + |p2〉|p1〉) ,

N = 3 :
1√
6

(|p1〉|p2〉|p3〉 + · · · + |p3〉|p2〉|p1〉) ,

N = 105, N = 1026, . . . well . . . . (1.94)

It is inefficient to consider the momenta of individual atoms. This is just like in clas-
sical statistical mechanics, where you would use a momentum distribution instead of
describing every atom.

Occupation Number Representation

How many atoms have momentum p1, p2, . . .? Let µ label all the possible values of
momenta (more generally, µ labels the degrees of freedom, µ = 1, . . . ,N ).

|ψ〉 = |n1, n2, . . . , nN 〉 = |{nµ}〉 (1.95)

We have annihilation aµ and creation a†µ operators with

[aν , a
†
µ] = δνµ, n̂µ = a†µaµ, n̂µ|ψ〉 = nµ|ψ〉. (1.96)

In our case

µ = p = (p1, p2, p3) and the operators are ap, a
†
p. (1.97)

We neglect the additive constant N/2 in the Hamiltonian and get

H0 =
∑

p

p2

2M
a†pap. (1.98)

The vacuum is represented by

|0〉 = |0, 0, . . . , 0〉 (1.99)

and in this case has no energy,

H0|0〉 = 0. (1.100)
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1.4 Non-Relativistic Many-Body Systems 2: Atom Gas

The one particle state for an atom with momentum p is given by

a†p|0〉 = |p〉. (1.101)

This treatment is analogous to the treatment of phonons, although the physics is very
different (sound waves vs atoms). Again particles are excitations above the vacuum, the
ground state. For phonons we had a vacuum structure, an ether, because they live in
crystals. This ether is now gone.

The strength of QFT is that such different systems can be treated with the same
formalism.

Again we could do the Fourier transform to coordinate space. There we ask whether
an atom is in cell j and use the operators aj and so on . . . .

1.4.3 Continuum Limit

Notation

In the discrete case we had

aj with [ai, a
†
j ] = δij . (1.102)

Now we introduce a continuum notation, i. e. we formulate the problem in terms of
continuous variables x = aj instead of discrete lattice sites j. We define

φ̂(x) = a−3/2aj. (1.103)

(Notice that the atom separation a and the operator aj only share the same letter, but
otherwise are totally different things. Unfortunately both notations are so common that
we will also use them.) The normalization factor is obtained by looking at the total
particle number operator,

N̂ =
∑

j

a†jaj =

∫
d3xφ̂†(x)φ̂(x). (1.104)

We will use the notation ∫

x
≡

∫
d3x ≡ a3

∑

j

. (1.105)

φ̂†(x)φ̂(x) is the operator for the atom number density. The field operator φ̂ has dimen-
sion length−3/2 = mass3/2. The field commutator follows as

[φ̂(y), φ̂†(x)] = a−3[ai, a
†
j ] = a−3δij ≡ δ(x − y). (1.106)

Check: ∫

x
δ(x− y) = a3

∑

j

a−3δij = 1. (1.107)

For the moment φ̂ is only defined at the lattice points. Later when we let a→ 0, it will
really be a field in space. We try to define our notation in such a way that everything
looks the same in the discrete and continuum case.
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1 Quantum Fields

Fourier Transform of φ̂

We define the Fourier transform

φ̂(q) =

∫

x
e−iqxφ̂(x) = a3

∑

j

e−iqaja−3/2aj = a3/2
∑

j

e−iqajaj. (1.108)

We call the number of degrees of freedom in one direction N ′, thus

L = N ′a and N = N ′3. (1.109)

By definition of aq we then have

φ̂(q) = a3/2N ′3/2aq = L3/2aq = V 1/2aq. (1.110)

The commutator in momentum space is

[φ̂(q), φ̂†(q′)] = V δqq′ = δ(q − q′) ≡ (2π)3δ3(q− q′). (1.111)

Because we don’t want to write 2π factors all the time we define integration and delta
function in momentum space as follows:

∫

q
≡ 1

(2π)3

∫
d3q, and

∫

q
δ(q − q′) = 1. (1.112)

These definitions are motivated by the following equations:

∫

q
δ(q − q′) =

1

(2π)3

∫
d3q(2π)3δ3(q− q′) = 1, (1.113)

d3q =
(2π)3

a3
=

(
2π

L

)3

N ′3, (1.114)

∫

q
1 =

1

a3
, which is conjugate to

∫

x
1 = L3 = V. (1.115)

Exercise: Show dq = 1
(2π)3

d3q and
∑

k = V
∫
q.

Proof that the 2π’s are ok:

φ̂(x) =

∫

q
eiqxφ̂(q) =

1

(2π)3

∫
d3qeiqxφ̂(q)

=
1

(2π)3

∫
d3qeiqx

∫
d3ye−iqyφ̂(y)

=

∫
d3yφ̂(y)

1

(2π)3

∫
d3qeiq(x−y)

= φ̂(x). (1.116)
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1.4 Non-Relativistic Many-Body Systems 2: Atom Gas

Continuum limit

It is now straightforward to the perform the continuum limit a → 0. We can write the
commutator relations in the same way:

[φ̂(q), φ̂†(q′)] = (2π)3δ3(q − q′) = δ(q − q′),

[φ̂(y), φ̂†(x)] = δ3(x − y) = δ(x − y). (1.117)

Please note that though the notation is the same, we have to interpret it in a slightly
different way. φ̂ and φ̂† are now defined over all the space, and of course now we need
to consider the 3-dimensional Delta-function in continuum. In fact one can show that
δ(x − y) = δ3(x − y) and δ(p − q) = (2π)3δ3(p − q), where δ3(x) is the 3-dimensional
Delta-function in continuum, which we know for instance from electrodynamics. Of
course, in this limit no a or L is appearing.

So φ̂(x) is now an operator valued function of x, it is called the quantum field operator
or simply the quantum field.

Why do we start with a lattice and then perform the limit to the continuum instead
of starting with the continuum in the first place?
Because this is a useful preparation for functional integrals. There we will have several
new concepts, so we try to separate these new concepts. Here we showed how to do the
limit from the discrete to the continuum case.

Remark on the continuum limit: When you think about it, in physical theories only
dimensionless ratios have physical meaning. When you say some length is 3 meters you
mean that the length is three times the length of some other object, which defines the
meter. Typically in an experiment you have some characteristic length l. To perform
the continuum limit means to take l

a → ∞. This can mean

either l fixed, a→ 0,

or a fixed, l → ∞. (1.118)

In a practical case, a may be fixed from a natural grid, but concentrating on low wave-
length is equivalent to making the continuum limit.

1.4.4 Quantum Fields - Summary

Atoms on a Lattice with Finite Volume

Creation operators a†j, a
†
q.

Canonical commutator relation:

[ai, a
†
j ] = δij (1.119)
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1 Quantum Fields

Atoms in Continuum and Infinite Volume

Creation operators φ̂†(x), φ̂†(q)
Canonical commutator relation:

[
φ̂(y), φ̂†(x)

]
= δ(x− y) = δ(3)(x − y),

[
φ̂(q), φ̂†(q′)

]
= δ(q − q′) = (2π)3δ(3)(x − y),

∫

x
=

∫
d3x,

∫

q
=

∫
d3q

(2π)3
(1.120)

Limit procedure:

φ̂†(x) = lim
a→0

a−3/2a†j,

φ̂†(q) = lim
V→∞

V −1/2a†q (1.121)

Density operator n̂(x) = φ̂†(x)φ̂(x)

1.4.5 Atom Gas

We consider an atom gas of bosonic atoms. The free Hamiltonian only has a kinetic

term, so it is given by a sum over all q-modes and their kinetic energy q2

2M , multiplied

by the corresponding number operator n̂q = a†qaq:

H0 =
∑

q

q2

2M
a†qaq =

∫

q

q2

2M
φ̂†(q)φ̂(q)

=

∫

x

1

2M
∇φ̂†(x)∇φ̂(x), (1.122)

where we have transformed to position space in the last step. As we know from quantum
mechanics, the momentum operator corresponds to the ∇-operator in position space.
Now we imagine that our atoms are in a local trap, which can be described by an
appropriate potential Vl(x). Therefore, we have to add a term

HV =

∫
d3xVl(x)n̂(x) =

∫

x
Vl(x)φ̂

†(x)φ̂(x). (1.123)

We also introduce a local point-like interaction between the atoms, which means that
there is an interaction if there are two atoms at the same point. Like in the case of
the self-interaction of electric charges, we assume that this interaction is approximately
proportional to n2(x). More precisely, the interaction Hamiltonian is given by

Hint =

∫
d3x

λ

2
φ̂†(x)φ̂†(x)φ̂(x)φ̂(x). (1.124)
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1.4 Non-Relativistic Many-Body Systems 2: Atom Gas

In operator notation, we notice that a†ja
†
jajaj = a†jaja

†
jaj − a†jaj = n̂2

j − n̂j. So for one-
atom states, there is no contribution from this term. We assume λ > 0, corresponding
to a repulsive interaction. This can be seen in the following way. First we assume a two-
atom-state with one atom at y, one at x, y 6= x. Then Hintφ̂

†(y)φ̂†(x)|0〉 = 0. However
for two atoms at x, we have Hintφ̂

†(x)φ̂†(x)|0〉 = λ. So it is energetically preferred to
have the atoms at different places.

Up to know we have assumed that the number of atoms N in our trap is fixed, which
gives us the additional constraint

∫

x
φ̂†(x)φ̂(x)|Ψ〉 = N |Ψ〉 (1.125)

Now as in statistical mechanics, we drop this constraint and introduce the chemical
potential µ. Now the total Hamiltonian is given by

Hµ = H − µN̂

=

∫

x

{
φ̂†(x) [− ∆

2M
− µ+ Vl(x)

]
φ̂(x) +Hint

}
. (1.126)

As we know from statistical mechanics, the system is now determined by the partition
function, given by

Z ∝ tre−βHµ . (1.127)

1.4.6 From Quantum Field Theory to Quantum Mechanics for a One-Atom
State

By now, we have used concepts from quantum mechanics and extended them to build
up a quantum theory of fields, the quantum field theory. Now we want to show that we
can also go the way back and that we can recover quantum mechanics by considering a
one-atom state. Such a state has to fulfill the constraint equation

N̂ |Ψ〉 = |Ψ〉 =

∫

x
φ̂†(x)φ̂(x)|Ψ〉. (1.128)

A general one-atom state is given by a superposition of one-atom states, i. e.

|Ψ〉(t) =

∫

x
Ψ(x, t)φ̂†(x)|0〉. (1.129)

As we will see, Ψ(x, t) is the Schrödinger wave function we know from quantum mechan-
ics. In fact (1.129) is the most general one-atom state. This can be seen in the following
way. A general physical state can be expressed as

|Ψ〉(t) = ψ0|0〉 +

∫

x
Ψ(x, t)φ̂†(x)|0〉 +

∫

x,y
Ψ2(x, y)φ̂

†(x)φ̂†(y)|0 >

+

∫

x,y,z
Ψ3(x, y, z)φ̂

†(x)φ̂†(y)φ̂†(z)|0〉 + . . . (1.130)
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1 Quantum Fields

Now let’s consider the following commutators:

[
N̂ , φ̂†(x)

]
= φ̂†(x),

[
N̂ , φ̂†(x)φ̂†(y)

]
= 2φ̂†(x)φ̂†(y), . . . (1.131)

Now if we let these operators act on the vacuum, we can see that for a one particle
state there are no terms in the superposition with more than one creation operator.
Additionally we also cannot add a term proportional to the ground state|0〉, since we
want to consider an eigenstate of N̂ . Now the time evolution of a non-relativistic physical
state is given by the Schrödinger equation

i∂t|Ψ〉 = H|Ψ〉

=

∫

y

{
φ̂†(y)

[
− ∆

2M
+ Vl(y)

]
φ̂(y)

}
|Ψ〉

+

∫

y

λ

2
φ̂†(y)φ̂†(y)φ̂(y)φ̂(y)|Ψ〉. (1.132)

We insert (1.129) in the last equation and use the canonical commutator relation for
φ̂(y) and φ̂†(x). Since (1.129) describes a one-atom state, the interaction term vanishes
and we end up with

H|Ψ〉 =

∫

x

[
− ∆x

2M
+ Vl(x)

]
Ψ(x)φ̂†(x)|0〉

=

∫

x
i∂tΨ(x, t)φ̂†(x)|0〉 = i∂t|Ψ〉 (1.133)

So indeed we can see that Ψ is the wave function we know from quantum mechanics,
which fulfills the Schrödinger equation

i∂tΨ(x, t) = (− ∆

2M
+ Vl(x))Ψ(x, t). (1.134)

In contrast to typical evolution equations in Quantum Field Theory, (1.134) is a linear
equation for the wave function. In QFT, we usually have non-linear operator equations
with non-zero interaction terms, but as shown here, one can always go back to quantum
mechanics by considering only one-atom states.

1.4.7 Heisenberg Picture for Field Operators

In the Schrödinger picture we have used so far, the physical states depend on t and their
evolution is given by the Schrödinger equation (1.132), whereas the operators do not
depend on time (unless there is an explicit time dependence, for instance if we want to
assume that our atoms are caught in a trap with a time-dependent potential. However
in the usual QFT problems, we will have no explicit time dependence.)

32



1.4 Non-Relativistic Many-Body Systems 2: Atom Gas

Now in the Heisenberg picture, there is no time evolution for the physical states, but
the operators will depend on time. Given an operator ÂS from the Schrödinger picture,
we can switch to the Heisenberg picture by the following transformation:

Â(t) = eiHtÂSe
−iHt. (1.135)

In the usual case where the Schrödinger operator does not depend explicitly on time,
the time evolution for the corresponding Heisenberg operator is given by

i∂tÂ = −[H, Â]. (1.136)

From now on we will use the Heisenberg picture if not stated otherwise, since it is much
more convenient to describe QFT in this picture. The reason is that now field operators
depend on space and time, so space and time are treated in the same way. This is
important when we go to relativistic situations, where space and time are no longer
independent, but rotated into each other by Lorentz-transformations.

1.4.8 Field Equation for φ̂(x, t)

For fixed t, the Heisenberg operators φ̂(x), φ̂†(x) obey the same canonical commutator
relations as in the Schrödinger picture:

[
φ̂†(y), φ̂(x)

]
= −δ(x− y)

[
φ̂†(y)φ̂†(y), φ̂(x)

]
= −2δ(x− y)φ̂†(y) (1.137)

According to (1.136), the evolution equation for the field φ̂(x, t) is given by

i∂tφ̂(x, t) = −[H, φ̂(x, t)]

= −
[∫

y

{
φ̂†(y, t)

[
− ∆

2M
+ Vl(y) − µ

]
φ̂(y, t) +Hint

}
, φ̂(x, t)

]

= −
∫

y

{[
φ̂†(y, t), φ̂(x, t)

](
− ∆y

2M
+ Vl(y, t) − µ

)
φ̂(y, t)

}
−

−
∫

y

λ

2

[
φ̂†(y, t)φ̂†(y, t), φ̂(x, t)

]
φ̂(y, t)φ̂(y, t)

⇒ i∂tφ̂(x, t) =

(
− ∆x

2M
+ Vl(x) − µ

)
φ̂(x, t) + λφ̂†(x, t)φ̂(x, t)φ̂(x, t) (1.138)

In contrast to the quantum mechanical Schrödinger equation (1.134), this equation is
a highly nonlinear operator differential equation. This is a typical situation for the
complications occurring in QFT.

Expectation Values

The equation (1.138) is valid for any arbitrary state in the Heisenberg picture. We can
define the expectation value for the field operator φ̂:

〈φ̂(x, t)〉 = 〈ψ|φ̂(x, t)|ψ〉, (1.139)
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and with more operators . . .

〈φ̂†(x, t)φ̂(x, t)φ̂(x, t)〉 = 〈ψ|φ̂†(x, t)φ̂(x, t)φ̂(x, t)|ψ〉 (1.140)

Remarks on the Phrase ‘The Second Quantization’

Until now, we have seen the system of a one particle state, described by the Schrödinger
equation. We have also derived the time evolution equation (1.138) for a many particle
state. Some authors refer to quantum mechanics as the first quantization, then precede
to call the transition φQM (x) → φ̂QFT (x) the second quantization. But this is generally
wrong, due to the fact, that the Schrödinger equation is linear in φ(x), while the time
evolution equation is not linear in φ̂(x), simply because of the interactions between the
particles in |Ψ〉.

Comments on interpretations

• We know now that the vacuum is described by the ground state |0〉, which is not 0,
but can be rather complex. The particles are described as excitations of the ground
state, φ̂†(x, t)|0〉, with the creation operator φ̂†. The number density operator is
defined by n̂(x, t) = φ̂†(x, t)φ̂(x, t). So a rather weak interpretation of φ̂ is

φ̂(x, t)=’Square root of the density n̂(x, t)

• Analogy to continuum mechanics

In classical mechanics, one has the observables qi(t), pi(t) for systems with few
degrees of freedom. Changing to systems with any degrees of freedom, that is
changing to statistical mechanics, we then desire to look at the density field ρ(x, t).

In quantum mechanics, we have the hermitian operators Qi(t), Pi(t), for one par-
ticle systems. Just like in the classical view, we can change to a system with many
particles, and look at the density operator φ̂†(x, t)φ̂(x, t) in quantum field theory.
Like in statistical mechanics, one can recover QM from QFT.

In QM, the probability density of a one particle state described by the wave func-
tion Ψ(x, t) is given by Ψ∗Ψ. As we know, this density is normalized to 1. In QFT
one has the number density from above, which is normalized to N, the number of
particles in a given state (〈Ψ|φ̂†φ̂|Ψ〉 = N)

1.5 Correlation Functions, Propagator

1.5.1 One Particle States

To see what a correlation function is, we will look at a one particle nonrelativistic,
bosonic state.
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1.5 Correlation Functions, Propagator

Schrödinger Picture

On the lattice, the operator a†j creates an atom at site j. The normalization is 〈0|aja†j |0〉 =

1. So with the number operator n̂i = a†iai, we get n̂ia
†
j |0〉 = δija

†
j|0〉. This means a†j|0〉

is an eigenvector of n̂i, with eigenvalue δij
In the continuum we have an atom at a specific point x, described by φ̂†(x)|0〉, but in

what sense? Well if we look at 〈0|φ̂(x)φ̂†(x)|0〉, we see that this is δ(x), meaning that
the state is normalized to one. Now applying the number operator n̂(y) to φ̂†(x)|0〉 we
get

n̂(y)φ̂†(x)|0〉 = δ(x− y)φ̂†(x)|0〉 (1.141)

So we see, φ̂†(x)|0〉 is an eigenvector of n̂(y) with the eigenvalue δ(x− y). This also tells
us, in our state φ̂†(x)|0〉 we have one particle.

There is a major fault in the Schrödinger picture: our state φ̂†(x)|0〉 is only given at
t=0. Generally the particle will move, and at t 6= 0 it will be at y. This means φ̂†(y)|0〉
is not an eigenstate of n̂(x), because [n̂(x),H] 6= 0, due to the ∇φ̂†∇φ̂ term in H. This
is why we turn to the . . .

Heisenberg Picture

In this picture, the operators are time dependant, and the states are time independent.
The Heisenberg operator is given by

φ̂†H(x, t) = eiHtφ̂†S(x)e−iHt (1.142)

The states are given by |x; t〉 = φ̂†(x, t)|0〉, for all t. This state is TIME INDEPENDENT!
The notion |x; t〉 is to be read like: An atom created at x, at the time t. Thus t does

not denote a time dependence of the state in the Heisenberg picture.
In this picture, our number operator n̂(x, t) = φ̂†(x, t)φ̂(x, t) acts upon a state like

n̂(y, t)|x, t〉 = δ(x − y)|x, t〉 (1.143)

The normalization is like usual 〈y, t|x, t〉 = δ(x − y). The Fourier transform of |x; t〉
is |p; t〉 = φ̂†(p, t)|0〉 =

∫
x e

−ipxφ̂†(x, t)|0〉 =
∫
x e

−ipx|x; t〉, so we find out: 〈p′, t|p, t〉 =
δ(p′ − p)

1.5.2 Transition Amplitude

We are now interested in calculating the transition probability, for a particle moving
from x, at time t, to x′, at time t′.This is given by the overlap of the states |x; t〉 and
|x′; t′〉 and we define for t′ ≥ t

〈x′, t′|x, t〉 = 〈0|φ̂(x′, t′)φ̂†(x, t)|0〉 = G(x′, t′, x, t) (1.144)

This function is called the propagator (also correlation function, Green’s function, two-
point function, correlator). It appears when one describes scattering processes, e.g. those
described by the graphs

35



1 Quantum Fields

1.5.3 Completeness

The completeness statement
∫
x |x, t〉〈x, t| = 1, is in general only true for one particle

states. A proof for such a state can be sketched by proving∫
x〈z, t|x, t〉〈x, t|y, t〉 ≡ δ(z − y). One does this, by showing

∫
x〈Ψ′|x, t〉〈x, t|Ψ〉 = 〈Ψ′|Ψ〉

for an arbitrary state |Ψ〉 =
∫
y Ψ(y)|y, t〉. One then reverts back to the lattice, and

knowing that the completeness relation is valid on the lattice, one then let’s the lattice
spacing a→ 0.

1.5.4 Huygens Principle

We know from Huygens principle, that any state |x′, t′〉 can be expressed as a superpo-
sition of a complete set { |x, t〉 } via:

|x′, t′〉 =

∫

x
|x, t〉〈x, t|x′, t′〉 =

∫

x
|x, t〉G∗(x′, t′, x, t) (1.145)

Looking at the state |Ψ〉 =
∫
y Ψ(y)|y, t〉, the coefficients are given by Ψ(x, t) = 〈x, t|Ψ〉.

This leads to

Ψ(x′, t′) = 〈x′, t′|Ψ〉 =

∫

x
G(x′, t′, x, t)Ψ(x, t) (1.146)

This means in words: If Ψ is known at t, then Ψ′ = Ψ(x′, t′) is also known at t′ if one
knows G.

This is what makes G so unique in QFT. Important problems in QFT are solved if one
has found G, which is definitely not an easy task. For this reason, we will first calculate
G for free particles

1.5.5 The Propagator G

The propagator G obeys for t′ ≥ t

G(x′, t′, x, t) = 〈0|φ̂(x′, t′)φ̂†(x, t)|0〉 = 〈0|eiHt′ φ̂S(x′)e−iHt
′
eiHtφ̂†S(x)e−iHt|0〉. (1.147)

Using H|0〉 = 0 we get

G(x′, t′, x, t) = 〈0|φ̂S(x′)e−iH(t′−t)φ̂†S(x)|0〉 (1.148)

and we recover for t′ = t:

G(x′, t, x, t) = δ(x− x′) (1.149)

1.5.6 Free Non-Relativistic Propagator

For simplicity we consider non-interacting atoms without a potential.

H =

∫

p

p2

2M
φ̂†(p)φ̂(p) (1.150)
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In momentum space the free propagator is particularly simple.

G(p′, t′, p, t) = 〈0|φ̂(p′, t′)φ̂†((p, t)|0〉
= 〈0|φ̂S(p′)e−iH(t′−t)φ̂†S(p)|0〉 (1.151)

with the commutator relations

[H, φ̂†(p)] =
p2

2M
φ̂†(p) (1.152)

[H2, φ̂†(p)] =

(
p2

2M

)2

φ̂†(p) +
p2

M
φ̂†(p)H

...

Of course the Hamilton function of the vacuum gives zero.

H|0〉 = 0 (1.153)

This way we can move the exponential function to the right to get an explicit expression
for the Green’s function.

G(p′, t′, p, t) = 〈0|φ̂S(p′)φ̂†s(p)e
− ip2

2M
(t′−t)|0〉 (1.154)

or

G(p′, t′, p, t) = e
−ip2

2M
(t′−t)δ(p′ − p) (1.155)

Exactly as one would expect we only gain an additional phase factor but have no change
in momentum.

To get the propagator in coordinate space we have to do a Fourier transform for both
momenta, p and p′

G(x′, t′, x, t) =

∫

p

∫

p′
e−ip

′x′eipxG(p′, t′, p, t)

=

∫

p
e−ip(x

′−x)e−i
p2

2M
(t′−t). (1.156)

To solve this integral we bring the exponent to the form (p+ α)2 which gives

G(x′, t′, x, t) =

∫

p
exp

(
−i t

′ − t

2M

(
p+

(x′ − x)M

t′ − t

)2

+ i
t′ − t

2M

(
(x′ − x)M

t′ − t

)2
)

= exp

(
i
M

2

(x′ − x)2

t′ − t

)
·
(

1

2π

∫ ∞

−∞
dy e−i

t′−t
2M

y2
)3

. (1.157)
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In the last step we did the variable transform y := p+ (x′−x)M
t′−t with one integral for each

component of p. The integral is called the Fresnel’s integral its solution is
∫ ∞

∞
dy e−iαy

2
=

√
π

2α
(1 − i) (1.158)

(for a proof see section 1.5.6). Thus we get for τ = i(t′ − t)

G =

(
M

2πτ

) 3
2

e−
M
2τ

(x′−x)2 . (1.159)

To verify our calculation we check ifG becomes a delta function in the limit τ = i(t ′−t) →
0. We get

lim
τ→0

G =
3∏

i=1

√
M

2πτ
e−

M(x′i−xi)
2

2τ = δ3(x′ − x) (1.160)

which confirms our result.
In position space propagators are not easy objects (waves get broadened and position

changes), so better avoid it. On the other hand operators are diagonal and not changing
momentum in momentum space. This makes calculations much easier.

Proof of the Fresnel Integral (Not from Lecture)

Fresnel’s integral is
∫∞
0 e−it

2
dt.

Let f(z) := e−z
2
. The function f is holomorphic in C and the integral from one point

to another is path independent because C is a star domain. This means
∫

γ1

f dz+

∫

γ2

f dz =

∫

γ3

f dz (1.161)

as pictured in figure 1.1.

1. Now, we consider the integral of f along γ2. For γ2(t) = r + it, t ∈ [0, r] follows

|f(γ2(t))| = e−r
2+t2 ≤ e−r

2
ert

⇒
∣∣∣∣
∫

γ2

f dz

∣∣∣∣ ≤
∫ r

0
|f(γ2(t))|dt

≤ e−r
2

∫ r

0
ert dt <

1

r

⇒ lim
r→∞

∫

γ2

f dz = 0. (1.162)

With equation (1.161) this leads to

lim
r→∞

∫

γ3

f dz = lim
r→∞

∫

γ1

f dz (1.163)
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Figure 1.1: Scetch for the proof of the Fresnel integral

2. The integral along γ1 is a Gaussian integral

lim
r→∞

∫

γ1

f dz =

∫ ∞

0
e−t

2
dt =

1

2

√
π (1.164)

3. Now, we consider the integral along γ3.

lim
r→∞

∫

γ3

f dz = (1 + i)

∫ ∞

0
e−(1+i)2t2 dt

= (1 + i)

∫ ∞

0
e−2it2 dt

=
1 + i√

2

∫ ∞

0
eiτ

2
dτ (1.165)

Because of the identity (1.163) the Fresnel integral exists and has the value

∫ ∞

0
eiτ

2
dτ =

√
2π

4
(1 − i) (1.166)

1.5.7 Time Dependence

G only depends on ∆t = t′ − t and has been defined so far only for t′ ≥ t:

G(p′, t′, p, t) = G(p,∆t)δ(p′ − p) (1.167)

There are different definitions for how to extend a Green’s function to t′ < t. One
possibility continues the definition (1.144) for all times t′:

GS = 〈0|φ̂(x′, t)φ̂†(x, t)|0〉
= 〈0|[φ̂(x′, t)φ̂†(x, t)]|0〉 (1.168)
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We make a Fourier transform from time into frequency space.

GS(p, ω) =

∫ ∞

−∞
eiω∆tGS(p,∆t) d∆t

=

∫ ∞

−∞
ei∆t(ω−

p2

2M
) d∆t

= 2πδ

(
ω − p2

2M

)
(1.169)

The spectral function

GS(p, ω) = 2πδ

(
ω − p2

2M

)
(1.170)

gives information about the particle content. Delta functions generally denote stable
particles. Unstable particles are characterized by resonance peaks with their decay
width.

1.5.8 Higher Correlation Functions

We consider the scattering of two incoming particles with momentum p1 and p2 into two
outgoing particles with momentum p3 and p4. The transition amplitude for this event is

〈0|φ̂(p3, t
′)φ̂(p4, t

′)φ̂†(p1, t)φ̂
†(p2, t)|0〉. (1.171)

Here the incoming particles states refer to t→ −∞ (i.e. an incoming two particle state
present long times before the scattering event) and outgoing ones to t′ → ∞.

We get a four-point function because we have two particles.
We introduce the index notation

φ̂α(p, t), α = 1, 2

φ̂1(p, t) = φ̂(p, t), φ̂2(p, t) = φ̂†(p, t) (1.172)

We furthermore consider n times with tn ≥ tn−1 ≥ · · · ≥ t1 and define

G(n)
αn...α1

(pn, tn; pn−1, tn−1; . . . ; p2, t2; p1, t1)

= 〈0|φ̂αn (pn, tn) . . . φ̂α2(p2, t2)φ̂α1(p1, t1)|0〉 (1.173)

1.5.9 Time Ordered Correlation Functions

We introduce the time ordering operator, it puts the later t to the left:

T{O(t1)O(t2)} =

{
O(t1)O(t2) if t1 > t2

O(t2)O(t1) if t1 < t2
(1.174)

This operator is only well defined if t1 6= t2 or for t1 = t2 only if [O(t1), O(t2)] = 0.
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1.5 Correlation Functions, Propagator

With the use of the time ordering operator we get

G(n)
α1 ...α2

(pn, tn; pn−1, tn−1; . . . ; p2, t2; p1, t1)

= 〈0|T{φ̂αn (pn, tn) . . . φ̂α1(p1, t1)}|0〉 (1.175)

which defines the Green’s function for arbitrary ordering of times. The time ordering
operator erases the information of the initial time ordering of the operators which pro-
vides for much easier calculations. The Green’s function is now symmetric under the
exchange of indices

(αj , pj , tj) ↔ (αk, pk, tk). (1.176)

This symmetry reflects the bosonic character of the scattered particles. For fermions
it will be replaced by antisymmetry.

Gn is the key to QFT. (1.177)

In future we will only compute time ordered Green’s functions.

1.5.10 Time Ordered Two-Point Function

As an example for the time ordered correlation functions we write down the time ordered
two-point function using this formalism.

G(x′, t′, x, t) = 〈0|T{φ̂(x′, t′)φ̂†(x, t)}|0〉

=

{
GS for t′ > t

0 for t′ < t

= GS(x′, t′, x, t)Θ(t′ − t) (1.178)

Notice that the limit t′ → t is simple for the spectral function but not a simple limit for
the time ordered correlation function since it is ill defined.

For the time ordered operator products we have the identities

T{[Â(t′), B̂(t)]} = 0,

T{Â(t′)B̂(t)} =
1

2
T{Â(t′)B̂(t)} +

1

2
T{B̂(t)Â(t′)}

= T{1

2
{Â(t′), B̂(t)}+}. (1.179)
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2.1 Path Integral for a Particle in a Potential

At this point we take one step back and only consider a one-dimensional one-particle
problem in classical quantum mechanics without explicit time dependency. We can later
easily generalize it to 3D bosonic systems.

2.1.1 Basis of Eigenstates

In the Heisenberg picture we have the operators Q(t) and P (t) with the commutator
relation

[Q(t), P (t)] = i (2.1)

and the Hamiltonian

H =
P 2

2M
+ V (Q). (2.2)

We introduce a basis of eigenstates |q, t〉 with

Q(t)|q, t〉 = q(t)|q, t〉. (2.3)

Note that the basis |q, t〉is only a basis of eigenstates of Q(t) at time t, it is not an
eigenstate of Q(t′) for t′ 6= t. Don’t confuse this with the Schrödinger picture, where
the states are time dependent. Here we work in the Heisenberg picture where |q, t〉 and
|q, t′〉 are two different basis sets of time - independent states, one eigenstates of Q(t),
the other of Q(t′). The states |q, t〉 are normalized at equal time to

〈q′, t|q, t〉 = δ(q′ − q). (2.4)

and the basis is complete

∫
dq |q, t〉〈q, t| = 1 (2.5)

We also introduce a basis of eigenstates in momentum space |p, t〉with

P (t)|p, t〉 = p(t)|p, t〉. (2.6)
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Again |p, t〉is only a basis of eigenstates at time t, it is not an eigenstate of P (t ′) for
t′ 6= t. The relations

〈p′, t|p, t〉 = 2πδ(p′ − p) and

∫
dp

2π
|p, t〉〈p, t| = 1 (2.7)

are similar to those for the position space.
The transition from the basis in position space to the basis in momentum space is

defined through the relations

〈p, t|q, t〉 = e−ipq,

〈q, t|p, t〉 = eipq (2.8)

To avoid confusion we straighten out the connection of these states to the Schrödinger
picture. The state |q〉 of the Schrödinger picture is equivalent to the state |q, t = 0〉. To
get the state |q, t〉we need to time evolve the state |q〉 of the Schrödinger picture to get
|q, t〉 = eiHt|q〉. Summarizing this we have

|q〉 = |q, t = 0〉 p = |p, t = 0〉
|q, t〉 = eiHt|q〉 |p, t〉 = eiHt|p〉. (2.9)

Let’s check the relations mentioned above. We calculate the eigenvalue of Q̂(t)for a
ket |q, t〉by transforming into the Schrödinger picture and back again. The calculation

Q(t)|q, t〉 = Q(t)eiHt|q〉
= eiHtQSe

−iHteiHt|q〉
= eiHtQS |q〉
= eiHtq|q〉
= q|q, t〉 (2.10)

leads to the desired result. It is also immediately obvious that

〈p, t, |q, t〉 = 〈p|q〉 = e−ipq (2.11)

2.1.2 Transition Amplitude

The probability amplitude for a transition from an eigenstate of Q(t) to an eigenstate
of Q(t′) is given by the transition amplitude:

G(q′, t′, q, t) = 〈q′, t′|q, t〉
= 〈q′, t|e−iH(t′−t)|q, t〉 (2.12)

(We use here the symbol G since we will later see the analogy to the correlation function
when Q(t) is replaced by φ̂(x, t).) Our aim is now to give G(q′, t′, q, t) a path integral
expression. In order to do this, we will compute the transition amplitude for an infinites-
imal time step dt, which is actually the only one that can be computed explicitly. In the
end, we will make the limit procedure dt→ 0.
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2.1.3 Infinitesimal Transition Amplitude

We are now interested in the infinitesimal transition amplitude

〈q′, t+ dt|q, t〉 = 〈q′, t|e−iH·dt|q, t〉. (2.13)

If we use the Taylor expansion of the exponential function, we get

〈q′, t+ dt|q, t〉 = 〈q′, t|1 − iHdt|q, t〉. (2.14)

Although the Taylor expansion of the exponential function up to first order is very
often used in theoretical physics without worry to much about this, one usually has to
show, that terms of higher order are really unimportant in the limit dt → 0. This is
mathematically very complicated and so we will not deal with this problem here.

We insert now the completeness relation 1 =
∫ dp

2π |p, t〉〈p, t| into (2.14). We get

〈q′, t+ dt|q, t〉 =

∫
dp

2π
〈q′, t|1 − iHdt|p, t〉〈p, t|q, t〉 (2.15)

We now want to restrict ourselves to Hamiltonians of the form

H =

(
P 2(t)

)2

2M
+ V (Q(t)). (2.16)

The time dependence of the operators P and Q tells us that we will work in the Heisen-
berg picture.

Actually, Hamiltonians that are given by (2.16) have a big advantage, because we can
now easily compute the matrix element of H appearing in equation (2.15):

〈q′, t|H|p, t〉 = 〈q′, t|(P (t))2

2M
|p, t〉 + 〈q′, t|V (Q(t))|p, t〉 (2.17)

This is now very simple, because we can use the eigenstate properties of
(
P (t)

)2
to the

ket vector and the eigenstate properties of V (Q(t)) to the bra vector. The result is

〈q′, t|H|p, t〉 =

(
p2

2M
+ V (q′)

)
〈q′, t|p, t〉

= H(q′, p)〈q′, t|p, t〉, (2.18)

where q′ and p are now the position space and momentum eigenvalues to the operators
Q(t) and P (t). Inserting this into equation (2.15) we get

〈q′, t|q, t+ dt〉 =

∫
dp

2π

(
1 − iH(q′, p)dt

)
〈q′, t|p, t〉〈p, t|q, t〉. (2.19)

For the term (1 − iH(q′, p)dt) we can now write again the exponential function. Fur-
thermore, the scalar products as well give exponential functions, so our infinitesimal
transition amplitude can be written as

〈q′, t+ dt|q, t〉 =

∫
dp

2π
exp (ip(q′ − q) − iH(q′, p)dt) (2.20)
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Please remember that this result is only valid for Hamiltonians that can be written as

H =

(
P (t)
)2

2M +V
(
Q(t)

)
and for really infinitesimal time steps, where terms proportional

to dt2 can be neglected. Imagine the difficulties we would be faced with, if we have an
H2: in this case we could not compute the matrix element just by using the eigenstate
properties. It would be necessary to commute P̂ and Q̂ terms first.

Nevertheless, we are of course interested in transition amplitudes for finite time steps.
Getting this out of our result for infinitesimal time steps will be the task of the next
paragraph.

2.1.4 Split of Amplitudes in Product of Infinitesimal Amplitudes

a) Split Time Interval

The basic idea is to split up a finite time interval t′ − t (t′ > t) into N + 1 infinitesimal
time steps. Therefore we insert N “lattice points” τi, i = 1 . . . N in time, so that we get

t < τ1 < τ2 < . . . < τN−1 < τN < t′. (2.21)

The time distance from each τi to the neighboring points is dτ . In the end we will do
the limit procedure N → ∞ what corresponds to dτ → 0.

b) Insert Completeness Relation

The transition amplitude we want to compute is

〈q′, t′|q, t〉. (2.22)

For every time point τi within the interval [t, t′], we have the completeness relation

∫
dqi|qi, τi〉〈qi, τi| = 1. (2.23)

Inserting this completeness relation for every τi gives us

〈q′, t′|q, t〉 =

∫
dq1dq2 . . . dqN 〈q′, t′|qN , τN 〉〈qN , τN |qN−1, τN−1〉〈q2, τ2|q1, τ1〉〈q1, τ1|q, τ〉

(2.24)

Remark that we have inserted 1 operators as an integration over position space variables
qi, not as an integration over momentum space variables pi like we did in paragraph 2.1.3,
so there is no 2π missing here.

Our interim result is, that we can write our transition amplitude as a product of N+1
infinitesimal time evolution steps, with integration over the N intermediate q(τi).
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c) Infinitesimal Amplitudes

We have now reached the point, where we can use the result of the last paragraph. Every
infinitesimal transition amplitude is given by

〈qj+1, τj+1|qj , τj〉 =

∫
dpj+1

2π
exp (i[pj+1(qj+1 − qj)] − iH(qj+1, pj+1)dτ) (2.25)

We will put this expression now into equation (2.24). Notice that this gives us now N+1
integrations over pj , but that we still only have N integrations over qj . Furthermore,
we remind ourselves that we could rewrite the appearing product of N + 1 exponential
functions (one for every infinitesimal amplitude) as an exponential function of N + 1
summands. So we have now

〈q′, t′|q, t〉 =

∫ N∏

i=1

dqi

∫ N+1∏

j=1

dpj
2π

exp

(
i

[
N+1∑

k=1

pk(qk − qk−1) −H(qk, pk)dτ

])
, (2.26)

where q0 ≡ q and qN+1 ≡ q′. The 2π factor belongs to the product, so it appears N + 1
times in this equation.

d) Notation

In order to write equation (2.26) a little bit more elegantly, we define

q̇k =
qk − qk−1

dτ
,

q̇(τ) =
q(τ) − q(τ − dτ)

dτ
. (2.27)

Here we used the additional definition τ ≡ t+kdτ (what implies t+(k−1)dτ ≡ τ −dτ).
This looks reasonable, as qk is a position variable at time t+ kdτ and qk−1 is a position
variable at time t + (k − 1)dτ . So in the limit dτ → 0 that we will perform later,
our defined q̇k should have the meaning of a velocity (what we already imply here by
choosing the notation q̇ ).

Anyway, for the moment we will just use equation (2.27) to simplify equation (2.26).
We get

〈q′, t′|q, t〉 =

∫ N∏

i=1

dqi

∫ N+1∏

j=1

dpj
2π

exp

(
idτ

N+1∑

k=1

pkq̇k −H(qk, pk)

)
(2.28)

2.1.5 Path Integral

With equation (2.28) we are just one step away from the path integral. We define it by
the limit procedure

∫
Dq ≡ lim

N→∞

∫ N∏

i=1

dqi (2.29)
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and

∫
Dp ≡ lim

N→∞

∫ N+1∏

j=1

dpj. (2.30)

Let us now discuss these equations a little bit:

• The integration
∫
Dq means, that for every intermediate time point τi our particle

may be everywhere, because we are integrating over all possible values of qi. Only
the endpoints are fixed: q(t) = q, q(t′) = q′. To come from one endpoint to
another, all paths are allowed.

• Every path can be written as a function q(t). We are integrating over all these
functions. That’s why we will sometimes call our integrals “functional integrals”.

• Our paths don’t need to be very smooth. For all intermediate points, every value
is allowed, so we could have arbitrary strong oscillations.

• The integration
∫
Dp is, for the moment, without a further interpretation. It came

into our calculation just as integration variable. Nevertheless, we can already guess
that it will have something to do with the canonical momentum.

• For all calculations, we can only work with a large, but finite number of variables.
Even if we use a computer, all data will be discrete and finite (and should be,
unless we don’t want to wait for the results infinitely long).

• Anyway, the use of finite dτ should not play a role, if dτ is sufficiently small - we
cannot resolve time arbitrary accurately by observations, e.g. nobody has observed
the Planck time tp = 10−42s yet.

• Furthermore, in the limit dτ → 0 nothing interesting should happen, as all physical
observables should better have smooth limits. If a computation of a physical
observable shows no smooth limit, it is most likely wrong, because otherwise it
could be used to resolve arbitrary small dτ .

2.1.6 Action

Let us now perform the p integration appearing in the expression for the transition
amplitude (2.28) in the case that

H =
P 2

2M
+ V (Q) (2.31)

Well, actually it is already implied that H can be written in this form, because this
was an assumption we made to get our infinitesimal amplitude, that we used to come to
(2.28).
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2.1 Path Integral for a Particle in a Potential

First we rewrite the transition amplitude as

〈q′, t′|q, t〉 =

∫
DqA exp

(
−idτ

N+1∑

k=1

V (qk)

)
(2.32)

with

A =

∫ N+1∏

j=1

dpj
2π

exp

(
−idτ

N+1∑

k=1

(
p2
k

2M
− pkq̇k)

)
=

N+1∏

j=1

Aj. (2.33)

Here Aj is defined as

Aj =

∫ ∞

−∞

dp

2π
exp

(
−idτ

[
p2

2M
− pq̇j

])
(2.34)

Here it is no longer necessary to write p with an index. It is just an integration variable.
Nevertheless, q̇j must still be written with index, because every Aj depends on one
special q̇j.

The exponent in equation (2.34) looks almost Gaussian. In order to get a binomial
formula, we make the ansatz

p2

2M
− pq̇j =

1

2M
(p− αq̇j)

2 − 1

2M
α2q̇2j =

p2

2M
− α

M
pq̇j. (2.35)

So we must set α = M . With the variable substitution p′ = p −Mq̇j equation (2.34)
becomes

Aj = exp

(
−idτ

[
M

2
q̇2j

])
·
∫
dp′

2π
exp

(
−idτ p

′2

2M

)
(2.36)

Well, whatever the integration over p′ will give, it will just be a constant. We name this
constant c̃ and write

Aj = c̃ exp

(
−idτ

[
M

2
q̇2j

])
(2.37)

Now it is quite easy to calculate A:

A = N exp(idτ

N+1∑

k=1

M

2
q̇2k) (2.38)

with N = c̃N . Now we insert this in equation (2.32) and get

〈q′, t′|q, t〉 =

∫
DqN exp

(
idτ

[
N+1∑

k=1

−V (qk) +
M

2
q̇2k

])

=

∫
Dq exp

(
idτ

[
N+1∑

k=1

−V (qk) +
M

2
q̇2k + const

])
(2.39)
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Let us define the following quantity:

S = dτ

(
N+1∑

k=1

M

2
q̇2k − V (qk) + const

)
. (2.40)

Now we can write

〈q′, t′|q, t〉 =

∫
Dq eiS (2.41)

Obviously, in the limit dτ → 0, and if we neglect the irrelevant constant, the quantity
S is exactly the action of a particle in a potential, just as we know it from classical
mechanics! There we have defined the action as

S =

∫ t′

t
dτL(τ), (2.42)

with the Lagrangian

L =
M

2
q̇2 − V (q), q ≡ q(τ). (2.43)

We call the action S a functional of q(t) and write

S = S[q(t)] = S[q] = S[qk]. (2.44)

For a finite number of intermediate steps it depends on the N variables qk and on the
boundary conditions q0 ≡ q and qN+1 ≡ q′ (that’s were the dependence of q and q ′ of
our matrix element 〈q′, t′|q, t〉 lies).

2.1.7 Interpretation of QM, Double Slit Experiment

The so called path integral formulation of QM is a method to calculate the probability
for a particle, which is at time t at the point q, to be at the point q ′ at time t′ > t.

The rule to compute that probability is as follows: Consider every path to get from q
to q′. For every path k = 1, 2, . . . calculate a so called probability amplitude or simply
amplitude ψk, which is a phase factor ψk = eiSk . Calculate the total amplitude as the
sum of the amplitudes of all paths, ψ =

∑
k ψk. The probability for the particle to

propagate from |q; t〉 to |q′, t′〉 is then given by the square of the length of the complex
number ψ.

This method is a generalization of the double slit experiment.
Here we have

ψ = ψ1 + ψ2,

ψ1 = ψ1(q
′) = 〈q′, t′|q1, τ〉〈q1, τ |q, t〉,

ψ2 = ψ2(q
′) = 〈q′, t′|q2, τ〉〈q2, τ |q, t〉. (2.45)

This experiment can now be generalized in two ways:
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2.1 Path Integral for a Particle in a Potential

1. Use more screens.

2. Cut more holes in each screen.

E.g. consider the following experiment with two screens and five holes.

Letting both the number of screens and the number of holes per screen go to infinity,
we get the path integral formulation of QM. What is important is that the amplitude or
phase factor of each path is given by eiS .

Note that this is a radically new way to formulate QM. There is no Schrödinger
equation and no operators. But of course the two formulations must be equivalent in
the sense that they make the same physical predictions. We will later show how the old
operator formulation of QM can be reconstructed.

But first let’s consider the relation to Classical Mechanics. Since the classical La-
grangian L and action S appear, Classical Mechanics should be included in some limit.

2.1.8 Classical Path

We do a saddle point approximation, i.e. we expand the action S around the classical
path q0(t).

S(q) = S(q0) +
1

2

δ2S

δq(t)2

∣∣∣∣
q0(t)

(q − q0)
2(t) + · · · . (2.46)

There is no linear term since by definition q0(t) is an extremum:

δS

δq

∣∣∣∣
q0(t)

= 0. (2.47)

Remember that in classical mechanics one shows that this principle of stationary action
is equivalent to the way to compute the path of a particle in Lagrangian formalism:

d

dt

∂L
∂q̇

− ∂L
∂q

= 0,

Mq̈ +
∂V

∂q
= 0. (2.48)

So the basic difference between Classical Mechanics and Quantum Mechanics is:

Do not only consider the classical path, but also all other paths. (And include
a phase factor.)

Obviously, for classical physics to be a good approximation, all higher terms have to be
small in comparison to the quadratic one.

Comment: Definition of functional derivatives
If you are not sure how to work with functional derivatives, go back to qn instead of
q(t). Then S is a normal function of the qn instead of a functional of q(t). When you
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have only finitely many n, the functional derivative becomes the gradient, i.e. a vector
of partial derivatives, just many of them:

δS

δq(t)
≡ ∂S

∂qn
,

δS

δq(t)
q(t) ≡ ∂S

∂qn
qn,

δS ≡
∑

n

∂S

∂qn
δqn,

1

2

δ2S

δq(t)2

∣∣∣∣
q0(t)

(q − q0)
2(t) ≡

∑

n,k

1

2

∂2S

∂qn∂qk

∣∣∣∣
q0,n

(qn − q0)(qk − q0). (2.49)

Then at the very end do the limit procedure from normal derivatives to the functional
derivative. Let’s not worry about that now.

The saddle point approximation is a key concept, the whole perturbation theory is
based on it. That’s why we want to motivate it some more:

(a) Let’s first assume there is only one wall between the points q and q ′. That leads us
to the functional

I =

∫ ∞

−∞
eif(x). (2.50)

Assume that f(x) is purely imaginary, i.e. f(x) = ig(x) with some function g(x)
that has a minimum at x0 and goes to infinity for x→ ±∞. Then

I =

∫ ∞

−∞
e−g(x) (2.51)

converges, and the integral is dominated by the region around x0.

But say g(x) → C, i.e. g(x) levels off on the right side. Then the integral will not
converge.

To summarize: Under simple conditions, i.e. if f(x) is purely imaginary and goes to
infinity for |x| → ∞ not too slowly, convergence will be ok.

(b) Now let’s consider the case of many degrees of freedom q(τ) and the Euclidean action
S = iSE There the saddle point approximation for

∫
Dq eiS =

∫
Dq e−SE (2.52)

will often not converge.
But there is a trick: Use imaginary time, i.e. substitute τ → iτ . Then analytically
continue the result and go back to real time.
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2.1 Path Integral for a Particle in a Potential

(c) In the case of the Minkowski action, which is a real quantity, the integrands

eiS = cosS + i sinS (2.53)

are oscillatory functions and convergence is a very subtle issue. Sometimes it does
converge, sometimes it does not.

The upshot that you should take home is this: For almost all interaction theories the
saddle point approximation never converges. Also, the theory of convergence of these
integrals is a very complicated field of mathematics. Nevertheless, let’s do saddle point
approximations as a working method, although things might not be well defined.

2.1.9 Operators

We now show how to calculate expectation values of operators, not only transition
amplitudes,

A = 〈q′; t′|Â|q; t〉. (2.54)

(a) A = A(τ) = f(Q(τ), P (τ)), t < τ < t′ where A is an arbitrary function of Q(τ) and
P (τ) ordered such that all factors P (τ) are on the left of Q(τ).

We go back to the definition of functional integrals and insert the states:

A =

∫
dq(τ)

∫
dp(τ)

2π
〈q′; t′|p(τ); τ〉〈p(τ); τ |Â(τ)|q(τ); τ〉〈q(τ); τ |q; t〉

=

∫
dq(τ)

∫
dp(τ)

2π
A(q(τ), p(τ))〈q′; t′|p(τ); τ〉e−ip(τ)q(τ)〈q(τ); τ |q; t〉

=

∫
DqDp A(q(τ), p(τ))ei

R t′

t
{p(τ)q̇(τ)−H(p(τ),q(τ))} (2.55)

(b) We consider the special case where A(τ) only depends on Q(τ). There we can carry
out the P integration and find

A =

∫
Dq A(q(τ))eiS . (2.56)

Note that this case is not so restrictive as it may seem, because it includes derivative
operators, e.g. Q̇(τ), since they are sums of operators:

Q̇(τ) =
Q(τ + dτ) −Q(τ)

dτ
. (2.57)

The expectation value depends linearly on operators, i.e. for sums we have

〈q′; t′|
∑

k

Âk|q; t〉 =
∑

k

〈q′; t′|Âk|q; t〉 =

∫
Dq AkeiS . (2.58)
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(c) Time ordered products Â = Ân(τn) . . . Â2(τ2)Â1(τ1) with t < τ1 < τ2 < · · · <
τn < t′. For simplicity, let’s say that the operators only depend on Q: Âk =
Ak(Q(τk)). This can later be generalized to include a P dependence as well: Âk =
Âk(Q(τk), P (τk)). Then

A = 〈q′; t′|Ân . . . Â1|q; t〉 =

∫
Dq An(qn, τn) . . . A1(q1, τ1)e

iS . (2.59)

The path integral expression for A does not depend on the ordering of the factors
An(qn, τn) . . . A1(q1, τ1). We have a path integral formula for arbitrary time-ordered
n-point functions!

〈q′; t′|T{Ân(τn) . . . Â1(τ1)}|q; t〉 =

∫
Dq An(τn) . . . A1(τ1)e

iS (2.60)

The time ordering is crucial! This works because time-ordered products are commu-
tative. We have arrived at a formulation that involves no q-numbers (i.e. operators),
only c-numbers (i.e. complex numbers).
(Dirac invented these names to emphasize that one can most of the time calculate
with functions, operators and any other mathematical object as if they were num-
bers, just that some of these things are commutative (then they are called c-numbers)
and some are not (then they are called q-numbers).

2.1.10 Can One Construct QM from a Path Integral?

In the last section we have introduced the path integral formalism, starting from the usual
quantum mechanical operator formalism. Now one may ask whether both formulations
are really equivalent, i. e. if one can also derive the quantum mechanical operators
from a path integral. In fact it is possible, but we will only sketch the proof here. The
interested reader may try to formulate it in more detail. The most important result we
derived previously is that we can express an operator expectation value through a path
integral:

〈q′, t′|T{Â1(τ1) . . . Ân(τn)}|q, t〉 =

∫
Dq A1(τ1) . . . An(τn)e

iS , t′ > t, (2.61)

where S =
∫
dτL(τ), L = L(q(τ), q̇(τ), . . .) is the action describing the problem. Note

that the right-hand side does not depend on the order of the operators, since A1, . . . ,
An are only c-numbers, in contrast to Â1, . . . , Ân on the right-hand side. Now be Â
an arbitrary time-ordered operator, i. e. Â = T{Â}. Now as explained above, we have
a prescription how to compute 〈q′, t′|Â|q, t〉 in the case t′ > t. This means that we can
compute the matrix elements of Â between two different bases, namely |q(t)〉 and |q(t′)〉.
What we want of course is to express Â in one given basis |q, t〉. So we have to make a
change of basis by

〈q′, τ |Â|q, τ〉 =

∫
dq1

∫
dq2〈q′, τ |q2, t′〉〈q2, t′|Â|q1, t〉〈q1, t|q, τ〉, (2.62)
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2.2 Functional Integral for Bosonic Many-Body Systems

where t < τ < t′. On the right-hand side of the equation, there are three expectation
values which can essentially be determined by the path integral formalism (in the case
where the time value on the left hand side is smaller than the one on the right-hand
side, we can use the formalism to compute the complex-conjugate). Then once we have
determined an operator in a complete basis, we of course completely know the operator.
Since the commutator of two operators is also an operator, they can be computed in the
same way and we will find for instance [Q(τ), Q̇(τ)] 6= 0. To find the momentum operator
P̂ , we remember that it is defined classically by p(τ) = ∂L

∂q̇(τ) . In this way, we will get P

as a function of q(τ) and q̇(τ), which is often just P = MQ̇. Inserting this expression
in the path integral, we can determine the momentum operator in a complete basis.
Additionally, one can derive the right canonical commutator relation [Q(τ), P (τ)] = i.
The fact that we end up with non-vanishing commutators results from the fact that we
go from integrals to matrix elements, and in general matrices do not commute.

2.1.11 Generalization to N Degrees of Freedom

To prepare the use of the path integral formalism in quantum field theory, we will
generalize to N degrees of freedom. This is actually straight forward, we just add an
index and define quantities Qj(t), Pj(t) with canonical commutators [Qi(t), Pj(t)] = i.
The integral will be generalized to

∫
Dqj(t) and the action will of course depend on all

degrees of freedom, i. e. we have S[qj(t)].

Examples:

• One atom in 3D: j = 1, 2, 3, N = 3, and Qj(t) corresponds to a 3-vector Q(t).

• N atoms in d=1 lattice: j = 1, . . .N , Qj(t)

• continuum notation: N , Qj(t) → Q(x, t)

• fields: N → ∞

• lattice in 3D, only one excitation direction: Q(x, t)

• lattice in 3D, 3D excitations: Q(x, t)

Especially the fifth example is very important, since this will correspond to scalar fields
in quantum field theory.

2.2 Functional Integral for Bosonic Many-Body Systems

2.2.1 Path Integral for QFT

Now of course we aim to use the derived functional integral formalism (i. e. the path
integral formalism) in quantum field theory. There we have fields φ̂(x, t), φ̂†(x, t) and
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the canonical commutator relation [φ̂(x′, t), φ̂†(x, t)] = δ(x − x′). Then we can define
position and momentum operators by

Q̂(x, t) =
1√
2
(φ̂(x, t) + φ̂†(x, t)),

P̂ (x, t) = − i√
2
(φ̂(x, t) − φ̂†(x, t))). (2.63)

As a simple exercise, the reader may show that

[Q(x′, t), P (x, t)] = iδ(x− x′). (2.64)

Now we will consider a simple system of non-interacting bosonic atoms with a Hamilto-
nian

H =

∫

x

{
1

2M
∇φ̂†(x, t)∇φ̂(x, t) + V (x)φ̂†(x, t)φ̂(x, t)

}
(2.65)

and derive the functional integral for this system. We use the inverse transformation of
(2.63),(2.63) given by

φ̂ =
1√
2
(Q+ iP ),

φ̂† =
1√
2
(Q− iP ) (2.66)

where we have suppressed the arguments x and t. In the same way we can compute

φ̂†φ̂ =
1

2
(Q− iP )(Q+ iP ) =

1

2
(Q2 + P 2) + i[P,Q] =

1

2
(Q2 + P 2) + const., (2.67)

where we have introduced an infinite constant. However, this constant will drop out of
the Hamiltonian anyway, since we are free to choose any zero-point of energy we consider
appropriate. Now we can write the Hamiltonian as

H =

∫

x

1

2
Q(x, t)(− ∆

2M
+ V (x))Q(x, t) +

1

2
P (x, t)(− ∆

2M
+ V (x))P (x, t). (2.68)

Now let’s have a look at transition amplitudes and the expectation values of operators:
We introduce the notation |q(x, t)〉 = |q(x, t), t〉 = |q, t〉. The position operator Q will act
on this basis as Q(x, t)|q(x, t)〉 = q(x, t)|q(x, t)〉. The expectation value of a time-ordered
product of operators can be expressed as usual by

〈q′(x′, t′)|T
{
Â1(x1, t1), . . . , Ân(xn, tn)

}
|q(x, t)〉 =

∫
Dq

∫
DpA1(x1, t1) . . . An(xn, tn)e

iS ,

(2.69)
where the action S is defined as S =

∫
dτdxL(x, τ) with the Lagrangian L(x, τ) =

p(x, τ)q̇(x, t) − H(p(x, τ), q(x, τ)). Further
∫
Dq =

∫
Dq(x, t). In the case of finite

degrees of freedom, this corresponds to integration over every degree of freedom. In the
continuum case, we therefore integrate over infinitely many degrees of freedom. Now of
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course, we want to express the action in terms of the fields φ̂ and φ̂†. We remember
the expressions (2.66),(2.66) and define

∫
DqDp =

∫
DφDφ∗ =

∫
Dφ. This can be

understood by remembering that a complex field φ has two degrees of freedom, for
example the real and the imaginary part. In the same way, one can also treat φ and φ∗

independently. Now we are actually no longer integrating over paths, but we integrate
over all possible configurations in space and time, each having a certain phase factor.
This is in fact very similar to statistical mechanics. In the 3D Ising model, we have a
cubic lattice with lattice sites i = (n1, n2, n3) with a certain spin si = ±1. The partition
function is given by Z =

∑
si
Tre−βH , where we have to sum over all possible spin

configurations. This is very similar to what we have in quantum field theory. In fact if
we assume that our bosonic atoms are located on a grid, we have only a finite number
of degrees on freedom in QFT and instead of the integral we will also have sums over
all possible configurations in space. The other difference is that in statistical mechanics,
the exponential factor is real, while it is imaginary in QFT. In fact we will later show
that we can make a transformation t 7→ it in QFT so that the exponential factor will
also become real.

Lagrangian Density in Terms of φ̂ and φ̂†

Now we wish to express the Lagrangian density L in terms of φ̂ and φ̂†. For this look at
the Hamiltonian H, expressed in terms of φ̂ and φ̂†:

H =
1

2
q(x, t)

(
− ∆

2M
+ V (x)

)
q(x, t) +

1

2
p(x, t)

(
− ∆

2M
+ V (x)

)
p(x, t)

=φ̂†(x, t)
(
− ∆

2M
+ V (x)

)
φ̂(x, t) (2.70)

L is calculated by

L = pq̇ −H(p, q) (2.71)

with

pq̇ = − i

2
(φ− φ∗) ∂t (φ+ φ∗) = − i

4
∂t
(
φ2 − φ∗2 + 2φφ∗

)
+ iφ∗∂tφ (2.72)

When calculating the action S, the first term drops out, because it is a total time
derivative. For S we therefore have

S =

∫
dtdx

(
iφ∗∂tφ− φ∗

(
− ∆

2M
+ V (x)

)
φ

)
(2.73)

This is the functional integral for bosonic atoms in a trap! Here we can see, indeed
provokes an exponential decay, depending on the time dependence of φ̂!
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2.2.2 Systems in Various Dimensions d

Up to now, we have been investigating systems in real space with dimension d=3. The
cases d=2, d=1 just relate to QFT on the surface, on the line respectively, by adding
constraints in d=3. The case d=0 is however somewhat special. Here the atoms are
confined to points, the so called quantum-dots. Let’s take a look at the action S for
d=0:

S =

∫
dt

(
iφ∗(t)∂tφ(t) + µφ∗(t)φ(t) − λ

2
(φ∗(t)φ(t))2

)
(2.74)

and compare it with the action in QM:

SQM =

∫
dt

(
p(t)q̇(t) − p2(t)

2M
− V (q(t))

)
→
∫
dt

(
1

2
Mq̇2(t) − V (q(t))

)
. (2.75)

We see that although they are different actions, they have the same structure. So we
can say for d=0:

QFT := QM (2.76)

Another Comparison of QFT and QM

In QM there are, like you know only a finite number of degrees of freedom. q(t) describes
a particle in a potential and φ(t) describes a quantum dot. By adding more dimensions

to φ(t), that means looking at φ(x, t), we enter QFT, and get infinite degrees of freedom.
The same on the operator level:

Q̂↔ φ̂(x) (Schrödinger)

Q̂(t) ↔ φ̂(x, t) (Heisenberg) (2.77)

2.2.3 In and Out States

Now we would like to look at a scattering experiment. In short: 2 or more particles arrive
the interaction region, and several particles are scattered out. Before the scattering, we
have well separated incoming particles (they don’t influence each other!), and after the
scattering also well separated outgoing particles.

We assume the interaction timescale tint = 0. In experiments the timescale texp is
finite, but since we look at times t < 0 with |t| � texp, and assume the incoming
particles are well separated, we can also assume texp ≈ 0.
At t → −∞, we have the incoming N -particle state, and at t → ∞, the outgoing N -
particle state. The incoming state is characterized by the occupation number N , the
external properties of the particles (such as the momenta p1, . . . , pN ) and the internal
properties (like the spins j1, . . . , jN , the flavors, etc.)

|N, p1, . . . , pN , j1, . . . , jN 〉 ≡ |α〉 (2.78)
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where α is a multi index! The outgoing state is characterized by |β〉. These states are
each a complete basis in Fock space. Now for the incoming state at some fixed t , we
can also take an eigenbasis to the occupation operators n̂i(p, t), for example φ̂†j(p, t)|0; t〉,
or 1√

2
φ̂†j1(p1, t)φ̂

†
j2

(p2, t)|0; t〉, but remember: the basis depends on t in a sense, that t

indicates at which time the basis is an eigenbasis to the n̂i(p, t)!

We label the incoming vacuum state |0; t〉, t→ −∞ as |0; in〉, the outgoing state will
be labeled |0; out〉.

The basis |α, in〉 (|α, t〉, t → −∞) is a complete basis of in states, and the basis
|β, out〉 is a complete basis of out states, but they are not identical. They can have
an overlap, which means there is a transition amplitude. This leads us to the . . .

2.2.4 S-Matrix

The transition amplitude

Sβα = 〈β, out|α, in〉 (2.79)

is called the S-matrix. We have to study this basic concept because it is crucial for
describing scattering experiments. It tells us how the system has evolved, with the exis-
tence (or nonexistence) of an interaction. If the system has no potential and interaction,
we expect that |α, in〉 and |β, out〉 are orthogonal. But what if there is an interaction?
This interaction would certainly change the properties of the particles, and thus the state
|α, in〉. But there are of course conservation laws, like energy and momentum conserva-
tion, which as we will see be already implemented in Sβα. In fact all the information of
the physics in the interaction is contained in the S-matrix, wonderful, right? So let us
explore Sβα.

First of all the completeness of |α, in〉 and |β, out〉 leads to the fact that S is unitary.
Let’s see why.
First we show S†S = 1:

S†S =
∑

β

(
S†
)
γβ
Sβα =

∑

β

〈β, out|γ, in〉∗〈β, out|α, in〉

=
∑

β

〈γ, in|β, out〉〈β, out|α, in〉

=〈γ, in|α, in〉 = δγ,α (2.80)

In (2.80) we used the completeness of |β, out〉.

2.2.5 Functional Integral for the S-Matrix

By now, we know the functional integral for time ordered operators

〈q(x′, t′)|T{Â1(t1) . . . Ân(tn)}|q(x, t)〉 =

∫
DφA1(t1) . . . An(tn)e

iS (2.81)
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with Âk(tk) = Âk{φ̂(tk), φ̂
†(tk),

˙̂
φ(tk) . . .}. But this is not yet the S-matrix. Now because

we have Q(x, t)|q(x, t)〉 = q(x, t)|q(x, t)〉 and Q(x, t) = 1√
2

(
φ̂(x, t) + φ̂†(x, t)

)
, we can

write the time ordered products as functions ofQ(x, t), and thus the integrals as functions
of q(x, t). To set up a functional integral for S, we just insert ones in the limits ±∞:

Sβα = 〈β, out|α, in〉

= limt→∞,t′→−∞

∫
dq(x, t)dq(x′, t′)〈β, out|q(x′, t′)〉〈q(x′, t′)|q(x, t)〉〈q(x, t)|α, in〉

= limt→∞,t′→−∞

∫
dq(x, t)dq(x′, t′)〈β, out|q(x′, t′)〉

(∫
D′φeiS

)
〈q(x, t)|α, in〉

(2.82)

Now in (2.82) we have the path integral
∫
D′ that still has the boundary conditions at

q and q′. But now we integrate over these boundaries, and thus yield an unconstrained
path integral:

Sβα = limt→∞,t′→−∞

∫
Dφ〈β, out|q(x′, t′)〉〈q(x, t)|α, in〉 (2.83)

We would now like to investigate a 2 → 2 scattering. The in and out states are given
by

|α, in〉 = φ̂†(p1, t)φ̂
†(p2, t)|0, in〉

〈β, out| = 〈0, out|φ̂(p3, t
′)φ̂(p4, t

′). (2.84)

The S-matrix is then a 4-point correlation function:

Sβα = 〈β, out|α, in〉 =〈0, out|φ̂(p3, t
′)φ̂(p4, t

′)φ̂†(p1, t)φ̂
†(p2, t)|0, in〉

=〈0, out|T
(
φ̂(p4, t

′) . . . φ̂†(p1, t)
)
|0, in〉. (2.85)

For time ordered operators Â we want to find the matrix elements for the vacuum in
and out states:

〈0, out|T
(
Â
[
φ̂(x, t), φ̂†(x, t)

])
|0, in〉

= limt→−∞,t′→∞

∫
dq(x, t)dq(x′, t′)〈0, out|q(x′, t′)〉〈q(x′, t′)|T

(
Â
)
|q(x, t)〉〈q(x, t)|0, in〉

=

∫
Dφ(x, t)A (φ(x, t), φ∗(x, t)) eiS−η (2.86)

where e−η = f∗(q(x′, t′))f(q(x, t)) = 〈0, out|q(x′, t′)〉〈q(x, t)|0, in〉 can be neglected. So
we have, now in momentum space

〈0, out|T
(
Â
[
φ̂(p, t), φ̂†(p, t)

])
|0, in〉 =

1

Z

∫
Dφ(p, t)A (φ(p, t), φ∗(p, t)) eiS[φ]. (2.87)
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Normalization

We calculate the matrix element of unity, and define it to be 1:

〈0, out|0, in〉 =
1

Z

∫
DφeiS = 1

⇒ Z =

∫
DφeiS . (2.88)

This actually means that the in and out states are the same! To see this remember that
|0, t〉 = eiE0t|0〉!

So all in all the S-matrix of a time ordered operator Â is

〈0, out|T
(
Â
)
|0, in〉 =

∫
DφAeiS∫
DφeiS . (2.89)

Summarizing our previous considerations, we can give an exact expression for the vacuum-
expectation value of any time-ordered operator T{Â} by

〈0|T{Â}|0〉 =

∫
DφAeiS∫
DφeiS

. (2.90)

In the same way we can compute the S-matrix for 2-2 scattering by

Sβα = Z−1

∫
Dφφ(p4, t

′)φ(p3, t
′)φ∗(p2, t)φ

∗(p1, t)e
iS , (2.91)

where we used the abbreviation Z =
∫
DφeiS and where we consider t → −∞ and

t′ → +∞.

2.2.6 Correlation Function

Now in the same way, we can express time ordered correlation functions in vacuum by

〈0|T{φ̂α1 (t1) . . . φ̂αn(tn)}|0〉 = Z−1

∫
Dφφα1 . . . φαn(tn)e

iS[φ] =: 〈φα1(t1) . . . φαn(tn)〉,
(2.92)

where we introduced the last expression as a simple convention. The index α used here
is a multi index and includes:

• position or momentum variables as the argument for the operator

• internal indices

• whether we refer to φ̂ or φ̂†. In fact this can be interpreted as an additional internal
index in the basis of real fields, having φ̂ = 1√

2
(φ̂R + iφ̂I).

So for a given action, the correlation functions can be computed. However one may ask
a couple of questions, i. e.:
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• How do we recover the concept of particles?

• What fields should be chosen? In an integral one can make variable transformations
φ→ φ′[φ]! For example, what is the normalization of φ? These questions may seem
trivial in the examples we have considered so far, but they are very important in
more complicated situations where the particles are not known from the beginning,
like the pions in QCD!

• How is time-ordering realized in practice?

〈φ(p′, t′)φ∗(p, t)〉 6= 0 t′ > t
= 0 t′ < t

Now let’s turn to the mathematical regularization of S: For this purpose we add a term
iε
∫
dtd3xφ∗(x)φ(x). Then the phase factor in the functional integral transforms as

eiS → eiSe−ε
R

φ∗φ. The limit ε → 0+ will be done at the very end of the calculation,
so that we always have well-defined integrals in the intermediate steps. This procedure
can be seen in various ways: First of all, if the functional integral is well-defined, this
limit should exist. On the other hand, if it is not, then we can just define the functional
integral by this limit procedure. From the physical point of view, the reader may even
remember that we had a similar term when we first derived the path integral for the
S-matrix, this term was just very small and therefore neglected.

2.2.7 Two-Point Function in Free Theory

We consider a simple example, where the action in the momentum basis is given by

S0 =

∫
dt

d3p

(2π)3
{iφ∗(p, t)∂tφ(p, t) −E(p)φ∗(p, t)φ(p, t)} (2.93)

with E(p) = p2

2M . We can even simply this expression going to frequency space by

φ(p, t) =

∫
dω

2π
e−iωtφ(ω, p). (2.94)

Now we can write the action in frequency-momentum space, where it becomes diagonal
(in time-momentum space, it involves a time derivative, which implies that values at
different times are compared, though they are infinitely small in the continuum limit).

S =

∫
dω

2π

d3p

(2π)3
(ω −E(p))φ∗(ω, p)φ(ω, p) (2.95)

The functional integration in frequency-momentum space is defined by

∫
Dφ =

∏

ω,p

∫ +∞

−∞
dφ(ω,p)dφ∗(ω,p). (2.96)
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This can be understood by going back to discrete time and space with torus boundary
conditions at large t and −t and a finite volume of space with periodic boundary con-
ditions. In such a configuration, frequency-momentum space will also consist of a finite
lattice of points (ω,p). Now we define the free propagator by

G0(p
′, p) = 〈φ(p′)φ∗(p)〉0 = Z−1

∫
Dφφ(p′)φ∗(p)eiS0 , (2.97)

using p = (ω,p). To compute the free propagator, we first need some Gaussian integrals:

∫ +∞

−∞
dxe−αx

2
=

√
π

α
,

∫
dφdφ∗e−αφ

∗φ =
π

α
,

∫
dφdφ∗φ∗φe−αφ

∗φ = − ∂

∂α

∫
dφdφ∗e−αφ

∗φ =
π

α2
,

∫
dφdφ∗φ∗φe−αφ

∗φ

∫
dφdφ∗e−αφ∗φ

=
1

α
,

∫
dφdφ∗φe−αφ

∗φ =

∫
dφdφ∗φ∗e−αφ

∗φ = 0. (2.98)

Now computing G0, there are only contributions for (ω,p) = (ω ′,p′). Then we can use
the above calculated Gaussian integrals by putting α = −i(ω−E(p)), yielding the very
important result

G0(p
′, p) = 〈φ(p′)φ∗(p)〉 =

i

ω −E(p)
δ(p′ − p), (2.99)

where δ(p′ − p) = (2π)4δ(ω′ − ω)δ3(p′ − p).

Time-Dependent Two-Point Function

Now we compute the time-dependent two-point function. For this purpose, we have to
go from frequency space to time dependent functions. Then we can use the previous
result and get

〈φ(p′, t′)φ∗(p, t)〉 =

∫
dω

2π

dω′

2π
e−iω

′t′eiωt〈φ(ω′, p′)φ∗(ω, p)〉

= (2π)3δ3(p− p′)
∫

dω

(2π)
e−iω(t′−t) i

ω −E(p)

= (2π)3δ3(p− p′)e−iE(p)(t′−t)A,

A =

∫
dω̃

2π
e−iω̃(t′−t) i

ω̃
, (2.100)

where we defined ω̃ = ω − E(p). As we can see, A has a pole on the real axis. To
regularize the integral, we introduce a shift ω → ω + iε with some positive ε. As we
discussed previously, for a well-defined functional integral there should be a smooth limit
ε → 0+. Otherwise, we just define the functional integral by this limit. The shift in ω

yields ω̃ → ω̃ + iε and therefore eiS ∝ eiωφ
∗φ→eiωφ

∗φ−εφ∗φ
. The pole in the expression
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for A is now below the real axis in the space of complex ω̃. To evaluate the integral,
we close the contour integral below the real axis for t′ > t, and above the real axis for
t′ < t, yielding

A =

{
1 t′ > t
0 t′ < t

}
= θ(t′ − t) (2.101)

according to the residue theorem. This already answers one of the questions we were
asking above, i. e. how time ordering arises in practise. It is realized by the appropriate
choice where to close the contour lines. As a result we get the useful formula

∫ +∞

−∞

dω

2π

i

ω −E(p) + iε
e−iω(t′−t) = e−iE(p)(t′−t)θ(t′ − t). (2.102)

So we get the following result for the free propagator in time-momentum space, in
agreement with our previous calculations:

〈φ(p′, t′)φ∗(p, t)〉 = (2π)3δ3(p − p′)e−iE(p)(t′−t)θ(t′ − t) = 〈0|T{φ̂(p′, t′)φ̂†(p, t)}|0〉.
(2.103)

2.2.8 S-Matrix Element in One-Particle Channel

Now we can compute the S-matrix in the one-particle channel, i. e. for one ingoing and
one outgoing particle. It is given by

Sp′p = δ(p′ − p)e−iE(p)(t′−t). (2.104)

We want to make some comments on this result:

1. The phase factor in the S-matrix element is irrelevant, we will see that only |S|2
matters at the end.

2. The phase can be eliminated by multiplying Sβα with standard phase factors:

• e−iEi(pi)t for every incoming particle,

• eiEi(pi)t
′
for every outgoing particle.

3. This means that phase factors can be absorbed in a redefinition of the variables
φ(p). With this convention, Sβα is normalized in comparison with free theory. This
can be formally implemented in the general definition of Sβα. Then the statement
Sβα = δβα is true if and only if we have a free theory.

2.2.9 Reduced Transition Amplitude M

If we want to consider scattering of particles, we need to consider a deviation of S from
unity. Therefore we define

Sβα = δβα − i(2π)4δ(Ef −Ei)δ
3(pf − pi)Mβα, (2.105)
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where the delta functions imply energy and momentum conservation. Let’s consider an
example of two incoming and several outgoing particles, then we have pi = p1 + p2

and pf is the total momentum of the outgoing particles. Then we can compute the
differential cross section from M by

dσ =
∏

f

d3pf
(2π)3

1

|v1 − v2|
(2π)4δ(Ef −Ei)δ

3(pf − pi)|M(p1, p2 → {pf})|2, (2.106)

where v1 − v2 is the relative velocity of the incoming particles. More generally, M
contains the dynamic information, but not the kinematics.

2.2.10 Classical Approximation for 2 → 2 Scattering

In the sections 2.2.7 and 2.2.8 we discussed the two-point function in free theory, thus
the one-particle channel. Now we want to go a step further and compute the four-point
function in the classical approximation, that is also called “Born Approximation” or
“Tree Approximation” and simply means that we consider only pointlike interaction of
two particles.

The action in time and position space is

S =

∫
dτ

∫
d3x

(
iϕ∗(x, τ)∂τϕ(x, τ) − 1

2M
∇ϕ∗(x, τ)∇ϕ(x, τ) − λ

2
(ϕ∗(x, τ)ϕ(x, τ))2

)

(2.107)

and we want to know the S-matrix elements

Sβ,α = 〈β, out|α, in〉
= 〈p4,p3, out||p1,p2, in〉
= 〈0|ϕ(p4, t

′)ϕ(p3, t
′)ϕ†(p2, t)ϕ

†(p1, t)|0〉 (2.108)

We know that this time ordered product of operators has the following path integral
expression:

Sβ,α = f

∫
Dϕϕ(p4, t

′)ϕ(p3, t
′)ϕ∗(p2, t)ϕ

∗(p1, t)e
iS

∫
DϕeiS . (2.109)

f is a factor that is given by

f = e−i(E(p1,t)+E(p2 ,t))e+i(E(p3,t′)+E(p4,t′)) (2.110)

and that will compensate some phases that come out of the calculation later. It is just
the same here as it was in section 2.2.8, where we defined our S-matrix element.

Well, equation (2.109) is the basic problem that we will solve in this section. We will
do this in two steps. First we will consider the free theory with λ = 0, and then we will
turn on the interaction.
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a) Free theory for 2 → 2 “Scattering”

Actually, the title of this paragraph is a little bit confusing. Of course, in a free theory
with λ = 0 we expect no scattering at all.

The first thing that we have to do, is that we should use the representation of the
action S in momentum space instead of (2.107), because the field variables also depend
on momenta:

S =

∫
dt

∫
d3p

(2π)3
(iϕ∗(p, t)∂tϕ(p, t) −E(p)ϕ∗(p, t)ϕ(p, t)) (2.111)

The functional integrals in (2.109) are also to be understood as functional integrals over
field variables, that depend on momenta and time or frequency

∫
Dϕ =

∫
Dϕ(p, t) =

∫
Dϕ(p, ω) (2.112)

Do you feel completely familiar with equation (2.109)? Do you know, what the dif-
ferent arguments of the functions tell us and where they came from? If not, read the
following small insertion. If yes, proceed to the next paragraph that is called Fourier
transformation to frequency space .

• Small insertion to discuss the meaning of equation (2.109)

In section 2.1, we defined what a path integral is:

∫
Dq =

∫ N∏

k=1

dqk (2.113)

So it is an integral over all intermediate steps. As every qk coordinate corresponds to a
certain time, we could also write for example

∫
Dq =

∫ N∏

k=1

dq(tk) (2.114)

or, if we like ∫
Dq =

∫ ∏

t

dq(t). (2.115)

So no matter how we write it, we always mean the same: A product of integrals over all
intermediate steps. Remark, that for different t’s, we simply mean different integration
variables! This will be extremely important later on.

So far, we only considered quantum mechanical path integrals, or, if we want to say it in
the words of 2.2.2, a 0-dimensional Quantum Field Theory. If we go to infinitely many
degrees of freedom, our path integral function q depends not only on t, but now on x and
t: ∫

Dq =

∫ ∏

x,t

dq(x, t) (2.116)

where we mean the integration over all intermediate steps in space and time. But if x is the
“real” space coordinate, one may ask the question what is the meaning of q? To answer
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this question remember, that q(x, t) is the eigenfunction to the Operator Q̂(x, t)! The
corresponding classical quantity was Q(x, t), which was in the solid-picture the distance
of the oscillator at space position x at time t to its equilibrium position. Of course, this
is not an explanation of what it is in the case of a “real” vacuum without an underlying
substructure of atoms like we have it in the solid. But anyway you should keep in mind,
that in the QFT-path integral the real space coordinate is x, and not the integration
variable q.

Again, you should remark, that for different (x, t) we mean different integration variables
q.

Of course we had a similar expression for momenta p:
∫

Dp =

∫ ∏

x,t

dp(x, t). (2.117)

The next step is now to “exchange” our integration variables q(x, t) and p(x, t) into field
variables ϕ(x, t) and ϕ∗(x, t). Ignoring the arguments for a short while, this is according
to

q =
1√
2
(ϕ + ϕ∗),

p = i
1√
2
(−ϕ+ ϕ∗) (2.118)

just a rotation with Jacobian 1. Thus, we have now
∫

Dq(x, t)
∫

Dp(x, t) =

∫
Dϕ(x, t)

∫
Dϕ∗(x, t). (2.119)

The vacuum expectation value of a time-ordered product of operators T{Â(ϕ(y, t), ϕ†(y, t))}
is given by the following path integral, where we write now once all dependencies:

〈0|T{Â(ϕ(y, t), ϕ†(y, t))}|0〉 =

∫
Dϕ(x, t)

∫
Dϕ∗(x, t)A(ϕ(y, t′), ϕ∗(y, t′))eiS[ϕ(x,t),ϕ∗(x,t)]

∫
Dϕ(x, t)

∫
Dϕ∗(x, t)eiS[ϕ(x,t),ϕ∗(x,t)]

(2.120)

Please note that the difference between the x and y is important (and so is the difference

between t and t′)! The operator Â consists of creators and annihilators, that create and
annihilate particles at particular points in space y , while the x are arguments of the
integration variables! Anyway, equation (2.120) is not formal perfect. Please imagine that
any ϕ and ϕ∗ acts at different times and at different points in space, and of course not all
at time t and at the same position y, and that we have to order the product of operators
with respect to the different times ti when they act.

Well, we have now almost explained equation (2.109). What remains is the transition from
position space to momentum space. Unfortunately we are once more confronted with a
lack of variable names. So we name our integration variable p, although it is not the same
p that appeared a few lines above in equation (2.117). That p corresponded to q, while
our p that we have now corresponds to x.

Anyway, under the assumption that the transition
∫

Dϕ(x, t)

∫
Dϕ∗(x, t) →

∫
Dϕ(p, t)

∫
Dϕ∗(p, t) (2.121)
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has Jacobian 1, we finally get our equation (2.109), if we set Â to be the operator that
corresponds to the four-point function that we want to compute:

Sβ,α = f

∫
Dϕ(p, t)

∫
Dϕ∗(p, t)ϕ(p4, t4)ϕ(p3, t3)ϕ

∗(p2, t2)ϕ
∗(p1, t1)e

iS[ϕ(p,t),ϕ∗(p,t)]

∫
Dϕ(p, t)

∫
Dϕ∗(p, t)eiS[ϕ(p,t),ϕ∗(p,t)]

.

(2.122)

In contrast to (2.109), we used ti so that we don’t mix up the integration variables t with
the special times t1 and t2 before and t3 and t4 after the scattering process.

Fortunately a possible double use of times will now have an end. Because here, our small

excursion ends and the next step is the. . .

Fourier transformation to frequency space

The Fourier transformation from time to frequency space is quite simple. As we
already used

ϕ(x, t) =

∫
d3p

(2π)3
eipxϕ(p, t) (2.123)

the transformation to frequency space is of course

ϕ(p, t) =

∫
dω

2π
e−iωtϕ(p, ω) (2.124)

so the overall transformation is

ϕ(x, t) =

∫
d3pdω

(2π)4
eipx−iωtϕ(p, ω). (2.125)

To shorten the notation, we will write this very often as

ϕ(x, t) =

∫
d4p

(2π)4
eipxϕ(p, ω), (2.126)

with four-vectors p = (ω,p) and (px) = −p0x0 + ~p~x = −ωt+ ~p~x.

For the functional integral we again assume that the Jacobian is 1, so we have

∫
Dϕ(p, t) =

∫
Dϕ(p, ω) (2.127)

If we describe everything in momentum space, we should do the same with the action.
This becomes

S =

∫
d4p

(2π)4
(ω −E(p))ϕ∗(p)ϕ(p). (2.128)

Before we compute now the S-matrix element in the free theory, we make another
small excursion.
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• Let’s play with a toy action!

We want to work first with some kind of toy action, that has no physical meaning but has
the advantage to be even more simple:

S =

∫
d4p

(2π)4
ϕ∗(p)ϕ(p). (2.129)

The two point function in the toy action is

〈ϕ(p2)ϕ
∗(p1)〉 =

1

Z

∫ ∏

p

dϕ(p)dϕ∗(p) [ϕ(p2)ϕ
∗(p1)] e

i
R

d4p

(2π)4
ϕ(p)ϕ∗(p)

=

∫ ∏
p

(
dϕ(p)dϕ∗(p)e

i
d4p

(2π)4
ϕ(p)ϕ∗(p)

)
ϕ∗(p1)ϕ(p2)

∫ ∏
p

(
dϕ(p)dϕ∗(p)e

i
d4p

(2π)4
ϕ(p)ϕ∗(p)

) (2.130)

Here we wrote the exponential factor to the product, with the consequence that there is
not anymore an integral sign in the exponential function.

To solve this integral it is now important to know the difference between p and pi and
to remind that for different “product-p’s” the integration variables ϕ are also different!
Remembering the Gaussian Integrals of (2.98) to (2.98) we see now immediately that our
two point function will be non-zero only if p1 = p2. If this condition is fulfilled, we have a
lot of integrals that cancel with the normalization, and one single of the type

∫
dzdz zze−αzz

∫
dzdze−αzz

=
1

α
(2.131)

So here we get

〈ϕ(p2)ϕ
∗(p1)〉 =

i
d4p

(2π)4

(2.132)

For the four-point function in our toy action 〈ϕ(p4)ϕ(p3)ϕ
∗(p2)ϕ

∗(p1)〉 it is not much more
complicated. The only difference is that we need to combine our p’s such that we get two
integrals of the type (2.131). As we need to combine always one ϕ∗ with one ϕ, the result
is zero whenever p1 6= p3 and p1 6= p4.

Only if p1 = p3 and p2 = p4 or if p1 = p4 and p2 = p3, we get a contribution, namely

〈ϕ(p4)ϕ(p3)ϕ
∗(p2)ϕ

∗(p1)〉 =

(
i

d4p
(2π)4

)2

= − (2π)8

(d4p)2
(2.133)

And in the limit that the volume element goes d4p→ 0 we get Dirac functions

〈ϕ(p4)ϕ(p3)ϕ
∗(p2)ϕ

∗(p1)〉 = −(2π)8 (δ(p1 − p3)δ(p2 − p4) + δ(p1 − p4)δ(p2 − p3))

= 〈ϕ(p3)ϕ
∗(p1)〉〈ϕ(p4)ϕ

∗(p2)〉 + 〈ϕ(p4)ϕ
∗(p1)〉〈ϕ(p3)ϕ

∗(p2)〉
= 〈ϕ(p3)ϕ

∗(p1)〉〈ϕ(p4)ϕ
∗(p2)〉 + 1 permutation (2.134)

At this point it is necessary to say that the arguments of the δ-functions are four-vectors
and that for this single section our δ-functions are defined without factors of 2π!
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This result can easily be generalized to the 2N -point function. The result is

〈ϕ1 . . . ϕnϕ
∗
1′ . . . ϕ∗

n′〉 = 〈ϕ1ϕ
∗
1′〉 · · · 〈ϕnϕ

∗
n′〉 + N permutations (2.135)

This is called Wick’s theorem.

With this, our short excursion with the toy action ends.

Let’s stop playing and return to real physics Well, actually the real physical action is
not much more complicated then our “toy action”. The only difference was a ω−E(p).
So if we go through our calculation again, the only change in the result is, that the factor
α in (2.131) will now be

α =
−i

d4p
(2π)4

(
ω −E(p)

)

and so the two contributions are not completely identical, but differ in ωi and p1. So
we have:

〈ϕ(p4)ϕ(p3)ϕ
∗(p2)ϕ

∗(p1)〉 =
i

ω1 −E(p1) + iε

i

ω2 −E(p2) + iε
δ(p1 − p3)δ(p2 − p4)

+1 permutation(p1 ↔ p2)
(2.136)

This is now the spectral Green’s function. To get the scattering matrix we need to do

• the reverse Fourier transform to time

• and multiply the result with the phases f .

Sβ,α = −f
∫
dω1

2π

dω2

2π

dω3

2π

dω4

2π
e−i(ω3+ω4)t′ei(ω1+ω2)t·

(
δ(p1 − p3)δ(p2 − p4)

(ω1 −E(p1) + iε)(ω2 −E(p2) + iε)
+ 1 permutation(p1 ↔ p2)

)
. (2.137)

Now we split up our four-vector δ-function

δ(p1 − p3) = (2π)4δ(p1 − p3)δ(ω1 − ω3)

and perform the very easy ω3 and ω4 integration. We get

Sβ,α = f

∫
dω1

2π
e−iω1(t′−t) i

ω1 −E(p1)

∫
dω2

2π
e−iω2(t′−t) i

ω2 −E(p2)

·(2π)6 (δ(p1 − p3)δ(p2 − p4) + (p1 → p2)) (2.138)

To solve the ω1 and ω2 integrations we need the “iε-regularization”. The appearing
phase factors are exactly canceled by the factor f that we still have in front of all our
integrals. Furthermore we use the obviously correct relation for Θ-functions

Θ2(t′ − t) = Θ(t′ − t) (2.139)
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and employ t′ > t. The final result for the S-matrix element is

S = (2π)6 (δ(p1 − p3)δ(p2 − p4) + (p1 → p2))

= δβα (2.140)

The last line should be read as the definition for δβα.

b) Include Interaction for 2 ↔ 2 Scattering

Now we come to the real physical interesting part of true scattering processes with
interaction.

Our action S is given by

S = S0 + Sint (2.141)

where S0 is the free action that we had in case a). The interacting part of the action is
given by

Sint = −λ
2

∫
dt

∫
d3x(ϕ∗ϕ)2 (2.142)

just as we had it already at the very beginning of this section 2.2.10. We are again
interested in the spectral Green’s function

G(p1, p2, p3, p4) = 〈ϕ(p4)ϕ(p3)ϕ
∗(p2)ϕ

∗(p1)〉

=

∫
Dϕϕ∗(p1)ϕ

∗(p2)ϕ(p3)ϕ(p4)e
iS

∫
DϕeiS (2.143)

As everything is already written here in frequency and momentum space, we will of
course have to calculate our Sint also in momentum space. But before we do that, let
us simplify our problem (2.143).

Our ansatz is, that we don’t try to solve the full problem (2.143), but an easier one.
First, we expand our exponential function of Sint to

eiS = eiS0(1 + iSint + O(λ2)) (2.144)

and use this for the numerator. For the denominator, we neglect even the first order and
work simply with eiS0 . We get

G(p1, p2, p3, p4) = G0 + ∆G(4) (2.145)

where ∆G(4) is the first order correction to the spectral Green’s function and is given
by the following equation:

∆G(4) = − iλ
2

∫
Dϕϕ∗(p1)ϕ

∗(p2)ϕ(p3)ϕ(p4)Ŝinte
iS0

∫
DϕeiS0

(2.146)

71



2 Path Integrals

We already mentioned that it will be necessary to use the frequency-momentum repre-
sentations of Sint. We use the variable name q for these Fourier transforms and get

Ŝint =

∫
d4q1
(2π)4

d4q2
(2π)4

d4q3
(2π)4

d4q4
(2π)4

(2π)4δ4(q1 + q2 − q3 − q4)ϕ(q1)ϕ(q2)ϕ
∗(q3)ϕ

∗(q4).

(2.147)

We insert this and get

∆G(4) = − iλ
2

∫ 4∏

i=1

dqiδ(q1 + q2 − q3 − q4)〈ϕ(q1) . . . ϕ
∗(q4)ϕ∗(p1) . . . ϕ(p4)〉S0 (2.148)

The expectation value is to be taken with the free action S0. So here appears an eight-
point function of the free theory!

Let us compute it in the case of a true scattering event, what requires that the mo-
menta of all outgoing particles are different from the incoming ones. In order to get
a non-zero result, we need to combine the q’s and p’s in such a way, that we get four
integrals of the kind (2.131). So we need to combine “non-∗-q’s” with “∗-p’s” and vice
versa. This is only the case if we choose

• p1 = q1, p2 = q2, p3 = q3, p4 = q4

• p1 = q2, p2 = q1, p3 = q3, p4 = q4

• p1 = q1, p2 = q2, p3 = q4, p4 = q3

• p1 = q2, p2 = q1, p3 = q4, p4 = q3

Now it is very convenient to use Wick’s theorem. So we get

∆G(4) =
−iλ
2

∫ 4∏

i=1

dqiδ(q1 + q2 − q3 − q4)[G0(p1, q1)G0(p2, q2)G0(p3, q3)G0(p4, q4)

+3 permutations]
(2.149)

Every G0 is just the two-point function of the free theory, e.g.

G0(p1, q1) =
i

ω1 −E(p1)
δ(q1 − p1). (2.150)

With this we come to the relation

∆G(4) =
−iλ
2

∫ 4∏

i=1

dqiδ(q1 + q2 − q3 − q4)

·
[
iδ(q1 − p1)

ω1 −E(p1)
· . . . · . . . · iδ(q4 − p4)

ω4 −E(p4)
+ 3 permutations

]
(2.151)
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With all the δ-functions, the q-integrations become trivial. After performing the inte-
gration the permutations give all the same result, that’s why we get a factor of 4 in the
following expression:

∆G(4) = −4
iλ

2

δ(p1 + p2 − p3 − p4)

(ω1 −E(p1))(ω2 −E(p2))(ω3 −E(p3))(ω4 −E(p4))
(2.152)

To get the first order correction of the S-matrix, we have again to do the reverse Fourier
transformation to time and to multiply with f

∆Sβ,α = −2iλf

∫
dω1

2π
. . .

dω4

2π

δ(p1 + p2 − p3 − p4)e
iω1t+...−...−iω4t′

(ω1 −E(p1)) · . . . · . . . · (ω4 −E(p4))
(2.153)

Splitting up the δ-function in momentum and frequency part and using

δ(ω1 + ω2 − ω3 − ω4) =

∫
dτe−i(ω1+ω2−ω3−ω4)τ (2.154)

we get

∆Sβ,α = −2iλf(2π)4δ(p1 + p2 − p3 − p4)

∫
dτ

(∫
dω1

2π

e−iω1(t−τ)

ω1 −E(p1)

)
. . .

(∫
dω4

2π

e−iω4(τ−t′)

ω4 −E(p4)

)
. (2.155)

The solution of the ω-integrations with iε regularization is

∫
dω1

e−iω1(t−τ)

ω1 −E(p1)
=

2π

i
e−iE(p1)(τ−t)Θ(τ − t),

∫
dω4

e−iω4(τ−t′)

ω4 −E(p4)
=

2π

i
e−iE(p4)(t′−τ)Θ(t′ − τ) (2.156)

Note the difference in the argument of the Θ function!

The e±iE(pi)t factors cancel with the f factor. What remains is the τ -integration:

∫
dτ
[
Θ(τ − t)Θ(t′ − τ)

]2
e−iτ(E(p1)···−E(p4)) = Θ(t′ − t)δ(E(p1) . . . −E(p4)) (2.157)

Thus, the final result for first order correction to the S-matrix is

∆Sβ,α = −2iλ(2π)4δ(p1 + p2 − p3 − p4)δ(E(p1) +E(p2) −E(p3) −E(p4)) (2.158)

Now we can easily see the reduced transition amplitude or amputated, connected Green’s
function, according to (2.105):

Mβ,α = 2λ (2.159)
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Comments

• after the ω-integration, the ’external propagators’ i
ωi−E(pi)

serve to put the energy

on shell: ω → E(p). Mβα does not contain propagators for the incoming and
outgoing particles anymore. This is what the word amputated means

• there is always a function δ(
∑

i pini −
∑

j poutj ) in Sβ,α counting for conservation
of the total energy and momentum

• The interaction is given by

Sint = −λ
2

∫
d4q1
(2π)4

. . .
d4q4
(2π)4

φ∗(q4) . . . φ(q1)(2π)4δ4(q1 + q2 − q3 − q4). (2.160)

In the classical approximation one has

Mclδ(p1 + p2 − p3 − p4) = − δ4S

δφ∗(p4) . . . δ(p1)
(2.161)

2.3 Generating Functionals

In this section we introduce a powerful method to calculate correlation functions. At
the end we will have a formula, which we can directly use in perturbation calculations.
To start, we take a one dimensional Gaussian integral and look at it’s n-th moment:

〈xn〉 =

∫
dxxne−αx

2

∫
dxe−αx2 . (2.162)

In the exponent of the nominator of (2.162) we add a source term −ijx. Having done
this, we can easily transform the equation:

〈xn〉 =

∫
dxxne−αx

2−ijx
∫
dxe−αx2 |j=0

=

(
i ∂∂j

)n ∫
dxe−αx

2−ijx
∫
dxe−αx2 |j=0

=

(
i ∂∂j

)n
Z0 [j] |j=0

Z0 [0]
. (2.163)

In (2.163) we can see that we just need the partition function Z0 [j] in order to calculate
the momenta 〈xn〉! This comes in handy, when we try to calculate the partition function,
with the existence of a potential V (x).
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But first we explicitly calculate Z0 by completion of the square:

1

Z0 [0]
Z0 [j] =

1

Z0 [0]

∫
dxe−αx

2−ijx

=
1

Z0 [0]

∫
dxe−α(x+ij/(2α))2−j2/(4α)

=
1

Z0 [0]

∫
dx′e−αx

′
e−j

2/(4α) = e−j
2/(4α). (2.164)

The partition function Z [j], which includes a potential V , is given by

Z [j] =
1

Z0 [0]

∫
dxe−(αx2+V (x))+ijx

=
1

Z0 [0]
eV (i ∂

∂j
)Z0 [j]

= e−V (i∂j)e−j
2/(4α). (2.165)

In (??) we use that e−V (x) can be expanded into a Taylor series of the monomials xn.
Then we just make use of (2.163). In (2.165) one can see how easy it is, to get a
perturbation series in our interaction theory: we just have to expand e−V (i∂j) in the
parameters of V .

Some Examples

Let’s calculate some momenta 〈xn〉

V = 0: Because we always set j=0, the odd momenta 〈x2n+1〉 vanish, so we just need to
calculate 〈x2n〉. For this, we expand e−j

2/(4α) in powers of −j2/(4α). Because of
setting j = 0, all powers higher than n vanish. So we get

〈x2n〉 = (i∂j)
2n 1

n!

(
− j2

4α

)n

=
(2n)!

n!

(
1

4α

)n
(2.166)

V = −λ
2x

4: Now we’ll calculate a deviation from the non-interacting 〈x4〉0 in first order of λ.

Then we have e
λ
2
∂4
j ≈ 1 + λ

2∂
4
j , so we get

∆〈x4〉 = (i∂j)
4

(
λ

2
∂4
j

)
e−j

2/(4α)

=
λ

2
∂8
j

(
1

4!

(
− j2

4α

)4
)

=
λ

2 · 4!8!
(

1

4α

)4

= λ
3 · 5 · 7
32α4

(2.167)
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The Partition Function in the Path Integral

Now in the path integral formulation, we can do something similar to the above. Given
the expression

Z =

∫
DϕeiS[ϕ] (2.168)

for the partition function, we can add a source term

−
∫

d4p

(2π)4
(J∗(p)ϕ(p) + J(p)ϕ∗(p)) (2.169)

to the exponent of Z. In the free field theory (V = 0), the action S [ϕ] = S0 [ϕ] takes
the form

S0 [ϕ] =

∫
d4p

(2π)4
ϕ∗(p) (ω −E(p))ϕ(p). (2.170)

Together with (2.169), the partition function is

Z0 [J, J∗] =

∫
Dϕei

R d4p

(2π)4
(ϕ∗(p)(ω−E(p))ϕ(p)−J∗(p)ϕ(p)+J(p)ϕ∗(p))

. (2.171)

As usual, to get rid of the linear term in the exponent, we use the transformation
ϕ(p) = ϕ′(p) + J(p)

ω−E(p) . The exponent then transforms to

i

∫
d4p

(2π)4

(
ϕ′∗(p) (ω −E(p))ϕ′(p) − J∗(p)

1

ω −E(p)
J(p)

)
. (2.172)

The partition function for the free field theory is therefore given by

Z0 [J, J∗] = Z0 [0] e
−i

R d4p

(2π)4

“

J∗(p) 1
ω−E(p)

J(p)
”

. (2.173)

For the existence of a potential V , we can use (2.173) as a generating functional. The
action S is

S [ϕ] = S0 [ϕ] + Sint [ϕ,ϕ
∗] ,

Sint [ϕ,ϕ
∗] =

∫
d4xV [ϕ∗(x), ϕ(x)] . (2.174)

Expanding Sint [ϕ,ϕ
∗] in powers of ϕ and ϕ∗, we can use the same argumentation, as

for (2.165). For the partition function, we then get

Z [J, J∗] = eSint[i
δ
δJ
,i δ
δJ∗ ]Z0 [J, J∗] . (2.175)
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3.1 Fermionic Quantum Fields

3.1.1 Pauli Principle

We want to generalize the machinery we have developed so far for bosons to fermions.
Examples of fermions are free electrons or nonrelativistic atoms with spin 1

2 .

A one particle state can be denoted by

|p, s〉, with spin s = ±1 ↔ sz = ±~

2
, (3.1)

a two particle state by

|p1, s1,p2, s2〉. (3.2)

We can write the two particle state in terms of one particle states if we keep in mind
the antisymmetry,

|p1, s1,p2, s2〉 =
1√
2

(|p1, s1〉|p2, s2〉 − |p2, s2〉|p1, s1〉) . (3.3)

The Pauli principle states that no two fermions can be in the same state, so if their only
degrees of freedom are momentum p and spin s, it states

|p, s,p, s〉 = 0. (3.4)

Remember that we can also denote states in the occupation number basis,

{np,s}, where np,s = 1 or 0 (Pauli principle). (3.5)

3.1.2 Symmetries and Normalization of N-Fermion States

We introduce yet another useful shortcut notation (no new physics),

j = (p, s), (3.6)

with a “collective index” j, which we for now assume to be discrete.

Now a two particle state can be denoted by

|i, j〉 := ε|ni = 1;nj = 1;nk = 0 for k 6= i, j; i 6= j〉, (3.7)
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where ε = ±1 is a “phase” to realize

|i, j〉 = −|j, i〉. (3.8)

In the occupation number notation with a fixed ordering of i, j, etc. this dependence on
the ordering of i and j is not needed.

We have the normalization

〈k, l|i, j〉 = δkiδlj − δkjδli, (3.9)

which is antisymmetric as it should be.
An N particle state is denoted as

|j1, . . . , jN 〉, (3.10)

which is totally antisymmetric under the exchange of two indices jk, jl.
As the normalization we get a sum over all N ! permutations with a sign + for an even

permutation and a − for an odd permutation.

3.1.3 Annihilation and Creation Operators

Creation operators: â†p,s| . . . , np,s, . . .〉 =

{
0 if np,s = 1

ε| . . . , 1, . . .〉 if np,s = 0

Annihilation operators: âp,s| . . . , np,s, . . .〉 =

{
0 if np,s = 0

ε| . . . , 0, . . .〉 if np,s = 1
(3.11)

We need the ε here to account for the fact that

â†p,sâ
†
p′,s′ = −â†p′,s′ â

†
p,s. (3.12)

We give a simple matrix representation of these operators in the case N = 1:

n = 0 ↔
(

0
1

)
, n = 1 ↔

(
1
0

)
, â† ↔

(
0 1
0 0

)
, â↔

(
0 0
1 0

)
. (3.13)

Exercise: Convince yourself that with this matrix representation we have

â†
(
α
β

)
=

(
β
0

)
, â

(
α
β

)
=

(
0
α

)
(3.14)

and

{â, â†} = ââ† + â†â = 1 and â2 = â†2 = 0. (3.15)

Later on, we will compare an explicit representation of the Grassmann variables with
this representation.
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The generalization to N > 1 is

{âi, â†j} = δij ,

{âi, âj} = 0,

{â†i , â
†
j} = 0. (3.16)

For different i, j the creation and annihilation operator anticommute. It especially follows
that

âi
2 = â†j

2 = 0. (3.17)

We want to motivate these commutation relations. For one particle we have

â†i |0〉 = |i〉, (3.18)

and for two particles we have

â†j â
†
i |0〉 = |j, i〉,

−â†i â
†
j |0〉 = −|i, j〉. (3.19)

So {â†i , â
†
j} = 0 holds for the vacuum. This result is easily generalized to all states.

{âi, âj} = 0 follows simply by Hermitian conjugation. {âi, â†j} = δij can be motivated
by a similar argument (which was not given in the lecture).

The continuum normalization is similar as for bosons, just that we now have anticom-
mutators instead of commutators,

{âp,s, â†p′,s′} = δ(p − p′)δss′ = (2π)3δ3(p − p′)δss′ . (3.20)

3.1.4 Occupation Number, Hamiltonian

As usual, the number operator is given by

n̂p,s = â†p,sâp,s, (3.21)

and the free Hamiltonian by

Ĥ0 =
∑

p,s

ε(p, s)â†p,sâp,s =

∫
d3p

(2π)3

∑

s=±1

ε(p, s)â†p,sâp,s, (3.22)

where ε(p, s) is the dispersion relation. For free electrons or atoms it is given by

ε(p, s) =
p2

2M
. (3.23)

In general, a Fermi gas will have some other dispersion relation. Plus you have to add
an interaction Hamiltonian ∼ â†ââ†â.
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3.1.5 Fermion Field

We know the operator field already in momentum space. To get it in position space we
Fourier transform it:

ψ̂(x, s) =

∫
d3p

(2π)3
âp,se

ipx =

∫

p

âp,se
ipx,

ψ̂†(x, s) =

∫
d3p

(2π)3
â†p,se

−ipx =

∫

p

â†p,se
−ipx,

{ψ̂(x, s), ψ̂†(x′, s′)} = δ3(x − x′)δss′ . (3.24)

On the operator level, fermion fields are no more difficult than boson fields. The only
difference is a little minus sign.

3.2 Path Integral for Fermionic Systems, Grassmann Variables

Why do we need a new mathematical object, the Grassmann variables, now? The answer
is the same one why we use e.g. complex numbers or operators: they are useful.

As with complex numbers there is the abstract definition and there are simple repre-
sentations. Let’s start with a matrix representation:

From the two Pauli matrices

τ1 :=

(
0 1
1 0

)
and τ2 :=

(
0 −i
i 0

)
, (3.25)

we define the following two linear combinations:

τ+ :=
1

2
(τ1 + iτ2) =

(
0 1
0 0

)
,

τ− :=
1

2
(τ1 − iτ2) =

(
0 0
1 0

)
. (3.26)

Exercise: Check that

τ2
+ = 0, τ2

− = 0, {τ+, τ−} = 1. (3.27)

Now we switch to the abstract notation

τ− → θ, τ+ → θ̄. (3.28)

But instead of (3.27), we define the new Grassmann variables to have the properties

θ2 = 0, θ̄2 = 0, {θ, θ̄} = 0, (3.29)

i.e. to be anticommuting. This is a new kind of product between θ and θ̄, different from
the matrix product of τ+ and τ−.
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Apart from multiplying Grassmann variables, one can also multiply them with real or
complex numbers and add the, i.e. linear combinations

αθ + βθ̄ are defined for α, β ∈ R or C. (3.30)

The product is distributive (i.e. linear in both factors):

(α1θ + β1θ̄)(α2θ + β2θ̄) = α1α2θ
2 + α1β2θθ̄ + β1α2θ̄θ + α2β2θ̄

2

= (β1α2 − α1β2)θ̄θ. (3.31)

But wait, what kind of mathematical object is θ̄θ and these linear combinations?
By definition, the Grassmann algebra G is the set of all objects you can get by adding

and multiplying the Grassmann variables θ, θ̄ and taking multiples. It is obvious that

{1, θ, θ̄, θ̄θ} is a basis for G, (3.32)

i.e. every element g ∈ G can be written as

g = γ11 + γ2θ + γ3θ̄ + γ4θ̄θ, (3.33)

with uniquely determined coefficients γi ∈ R. (This is called a real Grassmann alge-
bra. Later we will also consider the complex Grassmann algebra where we allow the
coefficients to be complex.)

Mathematical Note (not from the lecture): In mathematics, an algebra is a
vector space with a product that fulfills certain rules. In this sense the Grassmann
algebra really is an algebra. (3.33) gives an isomorphism from the vector space G to the
vector space R

4. So mathematically the Grassmann algebra is something very simple: a
four-dimensional vector space with a product that is determined by (3.29).

What is very strange is that Grassmann variables are called “variables” at all. Until
now a variable x was something that could take on the values of some set, e.g. a real
variable could have the value 2, π or − 1

2 . Grassmann variables are different, they are
really just two fixed vectors. Everything happens in the coefficients.

Let’s do a few exercises in translating statements from the abstract space G into the
well known space R

4:
The zero element is given by

g = 0 ↔ (γ1, γ2, γ3, γ4) = (0, 0, 0, 0). (3.34)

Linear combinations in G are defined as expected,

g3 = αg1 + βg2 ↔ γ3,i = αγ1,i + βγ2,i. (3.35)

And here’s an example of how to evaluate a product of two Grassmann vectors (in lack
of a better word):

θ(αθ + βθ̄) = αθ2 + βθθ̄ = −βθ̄θ ↔ (0, 0, 0,−β). (3.36)
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To summarize: Only θ and θ̄ are called Grassmann variables. The Grassmann algebra
consists of all linear combinations of 1, θ, θ̄, θ̄θ.

Compare the following three multiplication tables: (with s+ = 1, s− = −1 discrete
variables of the Ising model)

· θ θ̄

θ 0 −θ̄θ
θ̄ θ̄θ 0

· s+ s−
s+ s+ s−
s− s− s+

· â â†

â 0 1 − â†â
â† â†â 0

(3.37)

The important point is that the product of Grassmann variables with the anticommu-
tatior {θ, θ̄} = 0 is different from the product of operators {â†, â} = 1.

It is easy to see how the multiplication table generalizes to products in G, e.g.

θθ̄θ = −θθθ̄ = 0. (3.38)

If there are n independent Grassmann variables (until now we had only n = 2), all
products of m Grassmann variables with m > n are 0. This is a direct mathematical
representation of the Pauli principle.

We can not only define the “Grassmann product” of two Grassmann variables but
also of any two elements of a Grassmann algebra. Below we compare the Grassmann
product with the Clifford algebra which is generated by the matrices 1, τ−, τ+, τ+τ− and
equivalent to the operator product generated by 1, â, â†, â†â.

· 1 θ θ̄ θ̄θ

1 1 θ θ̄ θ̄θ
θ θ 0 −θ̄θ 0
θ̄ θ̄ θ̄θ 0 0
θ̄θ θ̄θ 0 0 0

· 1 τ− τ+ τ+τ−
1 1 τ− τ+ τ+τ−
τ− τ− 0 1 − τ+τ− τ−
τ+ τ+ τ+τ− 0 0

τ+τ− τ+τ− 0 τ+ τ+τ−

Always keep in mind that the product of two Grassmann variables is not a Grassmann
variable but only an element of the Grassmann algebra.

As a little preview of what will follow now, we write down the correspondence between
operators and fields for bosons and fermions.

a, a† ↔ φ, φ∗
bosons

a(x), a†(x) ↔ φ(x), φ∗(x)
a, a† ↔ θ, θ̄

fermions
a(x), a†(x) ↔ θ(x), θ̄(x)

3.2.1 Several Grassmann Variables

Indices

To denote different Grassmann variables we use indices. For example, the index j in θj
can denote spin up/down and thus have the value 1 or 2, or it can denote the sites on
a lattice and run from 1 to N . We will use the latter option to do the continuum limit
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3.2 Path Integral for Fermionic Systems, Grassmann Variables

θj → θ(x) for fermions. Grassmann variables always anticommute, even if they have
different indices.

{θi, θj} = 0,

{θi, θ̄j} = 0,

{θ̄i, θ̄j} = 0. (3.39)

The same is true for Grassmann fields.

{θ(x), θ(x′)} = 0 (3.40)

Complex numbers on the other hand always commute with each other and commute
with Grassmann variables.

Representation of Two Grassmann Variables as 4 × 4 Matrices

Unlike spin, Grassmann variables cannot be expressed as 2 × 2 matrices, but they have
a representation as 2n × 2n matrices, where n denotes the dimension of θj . We take a
closer look at the case n = 2. Let

θ1 = τ− ⊗ 1 =




0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0


 (3.41)

and

θ2 = τ3 ⊗ τ− =




0 0 0 0
0 0 0 0
1 0 0 0
0 −1 0 0


 . (3.42)

Let’s verify that these matrices fulfill the product and commutation relations of the
Grassmann variables.

θ1θ2 =

(
τ− 0
0 τ−

)(
0 0
τ3 0

)
=

(
0 0

τ−τ3 0

)
,

θ2θ1 =

(
0 0
τ3 0

)(
τ− 0
0 τ−

)
=

(
0 0

τ3τ− 0

)
= −

(
0 0

τ−τ3 0

)
,

{θ1, θ2} = 0,

θ2
1 =

(
τ− 0
0 τ−

)(
τ− 0
0 τ−

)
= 0,

θ2
2 =

(
0 0
τ3 0

)(
0 0
τ3 0

)
= 0. (3.43)

We have seen that we cannot represent Grassmann variables as simple τ matrices but
if we go to higher dimensions a representation using matrices is possible. Grassmann
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multiplication then becomes normal matrix multiplication. One could set θ = θ1 and
θ̄ = θ2 and this way express θ and θ̄ as 4 × 4 matrices.

The representation of n Grassmann variables as 2n × 2n matrices is more convenient
and will be used from now on.

Grassmann Algebra

The basis elements of the Grassmann algebra are all possible independent products of
the Grassmann variables. For four independent Grassman variables, j = 1 . . . 4 we get

1, 1
θ1, θ2, θ3, θ4, +4

θ2θ1, θ3θ1, θ4θ1, θ3θ2, θ4θ2, θ4θ3, +6
θ3θ2θ1, θ4θ2θ1, θ4θ3θ1, θ4θ3θ2, +4

θ4θ3θ2θ1 +1
16.

(3.44)

For n Grassmann variables there are 2n basis elements for the Grassmann algebra.

If n Grassmann variables are represented by 2n × 2n matrices, elements of the cor-
responding Grassmann algebra are also represented by 2n × 2n matrices obtained by
matrix multiplication. This Grassmann algebra has only 2n independent basis elements,
so it does only contain specific 2n × 2n matrices!

3.2.2 Functions of Grassmann Variables

The functions

f(θj) : (Grassmann variables) → (Grassmann algebra)

f(g) : (Grassmann algebra) → (Grassmann algebra) (3.45)

are only defined for polynomials, i.e. sums of products. The existence of a Taylor
expansion around zero is sufficient for a definition of f(θj). Let f(xj) be defined by a
Taylor expansion around xj = 0. We define

f(θj) := f(0) + ∂jf(θj)
∣∣
θj=0

θj +
1

2
∂j∂kf(θj, θk)

∣∣
θj ,θk=0

θjθk + · · ·

if f(xj) = f(0) + ∂jf(xj)
∣∣
xj=0

xj +
1

2
∂j∂kf(xj, xk)

∣∣
xj ,xk=0

xjxk + · · · (3.46)

Obviously the Taylor expansion is cut off at order n because higher products always
contain a square θ2

j of one of the variables, which makes the product zero. Note that in
terms containing more than one Grassmann variable the Grassmann variables occur in all
possible commutations but the relative minus sign is compensated because differentiation
also anticommutes.
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3.2 Path Integral for Fermionic Systems, Grassmann Variables

Examples for n = 2

Let’s take a look at what some common functions become when we use Grassmann
variables.

exp(θ̄θ) = 1 + θ̄θ +
1

2
(θ̄θ)2 + · · ·
︸ ︷︷ ︸

=0

= 1 + θ̄θ (3.47)

1

1 − θ̄θ
= 1 + θ̄θ + (θ̄θ)2 + · · ·︸ ︷︷ ︸

=0

= 1 + θ̄θ (3.48)

ln(1 + θ̄θ) = θ̄θ − 1

2
(θ̄θ)2 + · · ·
︸ ︷︷ ︸

=0

= θ̄θ (3.49)

The functions 1
1−θ̄θ and exp(θ̄θ) are identical for Grassmann variables. Let’s check how

ln and exp work together.

eln (1+θ̄θ) = eθ̄θ = 1 + θ̄θ (3.50)

The logarithm still is the inverse of the exponential function. All operations with func-
tions remain valid for functions of Grassmann variables provided that they are compat-
ible with Taylor expansion.

Functions that have a pole at x = 0 are not defined for Grassmann variables. This
includes common functions like 1

θ̄θ
and ln(θ̄θ). The Grassmann algebra does not contain

an inverse element of θ̄θ !

3.2.3 Differentiation

For the differential operator of Grassmann variables we demand that

∂

∂θj





takes one factor θj in polynomials away if present.

ordering is important: ∂
∂θj
θjθi = θi 6= ∂

∂θj
θiθj = −θi

is zero if θj does not appear in the function to be differentiated.

(3.51)

With these properties in mind we can write down the following relations:

∂

∂θj
θi = δij (3.52)

∂

∂θj
θa1 . . . θam︸ ︷︷ ︸

m

θjθb1 . . . θbn = (−1)mθa1 . . . θamθb1 . . . θbn (3.53)

While differential operators for complex variables commute, differential operators for
Grassmann variables anticommute like Grassmann variables themselves:

{
∂

∂θi
,
∂

∂θj

}
= 0 (3.54)
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We check this for θjθi which gives the result

∂

∂θi

∂

∂θj
θjθi = − ∂

∂θj

∂

∂θi
θjθi =

∂

∂θi
θi = 1. (3.55)

Next we propose
{
∂

∂θj
, θi

}
= δji. (3.56)

We can verify this proposal by letting the anticommutator act on a Grassmann variable.
The calculation(

∂

∂θj
θi + θi

∂

∂θj

)
θk =

∂

∂θj
θiθk + θi

∂

∂θj
θk =

∂θi
∂θj

θk −
∂θk
∂θj

θi + θi
∂

∂θj
θk

= δjiθk − δjkθi + δjkθi = δjiθk (3.57)

shows that the proposal is correct.

Matrix Representation of Grassmann Differentiation

n Grassmann variables θ1, . . . , θn can be represented by 2n×2n matrices, the Grassmann
algebra that is generated by their products can also be represented by Grassmann 2n×2n

matrices. We will give examples showing that the differential operator ∂
∂θj

: G → G can

also be represented as a 2n × 2n matrix. In this representation the differentiation of
Grassmann variables becomes an ordinary matrix multiplication.

In the case of only one Grassmann variable we have θ = τ− and ∂
∂θ = τ+ which fulfills

the property { ∂
∂θ , θ} = {τ+, τ−} = 1 of the Grassmann differentiation.

Things are slightly more complicated in the n = 2 case. We need the 4 × 4 matrices

θ1 = τ− ⊗ 1, θ2 = τ3 ⊗ τ−
∂

∂θ1
= τ+ ⊗ 1,

∂

∂θ2
= τ3 ⊗ τ+ (3.58)

It is a simple exercise in matrix multiplication to show that these matrices represent
the properties of differentiation of Grassmann variables in the form of a simple matrix
multiplication. For example,

∂

∂θ2
θ1 =

(
0 τ3
0 0

)(
τ− 0
0 τ−

)
= (τ3τ−) ⊗ τ+ = 0 (3.59)

as expected.

Analogy between Bosons and Fermions

In quantum field theory we have the creation and annihilation operators. The corre-
spondence for fermionic systems is

aj ↔ θj

a†j ↔
∂

∂θj
(3.60)
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3.2.4 Integration

For a integral over an asymptotically vanishing real function f(x) we have

∫ ∞

−∞
dx

∂

∂x
f(x) = 0 (3.61)

because the boundary terms vanish. Therefore we demand the relation
∫
dθ

∂

∂θ
f(θ) = 0 (3.62)

for Grassmann integration. Also after the θ-integration the result should not depend on
θ anymore and we require

∂

∂θ

∫
dθf(θ) = 0. (3.63)

Grassmann differentiation satisfies the defining properties of Grassmann integration
(3.62), (3.63). We can set

∫
dθ =

∂

∂θ
. (3.64)

We find the properties

1.

∫
dθ 1 =

∫
dθ

∂

∂θ
θ = 0,

2.

∫
dθ θ = 1. (3.65)

The first property corresponds to the fact that the Grassmann-differentiation is nilpotent

(
∂

∂θ

)2

= 0. (3.66)

3.3 Functional integral with Grassmann variables

3.3.1 Partition function

The partition function is Z =
∫
DΨeiS[Ψ] where the action S[Ψ] is a functional of Ψ and

Ψ̄ and
∫
DΨ is defined as

∫
DΨ(x) =

∫
DΨ(x)DΨ̄(x) =

∏

x

[∫
dΨ(x) dΨ̄(x)

]
. (3.67)

Here ordering matters and Ψ and Ψ̄ satisfy the anti-commutation relations

{Ψ(x), Ψ̄(x′)} = {Ψ̄(x), Ψ̄(x′)} = {Ψ(x),Ψ(x′)} = 0. (3.68)
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because they are Grassmann variables, for example

Ψ(x, t) =

∫
d3p

(2π)3
eipxθ(p, t)

Ψ̄(x, t) =

∫
d3p

(2π)3
e−ipxθ̄(p, t). (3.69)

The action can be expressed as

S[ψ] =

∫
dtd3xL[Ψ(x, t), Ψ̄(x)]. (3.70)

The non-relativistic Lagrangian for free fermions is

L0 = iΨ̄α
∂

∂t
Ψα + Ψ̄α

∆

2m
Ψα. (3.71)

Putting things together leaves us in Fourier space with

S[Ψ] =

∫
dt

∫

p

{
iΨ̄α(p, t)

∂

∂t
Ψα(p, t) −

p2

2m
Ψ̄α(p, t)Ψα(p, t)

}
. (3.72)

already included in this equation are the internal indices α (spin) which Ψ typically
has. This is identical with the functional integral for non-relativistic bosons (2.93), only
φ(x, t) and φ∗(x, t) are replaced by Grassmann variables Ψ(x, t) and Ψ̄(x, t).

3.3.2 Correlation functions

Grassmann fields guarantee the anti-symmetry of the correlation functions required by
Fermi statistics.

〈Ψα(x, t)Ψβ(x
′, t′)〉 = Hαβ(x, t,x

′, t′)

= Z−1

∫
DΨΨα(x, t)Ψβ(x

′, t′)eiS

= −Hβα(x
′, t′,x, t). (3.73)

Similarly, we get the fermion propagator if Ψβ(x, t) is replaced by Ψ̄β(x, t):

Gαβ(x, t,x
′, t′) = 〈Ψα(x, t)Ψ̄β(x

′, t′)〉. (3.74)

This shows a great advantage of this formalism. The symmetry properties follow
automatically from the properties of the Grassmann variables. For bosons the ordering
does not matter (total symmetry), for fermions it only affects the over all sign (total
anti-symmetry).
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3.3.3 Simple Grassmann integrals

It is useful to get a little more acquainted with the properties of Grassmann integrals.
The partition function will contain a term like

∫
dΨdΨ̄ eλΨ̄Ψ =

∫
dΨdΨ̄(1 + λΨ̄Ψ) = λ

∂

∂Ψ

∂

∂Ψ̄
Ψ̄Ψ = λ. (3.75)

This should be compared to a similar integral for complex numbers
∫

dφdφ∗ e−λφ
∗φ ∝ 1

λ
. (3.76)

With internal degrees of freedoms we get
∫

dΨ1 dΨ̄1 . . . dΨn dΨ̄n e
λ1Ψ̄1Ψ1 . . . eλnΨ̄nΨn

=

∫
dΨ1 dΨ̄1 . . . dΨn dΨ̄n{(1 + λ1Ψ̄1Ψ1)(1 + λ2Ψ̄2Ψ2) · · · (1 + λnΨ̄nΨn)}

=λ1 . . . λn (3.77)

because all terms that do not contain every variable vanish during Grassmann integra-
tion. The final result is

(
∏

α

∫
dΨα dΨ̄α

)
e

P

β λβΨ̄βΨβ =
∏

β

λβ (3.78)

or with a matrix Λβα

∫
DΨ eΨ̄βΛβαΨβ = det Λ . (3.79)

Note that there is no restriction on Λ from this expression since the eigenvalues are
arbitrary complex numbers. They do not need to be real numbers as in the bosonic case
because the Grassmann integral is always well defined for finite numbers of Grassmann
variables.

The same way one can derive that
∫

dΨdΨ̄ Ψ̄ΨeλΨ̄Ψ = 1 (3.80)

and
∫

DΨ Ψ̄γΨγe
P

β λβΨ̄βΨβ =
∏

β 6=γ
λβ. (3.81)

Hence we get

〈Ψ̄γΨγ〉 =

∫
DΨ Ψ̄γΨγe

P

β λβΨ̄βΨβ

∫
DΨ e

P

β λβΨ̄βΨβ
=

1

λγ
. (3.82)
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3.3.4 Free Green’s function for non-relativistic fermions

Using the results from above we can construct the free propagator for non-relativistic
fermions. The factor λβ is then

λβ =̂ iω − iε(p). (3.83)

Green’s function then is

G0,αβ(p, ω,p
′, ω′) = 〈Ψα(p, ω)Ψ̄β(p

′, ω′)〉 =
i

ω − ε(p)
δ(p − p′)δαβ . (3.84)

It is exactly the same free propagator as we got for bosons in equation (2.97). The
question arises if for a single propagating particle there is no difference between fermions
and bosons. This is only true for a non-interacting theory. In an interacting theory there
are vacuum fluctuations that introduce differences.

3.4 Functional integral for fermionic quantum systems

3.4.1 Correlation functions

For many particle fermionic systems the correlation function is given by

〈
T
{
aj1(t1)aj2(t2) . . . a

†
k1

(t′1) . . . a
†
km

(t′m)
}〉

= Z−1

∫
DΨΨj1(t1)Ψj2(t2) . . . Ψ̄km(t′)eiS · ε

(3.85)

were ε = ±1 is specified by the ordering of Grassmann variables in the correlation
function and Z =

∫
DΨ eiS .

S is related to the Hamiltonian via

S =

∫
dt{iΨ̄j∂tΨj −H[Ψ̄k,Ψk]}. (3.86)

The ordering of operators in H is for H[a†, a] with a† on the left. Then H[ψ̄, ψ] follows
from H[a†, a] by replacing a→ ψ and a† → ψ̄.
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4 Relativistic Quantum Fields

4.1 Lorentz Transformations

4.1.1 Lorentz Group and Invariant Tensors

Lorentz Metric

The cartesian coordinates of spacetime are t and x. They are denoted as the contravari-
ant vector

xµ = (t,x), t = x0. (4.1)

The corresponding covariant vector is

xµ = (−t,x) = (−x0,x). (4.2)

We can always lower and upper indices with the metric tensor ηµν and its inverse ηµν ,
which are actually the same:

ηµν = ηµν =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 (4.3)

or, if we want to use a shorter notation, we can also say that our metric has the signature

(−,+,+,+). (4.4)

The explicit transformation equations are

xµ = ηµνx
ν and xµ = ηµνxν . (4.5)

We want to know under which transformations xµ → x′µ = Λµνx
ν the quantity xµxµ is

invariant. So we calculate

x′µx′µ = x′µx′νηµν (4.6)

= Λµρx
ρΛνσx

σηµν .

This is equal to xµxµ if the condition

ΛµρΛ
ν
σηµν = ηρσ. (4.7)

is fulfilled. Equation (4.7) is the defining equation for Λ. All transformations that fulfill
(4.7) are called Lorentz transformations.
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Transformation of Tensors

Let us consider the contravariant and covariant four-momenta:

pµ = (E,p)

pµ = (−E,p). (4.8)

As we already discussed, we can raise and lower indices of vectors with the metric tensor
ηµν and the inverse ηµν . As raising and lowering are inverse operations, the action of
both tensors is the identity:

ηµνηνρ = δµρ. (4.9)

If we perform a Lorentz transformation

p′µ = Λµνp
ν (4.10)

and lower indices on both sides, we get

ηµρp′ρ = Λµνη
νσpσ (4.11)

We multiply with an inverse metric

p′κ = ηκµΛ
µ
νη
νσpσ (4.12)

Obviously, the tensor product on the right hand side should be

Λκ
ν = ηκµΛ

µ
νη
νσ (4.13)

So we obtained the result, that a covariant vector (lower index) transforms as

p′µ = Λµ
νpν (4.14)

We can also use the metric tensor to raise and lower indices of tensors as wel as for Λµ
ν .

A general example for the Lorentz transformation of a complicated tensor is:

A′µνρ
στ = Λµµ′Λ

ν
ν′Λ

ρ
ρ′Λσ

σ′Λτ
τ ′Aµ

′ν′ρ′
σ′τ ′ (4.15)

Invariant Tensors

We already mentioned that Lorentz transformations are defined in such a way, that
the metric tensor ηµν is left invariant. Actually, there is only one more tensor that is
invariant under Lorentz transformations, and this is εµνρσ - the generalization of the εijk
tensor. εµνρσ is defined by

ε0123 = 1. (4.16)

It is also 1 for all cyclic permutations of (0, 1, 2, 3), and −1 for all anticyclic permutations.
The ε-tensor with raised indices, εµνρσ has just the opposite signs, so e.g. ε0123 = −1.
So we can also say, that εµνρσ and εµνρσ are inverse tensors.
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Let us prove our statement, that εµνρσ is invariant under Lorentz transformations.
We the following lines, we will use the short hand notation Λµ

ν → Λ, Λµν → ΛT and
ηµν → η.

First we consider

ΛηΛT = η (4.17)

which we already know from (4.13). If we compute the determinant on both sides, we
find

det(Λ) = ±1. (4.18)

The determinant of Λ can also be calculated by

det(Λ) =
1

4!
Λµ1

ν1Λµ2
ν2Λµ3

ν3Λµ4
ν4εν1ν2ν3ν4ε

µ1µ2µ3µ4

=
1

4!
ε′µ1µ2µ3µ4ε

µ1µ2µ3µ4 (4.19)

Here ε′ is the Lorentz transformed tensor. We can verify that ε′µνρσ is totally antisym-
metric, thus ε′µνρσ = cεµνρσ with constant c. Using εµνρσε

µνρσ = 4! we obtain

ε′µ1µ2µ3µ4 = det(Λ)εµνρσ = ±εµ1µ2µ3µ4 (4.20)

Anyway, the obtained result is, that only those Lorentz transformations with det(Λ) =
+1 will leave the ε-tensor invariant. We call these transformations proper Lorentz
transformations, while those with det(Λ) = −1 are called improper Lorentz transfor-
mations.

Analogy to Rotations

Remember again equation (4.17). This looks very similar to orthogonal transformations
O with

OIOT = OOT = I, (4.21)

where I is the identity. In (4.17), the identity is simply replaced by the metric tensor.
Furthermore, there are again two tensors that are left invariant, and these are the identity
δij and the ε-tensor εijk (if we work in three dimensions).

The orthogonal transformations in 3D are denoted as O(3). The analogy that we just
discussed motivates the name ”Pseudo orthogonal transformations” O(1, 3), where the
separated 1 indicates the special role of time in special relativity.

Derivatives

The derivative with respect to a contravariant vector is a covariant vector:

∂µ =
∂

∂xµ
. (4.22)
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For example we have

∂µx
µ = 4. (4.23)

The momentum operator is

p̂µ = −i∂µ. (4.24)

4D Fourier Transformations

We already used four-dimensional Fourier transformations in the previous chapters. For
example, a function ψ(xµ) can be written as

ψ(xµ) =

∫

p
eipµx

µ
ψ(pµ). (4.25)

With pµ = (−ω, ~p), pµxµ = (−ωt+ ~p~x) this reads

ψ(t, ~x) =

∫

ω

∫

~p
e−iωt+i~p~xψ(ω, ~p) (4.26)

Covariant equations

A covariant equation is e.g.

∂µF
µν = Jν , (4.27)

in particular these are two of the four Maxwell equations.

4.1.2 Lorentz Group

Group Structure

If we have two elements g1, g2 that are elements of a group G, the product of these two
elements will still be an element of the group

g3 = g2g1 ∈ G. (4.28)

In particular, we can write for matrices

(Λ3)
µ
ν = (Λ2)

µ
ρ(Λ1)

ρ
ν . (4.29)

In a group, there is always a unit element e that satisfies

ge = eg = g (4.30)

for a group element g. For matrices, this unit element is δνµ.
Furthermore we have an inverse element for every matrix Λµ

ν , because the determinant
of Λ is ±1 for proper resp. improper Lorentz transformations.
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4.1 Lorentz Transformations

Discrete Symmetries

• Space reflection (parity)

The space reflection transformation is xi → −xi for i ∈ 1, 2, 3 and t → t. The
corresponding matrix is

P =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 (4.31)

The determinant of P is −1. The metric tensor ηµν is kept invariant under space
reflection: PηP T = η

• time reflection

The time reflection transformation is xi → xi for i ∈ 1, 2, 3 and t → −t. The
corresponding matrix is

T =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 (4.32)

The determinant of T is the same as for P , detT = detP = −1. Both trans-
formations change the sign of the ε-tensor and are therefore improper Lorentz
transformations.

Again, the metric tensor is invariant under TηT T = η.

• space-time reflection

The combination of both space and time reflection is

PT =




−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 (4.33)

This time the determinant is +1.

Continuous Lorentz Transformations

A continuous Lorentz transformation is the ”product of infinitesimal” transformations.
It always has a determinant +1, so we can immediately conclude that the discrete trans-
formations P and T can’t be described by continuous ones. As the product PT has a
determinant +1, one could first think that this may be obtained by continuous transfor-
mations, but this is not the case. The reason is, that infinitesimal transformations will
never change the sign in front of the time variable, but actually, PT does exactly this.
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However, a discrete transformation that can be obtained by infinitesimal ones is the
reflection of x and y, so the product P1P2 with

P1 =




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1


 , P2 =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1




P1P2 =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1


 (4.34)

4.1.3 Generators and Lorentz Algebra

Infinitesimal Lorentz Transformations

Let us consider the difference δpµ between a four-momentum and the transformed four-
momentum

δpµ = p′µ − pµ

= (Λµν − δµν)p
ν

= δΛµνp
ν

Λµν = δµν + δΛµν (4.35)

Let us consider a pseudo orthogonal transformation in matrix representation:

ΛηΛT = η

⇔ (1 + δΛ)η(1 + δΛ)T = η

⇔ δΛη + ηδΛT = 0 (4.36)

In the last line we neglected the 2nd order term in δΛ. If we write down this equation
in index notation, we have

δΛµ
ρηρν + ηµρδΛν

ρ = 0,

δΛµν + δΛνµ = 0. (4.37)

This equation tells us, that δΛµν is antisymmetric, but note that δΛµ
ν is not antisym-

metric. However, but matrices have only six independent elements, what is obvious for
δΛµν , because all diagonal elements are zero and for the off-diagonal elements we have
the relation δΛµν = −δΛνµ. The number of independent elements in a (antisymmetric)
matrix is of course equal to the number of linear independent (antisymmetric) matrices
we can build. The physical meaning of these six matrices is that they represent the
possible three rotations and three boosts.
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Generators

Let us write the infinitesimal transformation of the momentum vector in the following
way:

δpµ = iεz(Tz)
µ
νp
ν , z = 1 . . . 6 (4.38)

which simply means that we split up our infinitesimal Lorentz transformation into

δΛµν = iεz(Tz)
µ
ν . (4.39)

So Λµν consists of a real, infinitesimal parameter εz, and the so-called generator (Tz)
µ
ν

(and a factor of i). Remember that we have six independent generators Tz of the Lorentz
group and that we sum over all z.

Let us now write down all the generators that we have:

rotations : (T1)µν = (T1)
µ
ν =




0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0


 ,

(T2)µν = (T2)
µ
ν =




0 0 0 0
0 0 0 i
0 0 0 0
0 −i 0 0


 , (T3)µν = (T3)

µ
ν =




0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0


 (4.40)

boosts : (T4)µν =




0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0


 , (T4)

µ
ν =




0 i 0 0
i 0 0 0
0 0 0 0
0 0 0 0


 ,

(T5)
µ
ν =




0 0 i 0
0 0 0 0
i 0 0 0
0 0 0 0


 , (T6)

µ
ν =




0 0 0 i
0 0 0 0
0 0 0 0
i 0 0 0


 (4.41)

Some remarks on these equations:

• T1 is a rotation around the x-axis (only y and z components change). T2 is a
rotation around the y-axis and T3 a rotation around the z-axis.

• For the rotation matrices, raising and lowering of indices doesn’t change anything.
The reason is that the metric tensor has a −1 only in the zero component and the
rotation matrices are zero in the first row.

• For the boost matrices, raising of the first index changes the sign of the first row of
the matrix (see T4). After raising the index, the boost matrices are not any longer
antisymmetric.

97



4 Relativistic Quantum Fields

The calculation goes like this:

(T4)
µ
ν = ηµρ(T4)ρν =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0


 =




0 i 0 0
i 0 0 0
0 0 0 0
0 0 0 0


 (4.42)

• To see that T1, T2 and T3 are really rotations, compare them to the well-known
rotation matrix in 2D,

R =

(
cosφ −sinφ
sinφ cosφ.

)
(4.43)

If φ = ε is infinitesimal, it becomes

R =

(
1 −ε
ε 1.

)
(4.44)

The difference to the identity is

δR =

(
0 −ε
ε 0,

)
(4.45)

But this is now equivalent to what we have (4.40) when we write iε in front of the
matrix.

• Similarly, you can convince yourself that T4, T5 and T6 are really boosts in x, y
and z direction.

Lorentz Algebra

In (??) we already mentioned that a product of two group elements will again be a group
element. From this we can conclude, that also the commutator of two generators must
again be a generator. In general we can therefore write

[Tx, Ty] = ifxyzTz (4.46)

The double appearance of z has (again) to be read as a summation. The fxyz are
called the structure constants of a group. Whenever one has to deal with groups,
the structure constants are very important, because once we know them, we know all
algebraic relations within this group.
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4.1 Lorentz Transformations

Furthermore, whenever a set of generators fulfill one certain commutation relation,
they all represent the same group, but only in different representations. This will be
discussed further below.

Example
Let us consider a rotation in three dimensional space as an example. We want to rotate a

system

• by an angle α around the y-axis,

• by an angle β around the x-axis,

• by an angle −α around the y-axis,

• and finally by an angle −β around the x-axis.

The result is a product of infinitesimal rotations, which is of course nothing else than again an
infinitesimal rotation,

(1 − iβTx − 1

2
β2T 2

x )(1 − iαTy − 1

2
α2T 2

y )(1 + iβTx − 1

2
β2T 2

x )(1 + iαTy − 1

2
α2T 2

y )

= 1 − αβ(TxTy − TyTx)

= 1 − iαβTz (4.47)

The first order is zero, and the terms ∝ T 2
x and ∝ T 2

y cancel, too. The product αβ is the
parameter of the resulting infinitesimal transformation.

For the special case of rotation in normal, three dimensional space, one could also show the
commutation relation

[T1, T2] = iT3 (4.48)

by multiplication of matrices. More generally, we could show

[Tk, Tl] = iεklmTm (4.49)

for k, l,m ∈ {1, 2, 3}.

The calculation of this example gives us already some commutation relations of the
generators of the Lorentz group, if we consider the Ti as 4 × 4 matrices with zeros in
all elements of the first column and row. This is of course not surprising, as the three
dimensional rotations are a subgroup of the Lorentz group.

Of course, this is not all what we need to know about our Lorentz group, since up to
now we did not yet determine those structure constants fxyz where one element of x, y, z
is 0. But as this is a little bit more complicated, this will be done later.

For the moment, we concentrate on another interesting fact: Remembering the Spin
matrices and their commutation relations, we discover that it is exactly the same as for
the generators of the rotation group SO(3):

[sk, sl] = iεklmsm,

[
1

2
τk,

1

2
τl] = iεklm

1

2
τm. (4.50)
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Note the difference between spin matrices si and Pauli matrices τi.
The important thing we learn here is that the spin matrices τi/2 and the generators

of rotations in 3D space have the same algebraic relations - and thus are different rep-
resentations of the same group. The Tm are a three-dimensional and the τm/2 are a
two-dimensional representation of the group (SO(3)).

4.1.4 Representations of the Lorentz Group (Algebra)

Representations and Matrices

Let us summarize what we know about the Lorentz group: It is (SO(1, 3)) and is gen-
erated by a set of 6 independent matrices Tz, which obey the commutation relations

[Tx, Ty] = ifxyzTz. (4.51)

For x, y, z ∈ {1, 2, 3} we know already that fxyz = εxyz. The dimension of the matrices Tz
depends on the representation of the group: If we have a d-dimensional representation,
the matrices will be d× d.

For a vector, the dimension is of course 4, because we have three space and one time
coordinate. But what happens if we want to transform a tensor? Well, if we have a
symmetric tensor like the energy-momentum-tensor T µν = T νµ, we know that it has
10 independent elements: 4 diagonal and 6 off-diagonal ones. Let us now forget for a
while about tensors and write all independent elements into a 10-dimensional vector ψα.
The generator Tz that transforms this vector into a new vector ψα + δψα (in complete
analogy to the momentum pµ that was transformed into pµ+δpµ) must now be a 10×10
matrix:

δψα = iεz(Tz)
α
βψ

β (4.52)

Finally, we remind ourselves that the elements of ψ have once been the elements of the
energy-momentum tensor T . So we write

δT µν = iεz(Tz)
µν
µ′ν′T

µ′ν′ . (4.53)

Here (µν) = (νµ) is considered as a double index, α = (µν). In this equation, don’t mix
up the energy-momentum tensor and the generator! The elements of (TZ)µνµ′ν′ can easily
be computed from the known Lorentz transformation of a tensor.

Irreducible Representations

The treatment of the energy-momentum tensor T as a 10 component vector is more
complicated as necessary. Actually we do not have to transform 10 elements, but only
9. The reason is, that we can decompose T into the trace and the remaining traceless
part. So we have now

T̃ µν = T µν − 1

4
θηµν . (4.54)
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θ is the trace of the energy-momentum tensor and T̃ µν is the traceless part. For the
trace we can also write

θ = T µµ = ηνµT
µν . (4.55)

The trace is a scalar and thus doesn’t change under Lorentz transformations:

T ′ρ
ρ = T ρρ .. (4.56)

Furthermore, the traceless tensor T̃ remains traceless when it is transformed.
In this way, we have reduced the 10D representation to 9 + 1. So the transformation

of traceless, symmetric tensors is represented by a 9 × 9 matrix (generator).
As an intermediate result we can now summarize:

Representation Dimension

scalar 1
vector 4

symmetric and traceless tensors 9
antisymmetric tensors 6

spinor ?

We will later see how complex andtisymmetric tensors can be reduced to two three
dimensional representations, 6 → 3 + 3. We will find out later the dimension of the
spinor representation.

4.1.5 Transformation of Fields

Scalar Field ϕ(x)

How do fields ϕ(x) transform? Well, to answer this question, we go back to the trans-
formation of space-time vector xµ:

x′µ = Λµνx
ν , x′µ = xµ + δxµ (4.57)

To come to the transformation of the field, we have to do two steps:

ϕ(x) = ϕ(x′ − δx)

⇒ ϕ′(x) = ϕ(x− δx) (4.58)

So first we transform x to x′ and then we use x for x′ to get the transformed field.
Furthermore we see that it is equivalent whether we change the coordinate system or
the object (field). But note that the transformations are in opposite directions!

If we consider the x to be transformed, we call this an passive transformation,
while if we change the field ϕ itself we are speaking about an active transformation.

The difference of the field δϕ is of course

δϕ = ϕ(x− δx) − ϕ(x)

= −∂µϕ(x)δxµ (4.59)
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The second line comes from the definition of the derivative.
If we insert δxµ = δΛµνx

ν we get

δϕ = −δΛµνxν∂µϕ(x)

= −iεz(Tz)µνxν∂µϕ(x)

= iεzLzϕ(x) (4.60)

In the second to the last line we used (4.39) and in the last line we introduced the
definition

Lz = −(Tz)
µ
νx

ν∂µ. (4.61)

For an easier notation, (4.39) is better written as

δϕ = +xνδΛν
µ∂µϕ(x) (4.62)

To prove that this is true, lower one index of Λ and use the antisymmetry.
Note that in this case here the Lz are the generators and not Tz because (4.60) is of

the form (4.38). Remark that the generators Lz contain a differential operator in this
case!

The letter L was not chosen arbitrary, as L1, L2 and L3 are the angular momenta.
For instance, L1 can be written as

L1 = −(T1)
µ
νx

ν∂µ. (4.63)

T1 has only two non-zero elements: (T1)
2
3 = −i and (T1)

3
2 = i, so

L1 = −ix2 ∂

∂x3
+ ix3 ∂

∂x2

= −i(y∂z − z∂y). (4.64)

This is obviously the angular momentum as we know it from classical mechanics: L =
r× p.

Vector Field Aµ(x)

Contravariant vectors transform like this:

Aµ(x) → A′µ(x) = Aµ(x) + δAµ(x),

δAµ(x) = δΛµνA
ν(x) + xρδΛρ

σ∂σA
µ(x). (4.65)

Here, δΛµνA
ν is the usual transformation law for covariant vectors, and xρδΛρ

σ∂σA
µ

simply reflects the change of coordinates, this second term is always there, no matter
what kind of field we are transforming.

Covariant vectors transform like that:

δAµ(x) = δΛµ
νAν(x) + xρδΛρ

σ∂σAµ(x). (4.66)
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Examples

The covariant derivative is given by

∂µϕ → ∂µ(ϕ(x) + δϕ(x)) = ∂µφ(x) + δ∂µφ(x),

δ∂µφ(x) = ∂µδφ(x) = ∂µ(x
ρδΛρ

σ∂σφ(x))

= δΛµ
σ∂σϕ(x) + (xρδΛρ

σ∂σ)(∂µφ(x)) (4.67)

So ∂µϕ transforms as a covariant vector!

δ(∂µϕ(x)∂µϕ(x)) = (xρδΛρ
σ∂σ)(∂

µϕ(x)∂µϕ(x)), (4.68)

i.e. ∂µϕ(x)∂µϕ(x) transforms as a scalar!

4.1.6 Invariant Action

This is a central piece, but with all the machinery we have developed it is almost trivial.
Now our work pays off.

Let f(x) be some (composite) scalar function

δf = xρδΛρ
σ∂σf, (4.69)

examples are

f = ϕ2 or f = ∂µϕ∂µϕ. (4.70)

It follows that

S =

∫
d4x f(x) is invariant, i.e. δS = 0. (4.71)

Proof:

δS =

∫
d4x f(x)

=

∫
d4xxρδΛρ

σ∂σf

=

∫
d4x ∂σ(x

ρδΛρ
σ∂σf) −

∫
d4x δρσδΛρ

σ∂σf

= 0 (4.72)

The first integral is zero because there are no boundary contributions. Total derivatives
in L will always be neglected, i.e. always

∫
d4x ∂µA = 0.

The second integral is zero because of the antisymmetry of Λρσ:

δρσδΛρ
σ = ηρσδΛρσ = 0. (4.73)
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Examples

It is now very easy to construct quantum field theories!
Simply write down actions S that are Lorentz invariant.

We will consider actions of the form

S =

∫
d4x

∑

k

Lk(x), (4.74)

where Lk is a scalar field.
Here are some examples:

• −L = ∂µϕ∗∂µϕ+m2ϕ∗ϕ
This is a free charged scalar field, it describes particles with mass m like e.g.
pions π± with interactions neglected.

• −L = 1
4F

µνFµν , Fµν = ∂µAν − ∂νAµ
F is the electromagnetic field. This describes free photons.

• −L = (∂µ + ieAµ)ϕ∗(∂µ − ieAµ)φ+ 1
4F

µνFµν
This describes a charged scalar field interacting with photons and is called scalar
QED.
(We need one more concept to do QED, we have to account for the spin of the
electrons.)

The minus in front of the L’s is a result of our (− + ++) metric convention.

4.1.7 Functional Integral, Correlation Functions

Measure

∫
Dϕ(x) is invariant. (4.75)

To prove this, we use the equivalence of active and passive transformations,

ϕ′(x) = ϕ(Λ−1x). (4.76)

For vectors we have
∫

DAµ =

∫
DA′µ · Jacobian (4.77)

But the Jacobian is detΛ = 1.
Comment: Is it always possible to find an invariant measure?

There is a possible conflict with regularization, i.e. with taking the continuum limit.
E.g. lattice regularization is not Lorentz invariant.
The answer to that question is that in all experience physicists have so far, lattice QFTs
do work. Without any proofs we assume that

∫
Dϕ is invariant.
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Partition Function

Z =

∫
DϕeiS is invariant if

∫
Dϕ and S are invariant. (4.78)

Correlation Function

〈ϕ(x)|ϕ(x′)〉 = Z−1

∫
Dϕϕ(x)ϕ(x′)eiS transforms as ϕ(x)ϕ(x′). (4.79)

This is a covariant construction. This makes it easy to construct an invariant S-matrix.
Thus e.g. scattering cross sections are Lorentz invariant.

Summary

Explicit Lorentz covariance is an important advantage of the functional integral formula-
tion! This is not so for operators! Recall that H is not invariant, it is a three-dimensional
object. S is a four-dimensional object. We will come back later to the question how
operator-valued fields transform.

Before we can look at some theories and calculate their consequences, we need one
more theoretical concept to account for spin: spinors

4.2 Dirac Spinors, Weyl Spinors

4.2.1 Spinor Representations of the Lorentz Group

Electrons have half-integer spin. We first look at the rotation group SO(3), which is a
subgroup of the Lorentz group. For nonrelativistic electrons this subgroup is all that
matters.

We look at a two-dimensional representation of the rotation group:

χ =

(
χ1(x)
χ2(x)

)
=

(
χ1

χ2

)
. (4.80)

We omit the x-dependence since we are only interested in the group structure.
The rotations subgroup SO(3) is given by

δχ = iεzTzχ+ δ′χ, z = 1, 2, 3,

δ′χ(x) = xρδΛρ
σ∂σχ(x). (4.81)

We will omit δ′ from now on. Only for simplification of writing we set

δnew = δ − δ′. (4.82)

The three matrices Tz are given by the Pauli matrices:

Tz =
1

2
τz, z = 1, 2, 3. (4.83)
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Comment: The χ(x) are Grassmann variables. But this is not relevant for sym-
metry transformations as long as . . . . Fields for relativistic electrons: needs field in
representation of Lorentz group!

Now we ask the question for relativistic electrons:

• What are the spinor representations of the full Lorentz group, i.e. what are Tz for
z = 1, . . . , 6?

• Are there two-dimensional representations, i.e. are there six 2 × 2 matrices that
obey

[Tx, Ty] = ifxyzTz? (4.84)

These questions belong to the mathematical field of representation theory. We do
not attempt to find the representations ourselves. Dirac, Pauli and Weyl did that for
us. We only give the representations and verify that they really are representations of
the Lorentz group.

4.2.2 Dirac Spinors

By Dirac spinors we mean the four-dimensional representation

ψ =




ψ0

ψ1

ψ2

ψ3


 , (4.85)

with generators

iεzTz = − i

4
εµ̂ν̂σ

µ̂ν̂ . (4.86)

Note that there are still six generators σ, but they are now labeled by µ̂ν̂ instead of z,
as T used to be. It’s six generators because σ and ε are both antisymmetric,

σµ̂ν̂ = −σν̂µ̂, εµ̂ν̂ = −εν̂µ̂. (4.87)

We put the hats on µ̂ and ν̂ to avoid confusion: they are fixed 4×4 matrices and Lorentz
transformations do not act on them as they do on fields. Once again: e.g. σ13 is itself
a 4 × 4 matrix, µ̂ν̂ = 13 is just a convenient label for this matrix, we could also have
labeled it by z = 5.

The matrices σµ̂ν̂ are obtained as the commutators of yet other matrices,

σµ̂ν̂ =
i

2

[
γµ̂, γν̂

]
. (4.88)
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The γ-matrices are called Dirac matrices, they are complex 4×4 matrices and there
are four of them:

γk =

(
0 −iτk
iτk 0

)
, k = 1, 2, 3 and γ0 =

(
0 −i1

−i1 0

)
, (4.89)

where the τk, k = 1, 2, 3 are the Pauli matrices. They are a generalization of the Pauli
matrices.

In the following, we will omit the hat for γµ, but remember that Lorentz transforma-
tions act only on fields, whereas the matrices γµ are fixed.

If you compute the σ-matrices (exercise!), you will find that they are of the form

σµν =

(
σµν+ 0
0 σµν−

)
where the σµν± are 2 × 2 matrices. (4.90)

The ij-components are rotations,

σij+ = σij− = −εijkτk, i, j, k ∈ {1, 2, 3}. (4.91)

E.g. for a rotation around the z-axis we have

ε3T3 ≡ −1

4

(
ε12σ

12 + ε21σ
21
)
, (ε12 = −ε21 ≡ ε3)

= −1

2
ε3σ

12 = −1

2
ε3(−ε123τ3) = ε3

τ3
2
. (4.92)

It follows that if we have
(
ψ1

ψ2

)
= ψL,

(
ψ3

ψ4

)
= ψR, ψ =

(
ψL
ψR

)
, (4.93)

then ψL and ψR transform as 2-component spinors with respect to rotations.
The σok-components are boosts,

σ0k
+ = −σ0k

− = iτk. (4.94)

The boost generators are not hermitian.
Commutation relations:

T1 = −1

2
σ23, T2 = −1

2
σ31, T3 = −1

2
σ12,

T4 = −1

2
σ01, T5 = −1

2
σ02, T6 = −1

2
σ03. (4.95)

[σµν , σρτ ] = 2i (ηνρσµτ − ηµρσντ − ηντσµρ + ηµτσνρ) (4.96)

These are the commutation relations for the Lorentz algebra!
ψ ≡ four dimensional reducible representation of the Lorentz group.

107



4 Relativistic Quantum Fields

4.2.3 Weyl Spinors

As we have seen before, the matrices σµν are block-diagonal, which means that they
do not mix all components of a 4-spinor Ψ into each other, but only the first two and
the last two. Mathematically speaking, there are two invariant subspaces, so the Dirac
representation is called reducible. This is why we introduce now the Weyl representation,
which will be a two-dimensional irreducible representation (irrep). We define

ΨL =




Ψ1

Ψ2

0
0


 , ΨR =




0
0

Ψ3

Ψ4


 . (4.97)

From now on, we will surpress the 0’s in the Weyl spinors and just write

ΨL =

(
Ψ1

Ψ2

)
, ΨR =

(
Ψ3

Ψ4

)
. (4.98)

We will later usw Weyl spinors to describe neutrinos. For electrons we will need Dirac
Spinors.

Projection Matrix

Now we introduce a matrix γ5, such that we can make a projection from the Dirac to
the Weyl representation by

ΨL =
1

2
(1 + γ5)Ψ,

ΨR =
1

2
(1 − γ5)Ψ. (4.99)

This is obviously fulfilled by

γ5 =

(
1 0
0 −1

)
, (4.100)

where the 1 represents a 2 × 2-unit-matrix. One can check that

[γ5, σµν ] = 0,
(
γ5
)2

= 1. (4.101)

However, we want to treat the matrix γ5 in a more general way and express it in terms
of the other γ-matrices, so that we know it independently of the representation. First
we show that for the relations (4.101) to hold, it is sufficient that

{
γµ, γ5

}
= 0. (4.102)
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4.2 Dirac Spinors, Weyl Spinors

Proof:

γ5σµν =
i

2
γ5(γµγν − γνγµ) = − i

2
(γµγ5γν − γνγ5γµ)

=
i

2
(γµγν − γνγµ)γ5 = σµνγ5. (4.103)

One can check as an exercise that this relation is indeed fulfilled when we define

γ5 = −iγ0γ1γ2γ3 =

(
1 0
0 −1

)
. (4.104)

Now one can easily check that

1 + γ5

2
=

(
1 0
0 0

)
,

1 − γ5

2
=

(
0 0
0 1

)
. (4.105)

Please also check that

γ5ΨL = ΨL, γ5ΨR = −ΨR (4.106)

Parity Transformation

The parity transformation is defined by

Ψ(x) → γ0Ψ(Px), Px = (x0,−~x). (4.107)

So how transform the individual Weyl spinors? We observe that

γ0

(
ΨL

ΨR

)
= −i

(
ΨR

ΨL

)
. (4.108)

So we note that

(Ψ′)L = −iΨR, (Ψ′)R = −iΨL, (4.109)

i. e. parity exchanges left and right components. This is indeed one of the reasons
why we will need a left-handed and a right-handed Weyl spinor to describe electrons.
Neutrinos are described only by a left-handed Weyl spinor, so obviously they violate
parity!

4.2.4 Dirac Matrices

Let’s look in some more detail at the Dirac matrices we have used so far. Their defining
property is given by

{γµ, γν} = 2ηµν . (4.110)

This is known as the Clifford algebra. For this relations one can derive all the commutator
relations for the σµν and γ5! For instance one can obviously see that (γ i)2 = 1, i =
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1, 2, 3 and (γ0)2 = −1. This is quite useful, since different books will use different
representations of the Clifford algebra (however, also take care for the signature of the
metric in different books!). We can go from one representation to another using a
similarity transformation

γµ → γ′µ = AγµA−1. (4.111)

We can easily check that such a transformation does not change the anticommutator
relations:

{
γ′µ, γ′ν

}
= A {γµ, γν}A−1 = 2AηµνA−1 = ηµν (4.112)

4.3 Free Relativistic Fermions

4.3.1 Invariant Action

Now we want to use the spinor representation discussed in the previous section to write
down Lorentz invariant actions for fermions. In fact, it is possible to write down a kinetic
term with only one derivative:

S =

∫
d4xL, L = −iΨ̄γµ∂µΨ. (4.113)

Here Ψ(x) and Ψ̄(x) are independent Grassmann variables. As usual, Ψ denotes a column

vector, i. e. Ψ =




Ψ1

Ψ2

Ψ3

Ψ4


, and Ψ̄ is a line vector, i. e. Ψ̄ = ( Ψ̄1, Ψ̄2, Ψ̄3, Ψ̄4 ). This

is much simpler that the kinetic term for fermions, where we must use two derivatives
in the kinetic term. Under a Lorentz transformation, Ψ and Ψ̄ transform as

δΨ = − i

4
εµνσ

µνΨ,

δΨ̄ =
i

4
εµνΨ̄σ

µν . (4.114)

One can introduce a complex structure in the Grassmann algebra by

Ψ̄ = Ψ†γ0. (4.115)

This is indeed the defining relation for Ψ∗ (since for any matrix A, A† = A∗T )! You can
also check that accordingly,

δΨ̄ = (δΨ)†γ0. (4.116)

Having defined Ψ∗, one could define real and imaginary parts ΨRe = 1
2(Ψ + Ψ∗) and

ΨIm = − i
2(Ψ − Ψ∗) and use them as independent variables.
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4.3.2 Transformation of Spinor Bilinears

Up to know, we can only write down a kinetic term for our Lagrangian. Now we want
to consider more general bilinear forms of spinors and check their properties under
Lorentz transformations. Then we can write down more general Lagrangians. We will
only consider infinitesimal Lorentz transformations here, since we can build all actual
Lorentz transformations from infinitesimal ones. The first relation we proof is that

δ(Ψ̄Ψ) = 0. (4.117)

Indeed,

δ(Ψ̄Ψ) = δΨ̄Ψ + Ψ̄δΨ =
i

4

(
Ψ̄σµνΨ − Ψ̄σµνΨ

)
= 0. (4.118)

This means that Ψ̄Ψ transforms as a scalar under Lorentz transformations. Next we will
show that

δ(Ψ̄γµΨ) = δΛµν(Ψ̄γ
νΨ) = εµνΨ̄γ

νΨ, (4.119)

i. e. it transforms as a vector under Lorentz transformations. This can be seen in three
steps. First we note that

δ(Ψ̄γρΨ) = δΨ̄γρΨ + Ψ̄γρδΨ =
i

4
εµν(Ψ̄σ

µνγρΨ − Ψ̄γρσµνΨ) =
i

4
εµνΨ̄ [σµν , γρ] Ψ.

(4.120)

Second, we see

γµγνγρ = γµ {γν , γρ} − γµγργν = 2ηνργµ − γµγργν . (4.121)

Using this, we find

[σµν , γρ] =
i

2
(γµγνγρ − γνγµγρ − γργµγν + γργνγµ)

=
i

2
(2ηνργµ − γµγργν − 2ηµργν + γνγργµ − 2ηµργν

+ γµγργν + 2ηνργµ − γνγργµ) = 2i (ηνργµ − ηµργν) (4.122)

Since we also know the transformation properties of ∂ρ, we can easily check that Ψ̄γρ∂ρΨ
transforms as a scalar:

δ(Ψ̄γρ∂ρΨ) = ερνΨ̄γ
ν∂ρΨ + ερ

νΨ̄γρ∂νΨ

= ερνΨ̄γ
ν∂ρΨ + ενρΨ̄γ

ν∂ρΨ = 0. (4.123)

Now that we have constructed a mighty formalism to describe fermions, the only thing
we need to do from now on is to construct invariant Lagrange densities L appropriate
for the given system.
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4.3.3 Dirac Spinors with Mass

Dirac Equation

We would now like to look at a system of free electrons. Such a system is described by
the the Lagrangian

−L = iΨ̄γµ∂µΨ + imΨ̄Ψ (4.124)

The minus sign comes from our convention of the metric. The functional variation of
the associated action S with regard to Ψ̄ leads to the famous Dirac equation

δS

δΨ̄
= 0 ⇒ (γµ∂µ +m) Ψ = 0. (4.125)

This equation is of course relativistic covariant, because (4.138) is. Due to the fact that
(4.125) is the inverse to the propagator P of the particle,

(γµ∂µ +m)P = 1 (4.126)

its solutions (eigenvectors with 0 eigenvalues) lead directly to the poles of P, which of
course give us the needed dispersion relations!

Energy - Momentum Relation

To get to the energy momentum relation for a relativistic particle, we square the Dirac
equation

γν∂νγ
µ∂µΨ = m2Ψ. (4.127)

To evaluate this ansatz, we make use of the anticommutator relation for the γ matrices

1

2
{γν , γµ}∂ν∂µΨ = ηνµ∂ν∂µΨ = ∂µ∂µΨ = m2Ψ (4.128)

Now the last equation is exactly the Klein-Gordon equation (∂µ∂µ −m2)Ψ = 0, so we
see that solutions for (4.125) also solve this equation.

Plain waves of the form Ψ = Ψ0e
ipµxµ = Ψ0e

−i(Et−px) are the easiest solutions, they
lead to

(
E2 − p2 −m2

)
Ψ = 0 =⇒ E2 = p2 +m2. (4.129)

So E = ±
√

p2 +m2 are both solutions, but since we are handling with free particles,
what does the solution with the negative energy describe? To answer this question, lets
exploit the . . .
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Hamilton Formulation

We just multiply (4.125) with −iγ0

−iγ0γµ∂µΨ = −i
(
γ0
)2
∂0Ψ − iγ0γk∂kΨ = iγ0mΨ (4.130)

and introduce

αk = −γ0γk = γkγ0 β = iγ0 =

(
0 1
1 0

)
(4.131)

which lead to

iΨ̇ = −iαk∂kΨ +mβΨ (4.132)

In the momentum basis, we get a kind of Schrödinger equation

iΨ̇ = HΨ with H = αkpk +mβ (4.133)

Let’s switch to the rest frame of the particle (p = 0). For the Hamiltonian we get

H = m

(
0 1
1 0

)
(4.134)

This matrix mixes the Weyl spinors ΨL and ΨR

mβ

(
ΨL

ΨR

)
= m

(
ΨR

ΨL

)
(4.135)

We can verify that H has 2 eigenvectors with positive (E = +m), and 2 with negative
energy (E = −m). So even in the rest system we have negative energy states!

Interpretation of Dirac Equation, Positrons

We construct linear combinations of ΨL and ΨR, which are mass eigenstates

Ψ± =
1√
2

(ΨL ± ΨR) and iΨ̇± = ±mΨ± (4.136)

By conjugating the equation for Ψ−

−iΨ̇∗
− = −mΨ∗

− ⇒ iΨ̇∗
− = mΨ∗

− (4.137)

we see that Ψ∗
− is a mass eigenstate with positive eigenvalue E = +m. This field can

be interpreted as a new particle field, called the positron field. The positron is the
antiparticle to the electron. Essentially the consequence of Lorentz symmetry is the
existence of antiparticles! We will see that Ψ∗

− has electric charge +|e|, while Ψ+ has
charge −|e|!
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Electrons and Positrons in the Electromagnetic Field

We want to see, how electrons and positrons act in the electromagnetic field, that means
why they have opposite charges. The electromagnetic field is given by Aµ = (−φ,A),
and the covariant Lagrangian by

−L = iΨ̄γµ (∂µ − ieAµ) Ψ + imΨ̄Ψ. (4.138)

We use here conventions where e is negative for electrons and positive for positrons.
This leads via least action principle to the following modifications of the Dirac equation

∂tΨ −→ (∂0 + ieφ) Ψ,

∂kΨ −→ (∂k − ieAk)Ψ (4.139)

This gives us the equation of motion

iΨ̇ =

(
αk (pk − eAk) + eφ+

(
0 m
m 0

))
Ψ (4.140)

with

αk
(

ΨL

ΨR

)
=

(
−τk 0
0 τk

)(
ΨL

ΨR

)
=

(
−τkΨL

τkΨR

)
(4.141)

The action of αk on the linear combinations (4.136) is as follows

αkΨ+ = −τkΨ−,

αkΨ− = −τkΨ+ (4.142)

Now we can insert Ψ+,Ψ− in to (4.140), and we get

iΨ̇+ = (m+ eφ)Ψ+ + i(∂k − ieAk)τkΨ−

iΨ̇− = (−m+ eφ)Ψ− + i(∂k − ieAk)τkΨ+ (4.143)

We have to complex conjugate (4.143) for the same reason as in (4.137)

iΨ̇∗
− = (m− eφ)Ψ∗

− + i(∂k + ieAk)τ
∗
kΨ∗

+ (4.144)

Now we can see, that because of the need of conjugation, the positrons have a positive
charge +e. This is why the positrons are the antiparticles of the electrons.

Comments

So what have we learnt up to now? Relativistic covariance leads directly to the existence
of antiparticles. In the case of charged fermions, there is always an antiparticle with the
opposite charge (e−, e+ or µ−, µ+). But what is about the neutrinos. They are neutral,
but under charge conjugation, the righthanded neutrino turns into a lefthanded one,
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and vice versa. But the weak force breaks this symmetry, because it only couples to
lefthanded neutrinos. Thus we cannot prove this existence righthanded ones. There is a
possible solution, namely the Majorana representation, in which the particles are iden-
tical to the antiparticles, but we don’t know which representation (Dirac or Majorana)
is realized in nature. In recent research one searches for Majorana neutrinos in the so
called double β decay. In this experiment one searches for double neutron decays of the
following kind

2n −→ 2p+ + 2e− (4.145)

because one neutron decays like

n −→ p+ + e− + ν̄ (4.146)

or

n+ ν −→ p+ + e−. (4.147)

The combination of both processes leads to (4.145) if and only if the neutrino is a
Majorana particle!

In the case of charged bosons antiparticles also exist, but not always. For example
the gauge bosons of the weak force, W±, or the pions π±. There also exists Majorana
bosons like the photon γ, neutral pion π0 or the neutral weak gauge boson Z0.

Nonrelativistic approximation

We want to make contact between the Dirac equation (4.125) and nonrelativistic equa-
tions, which also describe the spin, like the Pauli equation. For this, we exploit the
squared Dirac equation

γν (∂ν − ieAν) γ
µ (∂µ − ieAµ) Ψ = m2Ψ. (4.148)

Using the identity

γνγµ =
1

2
{γν , γµ} +

1

2
[γν , γµ] = ηνµ − iσνµ (4.149)

we can transform (4.148) to

{(∂µ − ieAµ) (∂µ − ieAµ) −
e

2
σµνFµν −m2}Ψ = 0 (4.150)

where

Fµν = ∂µAν − ∂νAµ (4.151)
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Now what is 1
2σ

µνFµν . We use the fact that Fµν is antisymmetric, and thus has vanishing
diagonal elements. We then get

1

2
σµνFµν =

1

2
σklFkl + σ0kF0k

=
1

2

(
−εklmτ̂mFkl

)
+ iτ̂kF0kγ

5

= −Bkτ̂k − iEkτ̂kγ
5 (4.152)

with

τ̂k =

(
τm 0
0 τm

)
,

1

2
εklmFkl = Bm , F0k = −Ek (4.153)

We will do the following calculations in the basis of mass eigenstates ψ± which we have
already introduced with equation (4.136). Remind yourself of the relation to the helicity
basis

ψ =

(
ψL
ψR

)
=

1√
2

(
ψ+ + ψ−
ψ+ − ψ−

)
. (4.154)

If we let γ5 act on ψ from the left

γ5ψ =

(
ψL
−ψR

)
=

1√
2

(
ψ+ + ψ−
−ψ+ + ψ−

)
. (4.155)

we notice that γ5 maps ψ+ on ψ− and vice versa

γ5ψ± = ψ∓. (4.156)

Some books use the basis of mass eigenstates. In these books γ5 has a different form than what we use. If one
uses

ψ =

„

ψ+

ψ−

«

(4.157)

one also has to use

γ5 =

„

0 1
1 0

«

(4.158)

to suffice equation (4.156). But for us ψ will always be in the helicity basis and γ5 will continue to be

γ5 =

„

1 0
0 −1

«

. (4.159)

If we use the mass basis we will explicitly write ψ+ and ψ−.

The effect of the Pauli-matrices does not change when switching to mass eigenstates.
If the 4 × 4 matrix τ̂k acts on ψ we get

τ̂k =

(
τkψL
τkψR

)
=

(
τkψ+ + τkψ−
τkψ+ − τkψ−

)
(4.160)
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and thus τ̂k acts on ψ by acting with τk on the two sub components ψL,R in helicity base
or ψ± if ψ is expressed in mass eigenstates.

In the following we will consider ψ± as two component spinors. To continue with
our non-relativistic approximation of the Dirac equation we insert equation (4.152) in
(4.150) to get

{
(∂µ − ieAµ)(∂µ − ieAµ) −m2 + eBkτk

}
ψ± = −ieEkτkψ∓ (4.161)

To simplify this equation we make the approach that there are no positrons, i.e. ψ− = 0.
This approximation is exact for zero energy. For non zero energies there is always
the possibility of fluctuations that involve positrons but for non-relativistic systems the
energy will be much less then the rest mass of the electron and therefore positrons
should be negligible. One could proof this to be a good approximation by an iterative
approach which we will skip here. Note that the approximation ψ− = 0 destroys Lorentz
invariance.

First we factor out the phase from the rest mass and write

ψ+ = e−imtχ,

∂tψ+ = −imψ+ + e−imt∂tχ,

∂2
t ψ+ = −m2ψ+ − 2ime−imt∂tχ+ e−imt∂2

t χ,

(−∂2
t −m2)ψ+ = e−imt(2im∂tχ− ∂2

t χ). (4.162)

Now, we take equation (4.161) with our no positron approximation, divide it by
2me−imt and insert equation (4.162) to get

{(∂k − ieAk)(∂k − ieAk) + (−∂2
t −m2)

−ie(∂0A0) − ieA0∂
0 − ieA0∂0 − e2A0A0 + eBkτk}ψ+ = 0 (4.163)

⇔ i∂tχ− 1

2m
∂2
t χ+

1

2m
(∂k − ieAk)(∂k − ieAk)χ

+i
e

2m
(∂tA0)χ+ eA0χ+

ie

m
A0∂tχ+

e2

2m
A2

0χ+
e

2m
Bkτkχ = 0.

We are already very close to a Schrödinger equation which is of the form i∂tχ = HNRχ
where HNR =̂ E −m. We reach our goal when we do one more non-relativistic approxi-

mation. We assume |HNR| � m and thus neglect all terms containing
∂2
t
m , A0∂t

m , ∂tA0
m or

A2
0
m . What remains is the Hamilton operator

HNR =
1

2m
(pk − eAk)(pk − eAk) − eA0 −

e

2m
Bkτk

=
1

2m
(p− eA)2 + eφ− e

m
SB (4.164)

which we already know from other lectures. The noteworthy part is not only that the
coupling to the electric field and the coupling of spin to the magnetic field automatically
drop out of the calculation but also the correct coupling constant for the spin magnetic
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moment. This factor of two just fall out of the sky in our previous lectures. Of cause we
know that the coupling constant is not exactly equal to 2. We would get these corrections
if we would include vacuum fluctuations in the Dirac equation and then proceed the same
way we did here.

We will now work a little with the Hamiltonian for non-relativistic atoms that we just
derived. This Hamiltonian is the basis of quantum mechanics of atoms.

H =
1

2m
(p − eA)2 + eφ− e

m
SB (4.165)

If only weak and constant electromagnetic fields are involved, we can neglect all higher

order terms in A. The term 1
2m (p − eA)2 then becomes p2

2m − e
2mLB. We arrive at the

well known weak field approximation of the Hamiltonian for non-relativistic atoms

H =
1

2m
p2 + eφ− e

2m
LB− e

m
SB. (4.166)

4.3.4 Dirac Propagator

We now take a look at the propagator of a Dirac spinor in an electromagnetic background
field

G(p′, p) = 〈ψ(p′)ψ̄(p)〉

= Z−1

∫
Dψψ(p′)ψ̄(p)eiS (4.167)

with

Z =

∫
DψeiS . (4.168)

The action is given by

S =

∫
d4x

{
−iψ̄γµ(∂µ − ieAµ)ψ − imψ̄ψ)

}
(4.169)

or in momentum space by

S =

∫

p
ψ̄(p)(γµpµ − im)ψ(p) − e

∫

p

∫

q
ψ̄(p)γµAµ(q)ψ(p− q) (4.170)

where ψ(x) =
∫
p e

ipµxµψ(p) and −i∂µψ becomes pµψ. Due to the double momentum
integral in the interaction the coefficient of the term quadratic in ψ is no more diagonal
in momentum space. As a consequence, the propagator is quite complicated, especially
for strong, space dependent electromagnetic fields. There is still research going on in
this area. At this point we will simplify the setting for us.

We will only consider the free propagator

G0 = i(γµpµ − im)−1δ(p− p′) = Ḡ(p)δ(p− p′). (4.171)
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In this case the action is diagonal which makes it easy to form the inverse. Using the
abbreviation /p = γµpµ we get

Ḡ(p) = i(/p− im)−1 = i
/p+ im

p2 +m2
. (4.172)

We can check this result by the explicitly calculating

/p+ im

p2 +m2
· (/p− im) =

/p2 +m2

p2 +m2
= 1. (4.173)

using

/p
2 = γµγνpµpν =

1

2
{γµ, γν}pµpν = ηµνpµpν = p2. (4.174)

The propagator has two poles at ω = p0 = ±
√
p2 +m2 = ±E(p). For the Fourier

transformation

Ḡ(t′ − t,p) =

∫
dω

2π
Ḡ(ω,p)e−iω(t′−t)

e (4.175)

we add an infinitesimal imaginary displacement E(p) → E(p) − iε, ε > 0. Then we can
integrate around the the poles and find the residua as we have done before. We stop
our calculation here and will resume with this situation later. We see already that we
will get two particles one with positive ω, the electron, and one with negative ω, the
positron. Due to Lorentz invariance we always get two solutions from the propagator.
So anti-particles for every particle automatically arise naturally in a relativistic theory.

4.4 Scalar Field Theory

4.4.1 Charged Scalar Fields

Charged scalar fields, e.g. pions π±, are described by a complex scalar field φ(x). The
Lagrangian density is given by

−L = ∂µφ∗∂µφ+ V (φ∗φ) (4.176)

with the potential V (φ∗φ) which is V (φ∗φ) = m2φ∗φ for a free field with mass m. The
action is

S =

∫

p
φ∗(ω,p)(ω2 − p2 −m2)φ(ω,p) (4.177)

and the free correlation function

G0(p
′, p) = 〈φ(p′)φ∗(p)〉

= Ḡ(p)δ(p′ − p)

= Ḡ(ω,p)δ(p′ − p)

=
i

ω2 −E2(p)
δ(p′ − p). (4.178)
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Obviously, we have two poles with energies E(p) = ±
√
m2 + p2. These two poles are

associated with the pions π+ and π−. In scalar theory particle and anti-particle arise
from the fact that the propagator has two poles. Conceptually this might be a little
harder to understand than for fermions where we got an extra field that the anti-particles
where coming from. That is why we did fermions first.

4.4.2 Feynman Propagator

The Feynman propagator is given by

G0(x− y) =

∫
d4p

(2π)4
−i

p2 +m2 − iε
eip(x−y). (4.179)

We separate the time component in p and (x− z) which leaves us with

p(x− y) = pµ(x
µ − yµ) = −ω(t′ − t) + p(x− y),

p2 +m2 = −ω2 + p2 +m2 = −ω2 +E2(p) (4.180)

and

G(x− y) =

∫
dω

2π

d3p

(2π)3
i

ω2 −E2(p) + iε
e−iω(t′−t)eip(x−y). (4.181)

We see poles at ω = ±Ẽ(p) where Ẽ(p) =
√

p2 +m2 − iε = E(p) − iε′. Using this
abbreviation we arrive at

i

ω2 − Ẽ2(p)
=

i

(ω − Ẽ(p))(ω + Ẽ(p)

=
i

2Ẽ

(
1

ω − Ẽ
− 1

ω + Ẽ

)

=
1

2E

(
i

ω −E(p) + iε′
+

i

−ω −E(p) + iε′

)
(4.182)

which has a very close analogy to Dirac fields.

Insert figures of integral paths.

G0(x− y) =

∫
d3p

(2π)3
1

2E(p)
eipx

(
e−iE(p)(t′−t)Θ(t′ − t) + e−iE(p)(t−t′)Θ(t− t′)

)
.

(4.183)
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4.4 Scalar Field Theory

4.4.3 Particles and Antiparticles

Compare the Feynman propagator with the non-relativistic propagator

G0(t
′,p′, t,p) = e−iE(p)(t′−t)Θ(t′ − t)δ(p′ − p) with E(p) =

p2

2m
. (4.184)

The differences are

(i) The relativistic energy-momentum relation

E(p) =
√

p2 +m2 = m+
p2

2m
+O

(
p4

m2

)
. (4.185)

(ii) The normalization factor 1
2E(p) in the relativistic propagator. It can be absorbed

via a rescaling of the fields:

ϕ(p) ∼ 1√
2E(p)

a(p) (4.186)

with

〈a(p′)a∗(p)〉 = 2E(p)〈ϕ(p′)ϕ∗(p)〉 (for ω > 0). (4.187)

The associated operators fulfill the standard commutation relations at equal times,

[â(p′), â†(p)] = δ(p′ − p). (4.188)

(iii) There are contributions for t′ > t and t′ < t. This corresponds to the presence of
particles and antiparticles.

〈ϕNR(t′,p′)ϕ∗
NR(t,p)〉 = e−iE(p)(t′−t)Θ(t′ − t)δ(p′ − p),

〈ϕ∗
NR(t′,p′)ϕNR(t,p)〉 = e−iE(p)(t−t′)Θ(t− t′)δ(p′ − p) (4.189)

ω > 0 : ϕ(t,p) corresponds to ϕNR(t,p),

ω < 0 : ϕ(t,p) corresponds to ϕ∗
NR(t,p). (4.190)

Only ω > 0 describes particles

ϕ+(t,p) ∼ a(t,p)√
2E(p)

, (4.191)

ω < 0 describes antiparticles

ϕ−(t,p) ∼ b†(t,−p)√
2E(p)

. (4.192)
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4 Relativistic Quantum Fields

ϕ(ω,p) =
1√

2E(p)
[a(ω,p)Θ(ω) + b∗(−ω,−p)Θ(−ω)] (4.193)

Define

ϕ(ω,p) = ϕ+(ω,p)Θ(ω) + ϕ−(ω,p)Θ(−ω). (4.194)

Then ϕ+(ω,p) will describe particles with positive energy, ϕ+(−|ω|,p) = 0.
And ϕ∗

−(ω,p) = ϕC∗(−ω,−p) will describe antiparticles with positive energy,
ϕ−(|ω|,p) = 0.
Both ϕ+(ω,p) and ϕC(ω,p) have only positive frequency parts. In coordinate
space one has

ϕ(t,x) = ϕ+(t,x) + ϕ−(t,x), (4.195)

with

ϕ+(t,x) =

∫
dω

2π

d3p

(2π)3
e−i(ωt−px) 1√

2E(p)
a(ω,p)Θ(ω),

ϕ−(t,x) =

∫
dω

2π

d3p

(2π)3
e−i(ωt−px) 1√

2E(p)
b∗(−ω,−p)Θ(−ω)

=

∫
dω̃

2π

d3p

(2π)3
ei(ω̃t−px) 1√

2E(p)
b∗(ω̃,p)Θ(ω̃). (4.196)

The relation to the operator picture is

a(t,p), a∗(t,p) ↔ â(t,p), â†(t,p),

b(t,p), b∗(t,p) ↔ b̂(t,p), b̂†(t,p). (4.197)

4.4.4 In- and Out Fields

Transition amplitudes for t′ → ∞ and t→ −∞:

(i) Incoming π+,p; outgoing π+,p′:

〈a(t′,p′)a∗(t,p)〉 =
√

4E(p′)E(p)〈ϕ+(t′,p′)ϕ∗
+(t,p)〉. (4.198)

(ii) Incoming π−,p; outgoing π+,p′:

〈b(t′,p′)b∗(t,p)〉 =
√

4E(p′)E(p)〈ϕ∗
−(t′,−p′)ϕ−(t,−p)〉. (4.199)

(iii) Incoming π+(p1), π
−(p2); outgoing π+(p3), π

−(p4):

〈a(t′,p3)b(t
′,p4)a

∗(t,p1)b
∗(t,p2)〉 =4

√
E(p1)E(p2)E(p3)E(p4)

〈ϕ+(t′,p3)ϕ
∗
−(t′,−p4)ϕ

∗
+(t,p1)ϕ−(t,−p2)〉.

(4.200)

Summary

• Particles and antiparticles are determined by the location of the poles of G0(ω,p).

• The normalization is uniquely fixed by the residua of the poles.
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5 Scattering and decay

5.1 S-Matrix and Greens-Functions

5.1.1 Scattering amplitude for relativistic charged scalar field

5.1.2 The LSZ Formalism

In 1955, the three German physicists Harry Lehmann, Kurt Symanzik and Wolfhart
Zimmermann invented the following method to compute S-matrix elements

〈p3p4|S|p1p2〉 (5.1)

for t′ → ∞ and t→ −∞.

4∏

i=1

∫
d4xie

−ixipi〈ϕ∗
−(x4)ϕ+(x3)ϕ−(x2)ϕ+(x1)〉

∣∣∣∣∣
p0i=E(pi)

∼ (5.2)

4∏

i=1

i
√
Z

p2
i +m2 − iε

〈p3p4|S|p1p2〉 (5.3)

Take successively x40 → −∞, x30 → ∞, . . . and use

1 =
∑

λ

∫
d3q

(2π)3
1

2Eλ(q)
|λq〉〈λq|, (5.4)

with |λq〉 being the eigenstates and Eλ(q) being the eigenvalues of the Hamiltonian.

〈ϕ∗
−(x4)ϕ+(x3) . . .〉 =

∑

λ

∫
d3q

(2π)3
1

2Eλ(q)

〈Ω|ϕ∗
−(x4)|λq〉

︷ ︸︸ ︷
〈ϕ∗

−(x4)|λq〉〈λq|ϕ+(x3) . . .〉 (5.5)

Use the invariance of Ω under translations, i.e.

〈Ω|ϕ∗
−(x4)|λq〉 = 〈Ω|ϕ∗

−(0)|λ0〉e−iqx
∣∣
q0=Eq(λ)

, (5.6)

and furthermore

δ3(p − q)

∫ ∞

T>

e−ip
0x0
e+iq

0x0

∣∣∣∣
q0=E(q)

e−εx
0

=
i

p0 −E(q) − iε
→ ∞. (5.7)

. . .
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5 Scattering and decay

5.2 Scattering and decay

5.2.1 Differential cross section

5.2.2 Lorentz covariant building blocks

5.2.3 Tree scattering in scalar theory

5.2.4 Generalizations

After we worked through the theory of point like interactions, we will now look at
momentum dependent interactions.

The interaction part of the vertex is

−Sint =
1

2

∫

q1,...,q4

δ(q1 + q2 − q3 − q4)λ(s)φ∗(q1)φ(−q2)φ∗(−q4)φ(q3). (5.8)

The difference to our previous calculation lies in the s dependence of λ. But s =
(q1 + q2)

2 = (q3 + q4)
2 can be expressed in terms of incoming momenta which are fixed

quantities and do not influence phase space integration. Hence we still get the simple s
dependence

dσ

dΩ
=
λ2(s)

16π2s
. (5.9)

The total scattering cross section is

σtot =
λ2(s)

4πs
. (5.10)

Scattering s+s+ → s+s+

The interaction of s+s+ → s+s+ scattering differs from the interaction of s+s− → s+s−.

Firstly, we take a look at the point like interaction of s+s+ → s+s+. The relevant
four point function is

〈φ+(t′,p3)φ+(t′,p4)φ
∗
+(t,p1)φ

∗
+(t,p2)〉. (5.11)

To first order in perturbation theory this becomes

− iλ
2
〈φ(p3)φ(p4)φ

∗(p1)φ
∗(p2)φ

∗(q3)φ
∗(q4)φ(q1)φ(q2)〉0δ(q1 + q2 − q3 − q4). (5.12)

There are four possibilities for combining p’s and q’s resulting in a scattering matrix

|M|2 = 4λ2. (5.13)

For point like interactions the cross sections for s+s+ → s+s+ and s+s− → s+s− are
the same. This symmetry is called crossing symmetry.
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5.2 Scattering and decay

For the momentum dependent vertex λ is not constant but depends on t = (q1 − q3)
2

or u = (q1 − q4)
2. We have the two diagrams and

resulting in

M ∼ λ(t) + λ(u). (5.14)

This results in

M = λ2(t) + λ2(u) + 2λ(t)λ(u). (5.15)

The last term describes the interference of two identical particles. The interference
term would have a minus sign if we had considered fermions. This comes from the
exchange of φ∗(q3) and φ∗(q4) in (5.12). The additional interference term does not occur

in s+s− → s+s− scattering which has only the one diagram and M ∼ 2λ(s).

Properties of a Momentum Dependent Vertex

The crossing symmetry can be useful to facilitate calculations. We can identify an
incoming antiparticle with momentum q with an outgoing particle with momentum −q
because s = (q1 + q2)

2 = (q1 − (−q2))2.

is the same as or .
Of cause, in reality all particles have positive energy but for mathematical purposes this
symmetry is useful.

The spacial distribution of outgoing particles depends on t and u therefore the phase
space integration of the momentum dependent scattering cross section for s+s+ → s+s+

scattering depends on λ(t) and λ(u) and dσ
dΩ depends on the angle.

The variables s, t and u are called Mandelstam variables. The relativistic kinematic
of 2 → 2 scattering can be expressed in terms of these variables. Such an interaction
has three independent four momenta, p1, p2 and p3. The fourth four momentum p4 =
p1 + p2 − p3 is a linear combination of these three. The independent four momenta
combine to several Lorentz invariant scalars

p2
1 = m2

1, p2
2 = m2

2, p2
3 = m2

3, (p1 + p2 − p3)
2 = p2

4 = m2
4, (5.16)

(p1 + p2)
2 = s , (p1 − p3)

2 = t

(p1 − p4)
2 = (p3 − p2)

2 = u

which makes the Mandelstam variables the logical choice for relativistic calculations.

Feynman Graphs

We have already seen some very simple Feynman graphs like

, or .
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5 Scattering and decay

Feynman graphs are nothing more than a simple way to remember what goes into the

calculation. Each part of a graph stands for a part of the formula. A vertex adds the

factor 1 and an internal path inserts a factor λ(p2).

To compute M one just has to

1. throw in all different graphs and

2. evaluate the resulting formula.

But be careful with relative weight and with ± for fermions. There can be “statistical
factors”. For example, we have seen that the vertex of s+s− scattering gives 2λ but
has only one Feynman diagram while s+s+ scattering has two diagrams which vertices
contribute with a factor of λ each. These “statistical factors” can be cast into relatively
simple rules or (better) can be figured out from the functional integral and perturbation
theory.

5.2.5 Point like Interaction of Non-relativistic Spinless Atoms

The only differences to our relativistic calculation are that the factors of 1
2Ej

are absent

and that |v1 − v2| = 2p
m in the rest frame. The action is

−S =

∫

x

λNR
2

(φ∗φ)2 (5.17)

and the reduced transition matrix reads in the classical approximation

M = 2λNR. (5.18)

The propagator has only one pole at i
ω−E(p) , there are no anti-particles. The differential

cross section is

dσ =
d3q

(2π)3
2πδ(2E(q) − 2E(p))(2λ)2

m

2p

⇒ dσ

dΩ
=
λ2
NR

π2

∫ ∞

0
dq q2 δ

(
q2

m
− p2

m

)

︸ ︷︷ ︸
=m

2q
δ(p−q)

m

2p
(5.19)

such that

dσ

dΩ
=
λ2
NR

4π2
m2. (5.20)

This cross section can also be computed by quantum mechanics for two particle states.
Note that λNR is not the non-relativistic limit of the relativistic scalar interaction. It is
useful to check the dimensions for the relativistic and non-relativistic interaction. The
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5.2 Scattering and decay

term
∫
x ∂µφ∂

µφ of the action gives the dimension of φ(x) and the
∫
x λφ

4 term gives the
dimension of λ. We discover

relativistic [φ(x)] =M [λ] =M 0 ⇒ [σ] =M−2 = area

non-relativistic [φ(x)] =M 3/2 [λ] =M−2 ⇒ [σ] =M−2 = area. (5.21)

These differences in dimensions are directly related to the 1
2Ej

factors. We find

φNR =
√

2Eφ (5.22)

and from λNRφ
4
NR = λφ4

λNR =
1

4E2
λ =

λ

s
. (5.23)

Knowing these relations we can write down the non-relativistic limit of the relativistic
cross section

dσ

dΩ
=

λ2

16π2s
=
λ2
NRs

16π2
≈ λ2

NR

4π2
m2 (5.24)

which proves to be the same as the non-relativistic cross section we calculated above.

5.2.6 Point like Interaction of Non-relativistic Atoms with Spin 1/2

When considering particles with spin 1/2 we have to use Grassmann fields. The inter-
action part of the action is

−Sint =
λψ
2

∫

x
(ψ†ψ)2. (5.25)

We decompose the interaction in different spin states which gives

ψ†ψ = ψ∗
↑ψ↑ + ψ∗

↓ψ↓,

(ψ†ψ)2 = 2ψ∗
↑ψ↑ψ

∗
↓ψ↓,

S̄(4) = −λψ (5.26)

and

|M|2 = λ2
ψ. (5.27)

The rest of the calculations are the same as for bosons. We arrive at the cross sections

dσ

dΩ
=
λ2
ψm

2

16π2
σtot =

λ2
ψm

2

4π
. (5.28)

These cross sections only apply for scattering of particles with opposite spin. In the
limit of point like interaction the cross section for equal particles with equal spin is zero.
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5 Scattering and decay

They cannot interact because the Pauli principle forbids them to be at the same place.
The interaction term would be proportional to ψ↑ψ↑ψ∗

↑ψ
∗
↑ .

Bosons have a relative factor of 2 in the amplitude compared to fermions. When we
apply perturbation theory, the term 〈ψ↓ψ↑ψ∗

↓ψ
∗
↑〉 in the interaction part of the action

becomes

−iλ
2
〈ψ↓ψ↑ψ

∗
↓ψ

∗
↑(ψ

†ψ)2〉 = −iλ〈ψ↓ψ↑ψ
∗
↓ψ

∗
↑ψ

∗
↑ψ↑ψ

∗
↓ψ↓〉0. (5.29)

With the relations

〈ψ↓ψ
∗
↓〉0 ∼ G0 , 〈ψ↑ψ

∗
↑〉0 ∼ G0, 〈ψ↓ψ

∗
↑〉0 = 0. (5.30)

only one combination remains. So the definition of the vertex by S̄(4) takes care of these
combinatoric factors.

5.2.7 Relativistic Dirac Particles: Normalization and On Shell Condition

Basis States

The interaction term of the action is

−Sint =

∫

x

λF
2

(ψ̄ψ)2 =

∫

x

λf
2
ψ̄αψαψ̄βψβ . (5.31)

The lesson that we have learned from non-relativistic atoms is that scattering depends
on quantum numbers of incoming and outgoing particles. Our first guesses for good
basis states are

• helicity eigenstates

ψ = ψL + ψR,

ψL =
1 + γ5

2
ψ, ψR =

1 − γ5

2
ψ, (5.32)

• mass eigenstates in the rest frame

ψ = ψ+ + ψ−

ψ+ =
1 + iγ0

2
ψ, ψ− =

1 − iγ0

2
ψ, (5.33)

In the rest frame the fields ψ± are eigenstates of the mass operator M = miγ0 with
eigenvalues ±m. ψ+ has an eigenvalue with positive energy and describes the elec-
tron field, ψ− describes the complex conjugate of the positron field. Unfortunately,
these states are only eigenstates in their rest frame.

In principle our choice of basis is free but it is crucial for calculation where we need
to be able to diagonalize the propagator. The bases we know up to now are useful for
calculations in both limiting cases: helicity eigenstates for highly relativistic particles,
mass eigenstates for non-relativistic particles. But we do not have a basis of eigenstates
for the whole energy range.
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5.2 Scattering and decay

Bilinears expressed in basic states

For the calculation of bilenears, we first remind the definition of the complex conjugate
of Grassmann fields ψ̄:

ψ̄ = ψ†γ0. (5.34)

This we will need several times down below.

• helicity eigenstates

In the last small subsection we already mentioned the projection operator of ψL
and ψR. But what are the projection operators for ψ̄L and ψ̄R? Let’s do it step
by step:

ψ̄L = ψ†
Lγ

0 =

(
1 + γ5

2
ψ

)†
γ0 = ψ†

(
1 + γ5

2

)
γ0. (5.35)

As the γ-matrices anticommute, we can go on and write

ψ̄L = ψ†γ01 − γ5

2
= ψ̄

1− γ5

2
(5.36)

This is now a direct relation between ψ̄L and ψ̄, just as we wanted. An analogue
calculation for ψ̄R yields

ψ̄R = ψ̄

(
1 + γ5

2

)
(5.37)

Now let’s recall the Lagrangian for free Dirac particles with mass m

−L = iψ̄γµ∂µψ + imψ̄ψ (5.38)

and have a look at the very simple bilinear ψ̄ψ. How does it look like when we use
the decomposition into helicity eigenstates?

ψ̄ψ = (ψ̄L + ψ̄R)(ψL + ψR)

= ψ̄LψR + ψ̄RψL (5.39)

The last equation holds, because ψ̄LψL = ψ̄RψR = 0. Proof (for ψ̄LψL):

ψ̄LψL = ψ̄

(
1 − γ5

2

)(
1 + γ5

2

)
ψ

=
1

4
ψ̄
(
1− (γ5)2

)
ψ = 0 (5.40)

because (γ5)2 = 1.

Well, what does equation (5.39) tell us? Obviously, that the mass term is not
diagonal in the helicity eigenstates, but mixes them. In particular, if we consider
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5 Scattering and decay

neutrinos, this has consequences: We know, that neutrinos are particles which
only couple through weak interaction, and the weak interaction only couples to left-
handed particles (fields ψL) and right-handed antiparticles (ψ̄R). Now there are two
possibilities: Either there are right-handed neutrinos and left-handed antineutrinos
that we don’t see, or they aren’t there at all. But if the last case is true, meaning
ψR = ψ̄L = 0, we will never have a mass-term.

We can also argue another way: If neutrinos have a mass, they travel slower than
light, and thus we will always find a system of inertia that travels with higher
speed than the neutrinos. But in this case, the direction of the relative motion
between neutrinos and different systems of inertia will change, and thus helicity
will also change. So we essentially need fields ψR and ψ̄L to describe neutrinos
(and anti-neutrinos) in those systems of inertia.

However, what about the kinetic term of the Lagrangian? Here the situation as
different from the mass term. If we consider ψ̄γµψ, we observe that

ψ̄γµψ = (ψ̄L + ψ̄R)γµ(ψL + ψR)

= ψ̄Lγ
µψL + ψ̄Rγ

µψL + ψ̄Lγ
µψR + ψ̄Rγ

µψR

= ψ̄Lγ
µψL + ψ̄Rγ

µψR (5.41)

The mixed terms vanish, because of

ψ̄Rγ
µψL = ψ̄

(
1 + γ5

2

)
γµ
(

1 + γ5

2

)
ψ

= ψ̄γµ
(

1 − γ5

2

)(
1 + γ5

2

)
ψ = 0. (5.42)

So in contrast to the mass term, the kinetic term is diagonal in helicity eigenstates
(the ∂µ in the Lagrangian doesn’t change the fact, that ψ̄Rγ

µψL and ψ̄Lγ
µψR

vanish).

• mass eigenstates
Let us now have a look at the same bilinears in another basis system, the mass
eigenstates. First we again derive the relation between ψ̄+ and ψ̄:

ψ̄+ = ψ†
+γ

0 =

(
1 + iγ0

2
ψ

)†
γ0

= ψ†
(

1 − i(γ0)†

2

)
γ0 = ψ̄

(
1 + iγ0

2

)
(5.43)

where we used (γ0)† = −γ0 in the last equation. Similarly, one can derive

ψ̄− = ψ̄

(
1 − iγ0

2

)
. (5.44)

130



5.2 Scattering and decay

Having this, we can start to compute bilinears. We begin again with the mass
term:

ψ̄ψ = (ψ̄+ + ψ̄−)(ψ+ + ψ−) = ψ̄+ψ̄+ + ψ̄−ψ̄− (5.45)

This is true, because ψ̄−ψ+ = ψ̄+ψ− = 0. Let’s make a short proof for this:

ψ̄−ψ+ = ψ̄

(
1 − iγ0

2

)(
1 + iγ0

2

)
ψ

=
1

4
ψ̄
(
1− iγ0 + iγ0 + (γ0)

2
)
ψ = 0, (5.46)

because (γ0)2 = −1.

The result in (5.45) tells us, that in the basis of mass eigenstates the mass term
is diagonal. But this time, the kinetic isn’t diagonal. A little bit longer, but in
principle easy calculation shows

ψ̄γµpµψ = (ψ̄+ + ψ̄−)γµ(i∂µ)(ψ+ + ψ−)

= ψ̄+γ
0p0ψ+ + ψ̄−γ

0p0ψ− + ψ̄+γ
ipiψ− + ψ̄−γ

ipiψ+. (5.47)

This is only diagonal when we work in the rest frame with momentum p = 0.

What do all these calculations tell us? Well, to solve a problem in the path-integral
formulation, it is convenient to have the free part of the action diagonal in the fields.
But neither the helicity nor the mass eigenstates are diagonal, they always contain both
diagonal and off-diagonal terms. Only in limiting cases they are convenient basis states:
helicity eigenstates for ultrarelativistic and mass eigenstates for non relativistic problems.

Let’s now come to the solution for this problem: We will show now that the eigenstates
to the operator /p = pµγ

µ lead to diagonal expressions for mass and kinetic term:

• /p-eigenstates

Let us remind the simple relation /p2 = p21 = (−ω2 + p2)1. This already tells us,
that /p2 has just one eigenvalue, namely p2. From this it follows that the operator

/p has two different eigenvalues, ±
√
p2 = ±

√
−ω2 + p2.

We define now the eigenstate corresponding to the ”+”-solution as ψ> and the
eigenstate corresponding to ”−”-solution as ψ<, so we have

/pψ> = +
√
p2ψ> , /pψ< = −

√
p2ψ<. (5.48)

Depending on the choice of the four components of p, the p2 = −ω2 + p2 can be
either positive or negative. So if we replace

√
p2 by

√
|p2| for p2 > 0 and

√
p2 by

i
√

|p2|, we observe the following behaviour of /p-eigenstates:

/pψ> = +
√
|p2|ψ> for p2 ≥ 0

/pψ> = +i
√
|p2|ψ> for p2 < 0

/pψ< = −
√
|p2|ψ< for p2 ≥ 0

/pψ< = −i
√
|p2|ψ< for p2 < 0. (5.49)
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5 Scattering and decay

Now we define a new operator:

A(p) = (−i)Θ(−p2) /p√
|p2|

(5.50)

This operator acts on the ψ> and ψ< states as follows:

A(p)ψ> = +ψ> , A(p)ψ< = −ψ< (5.51)

Obviously 1 ±A(p) are projectors, as the squared of A(p) is the unit matrix:

A(p)2 = (−1)Θ(−p2) p
21

|p2| = 1. (5.52)

For the projection of an arbitrary state ψ onto the two /p-eigenstates, we employ

ψ = ψ> + ψ<,

ψ> =
1

2
(1 +A(p))ψ> , ψ< =

1

2
(1 −A(p))ψ< (5.53)

The next step is to define the complex conjugate Grassmann fields ψ̄> and ψ̄<:

ψ̄> = ψ̄

(
1

2
(1 +A(p))

)
, ψ< = ψ̄

(
1

2
(1 −A(p))

)
(5.54)

Now we can return to the calculation of bilinears:

Let us start with the mass term. It is

ψ̄ψ = ψ̄>ψ> + ψ̄>ψ< + ψ̄<ψ> + ψ̄<ψ<

= ψ̄>ψ> + ψ̄<ψ<, (5.55)

as the mixed terms are zero because of

ψ̄<ψ> = ψ̄

(
1

2
(1 −A(p))

)
ψ> = 0. (5.56)

We used here the definition of ψ̄< and the fact, that A(p)ψ> = ψ>.

So far, so good. But this time, also the kinetic term is diagonal:

ψ̄pµγ
µψ = ψ̄/pψ

= iΘ(−p2)
√

|p2|ψ̄(ψ> − ψ<)

= iΘ(−p2)
√

|p2|(ψ̄>ψ> − ψ̄<ψ<)

= ψ̄>/pψ> + ψ̄</pψ< (5.57)

So finally we reached our aim to find a basis in which both terms of the Lagrangian
are block-diagonal, and thus is the free action S.
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5.2 Scattering and decay

Residua at poles of the Dirac-propagator

Let us recall the Dirac-propagator:

G0(p) = Ḡ(p)δ(p − p′),

Ḡ(p) = i
/p+ im

p2 +m2
. (5.58)

Here in, m is the mass of the particle, and thus of course real and positive.
Obviously, the propagator has poles at

p2 = −m2. (5.59)

This equation has no solutions for p2 > 0. For p2 < 0 we get

√
|p2| = m. (5.60)

This may now look as we have just one pole, in contrast to what we had in previous
chapters. But this is not true: Remind that

√
|p2| =

√
| − ω2 + p2| = m still has two

solutions, namely ω =
√

p2 +m2 and ω = −
√

p2 +m2

Anyhow, since we know that p2 < 0, we can compute the action of /p on ψ> and ψ<,
if we combine equations (5.49) and (5.60):

/pψ> = imψ> , /pψ< = −imψ<, (5.61)

and thus

(/p+ im)ψ> = 2imψ>,

(/p+ im)ψ< = 0. (5.62)

But from this it follows directly, that

limp2→−m2Ḡ(p) <∞ (5.63)

if (and only if!) we consider the propagation of the ψ<-field. So ψ< does not describe a
particle! And this makes really sense: The Dirac Spinor has four complex components,
and thus eight real degrees of freedom. But we can only have four different physical
situations: The spin of the particle may be up or down, and the same is valid for the
spin of the antiparticle. When we considered mass or helicity eigenstates, the two spinors
ψL and ψR (or ψ+ and ψ−) ”lost” four degrees of freedom, because the helicity eigenstates
had two zero-entries and in the mass eigenstates we only had two independent entries.
But here, we have really eight degrees of freedom. In somehow we can understand this
as a price we have to pay for simplifying our action. For making it block-diagonal, we
needed to introduce a field ψ−, which does not correspond to a propagating particle.

Similar as we already did it for the bosons, we are now able to formulate a ”mass shell
condition” (or ”on-shell condition”) for fermions. Actually, first one would think that
the identical denominator p2 +m2 leads to an identical mass shell condition. But as we
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5 Scattering and decay

just showed, this is not restrictive enough for fermions. We need to demand p2 +m2 = 0
and that the incoming and outgoing field is ψ>. But we can also formulate this in one
equation:

/pψ = imψ. (5.64)

Or, for the complex conjugate field:

ψ̄/p = imψ̄. (5.65)

We wrote this equation down for an arbitrary field ψ, because now that we found
out the necessary condition with the help of the /p-eigenstates, we can now again forget
about them and consider general Dirac spinors.

However, knowing that a field ψ obtains the condition is not yet enough for being a
physical relevant field. A second necessary condition is the correct normalization. We
must find out which fields have a residuum equal to one at the pole, and it will be those
fields which stand for the particles (and antiparticles).

So let’s see what the residuum of the propagator of ψ> is:

Ḡ(p) = −i /p+ im

ω2 −E2(p)

↪→ Ḡ(p) =
2m

ω2 −E2(p)

=
m

E

(
1

ω −E(p)
− 1

ω +E(p)

)
(5.66)

So we have two poles, with residua m
E for ω = E and −m

E for ω = −E. This gives
us two important informations: First, the existence of two poles tells us that again we
encounter particles and antiparticles. We can ”split up” our field into a positive and
negative frequency part, each describing one particle. We could write this down in a
equation like

ψ(ω,p) = ψa(ω,p)Θ(ω) + ψb(ω,p)Θ(−ω). (5.67)

In the next step we identify the positive frequency part with a particle and the negative
frequency part with the antiparticle. For writing down the physical relevant fields of
these particles, we extract the second information of (5.66): The fields a and b∗ that

describe the particles, should be
√

E
m times the ψ-fields:

a(ω,p) =

√
E

m
ψ(ω,p) for ω ≥ 0,

b∗(−ω,−p) =

√
E

m
ψ(ω,p) for ω < 0 (5.68)
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5.3 Solutions of free Dirac equation

The propagators of the fields a, b will have a residuum = 1, so a and b are properly
normalized.

Finally we can write down the decomposition of the ψ field:

ψ(ω,p) =

√
m

E
(a(ω,p)Θ(ω) + b∗(−ω,−p)Θ(−ω)) . (5.69)

What we are of course always interested in, is not just the propagator and the reduced
matrix element M, but in the cross-section dσ and/or the decay width dΓ.

dσ = dφN Iscatter|M |2,
dΓ = dφN Idecay|M |2, (5.70)

As everything else are just intermediate results (and not measurable quantities), we have
some freedom to distribute normalization factors between the phase space dφN and the
matrix element M . We use here the same phase space factor dφN and the same initial
factor I for fermions and bosons. Comparing eqs. (4.193) a factor 1/

√
2E is absorbed

in dφN and I, whereas the remaining factor
√

2m needs to be incorporated into the
computation of M , as explained later.

For the calculation of dσ and dΓ we have then exactly the same rules as for scalars,
plus one additional rule, the on-shell condition for all incoming/outgoing fermions:

/p→ im1. (5.71)

5.3 Solutions of free Dirac equation

So far we only discussed the kinematics of the scattering process. We saw, that all
fermions have to obey the on-shell condition, which is (in this case!) absolutely identical
to the free Dirac equation:

/pψ = imψ. (5.72)

The identity of both equations in the free theory should not hide that the residuum
condition, which is dictated by the pole structure, is the more general one. In an
interacting theory, where we have to deal with wave function renormalization factors
Zψ, it would look like

Zψ/pψ = imψ

⇒ /pψ = i
m

Zψ
ψ. (5.73)

The quantity m
Zψ

is called the renormalized mass.

What we have also done is that we found out that the correct normalization factor is
m
E . But we did not yet say a word about how we introduce the spin of a particle, but
this is of course absolutely necessary, because quantum numbers like the spin specify
our incoming and outgoing states, and without them we can’t compute matrix elements.
Furthermore, since we have two Dirac spinors with four components, we have again two
many degrees of freedom, because each of the four component Dirac spinors a and b
should only describe two spin degrees of freedom.
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5 Scattering and decay

5.3.1 Basis spinors in rest frame

To find out how we have to define a and b in such a way, that they describe ”spin up”
or ”spin down”, we have a look at the

• Rest frame

In the rest frame we of course have p = 0. We can generalize the setting later by
a Lorentz boost.

As only the zero component of a (and b) are different from zero, the mass-shell
condition for fermions simplifies to

p0γ
0ψ = imψ. (5.74)

Herein, p0 is given by p0 = −ω = −E. Multiplying this equation with γ0 and using
(γ0)

2 = −1 we yield

Eψ = imγ0ψ

⇔
(
E1 −

(
0m1
m1 0

))
ψ = 0. (5.75)

Going into the basis of mass eigenstates (convenient for rest frame), and remem-
bering the equation

(
0 m1
m1 0

)
ψ± = ±mψ± (5.76)

we get

(E −m)ψ+ = 0

(E +m)ψ− = 0. (5.77)

So obviously we have ω > 0 for ψ+ - and this was also a property for the field a
(or, to be more precise: a(p) 6= 0 only for ω > 0). On the opposite site, we have
ω < 0 for ψ− and a field b̄ which was non-zero at the negative frequency part. So
we conclude:

a(p) has only ψ+ components and describes the electron (p0 > 0),

b̄(−p) has only ψ− components and describes the positron, (−p0 > 0).

Remember that the ψ+ field obeys

((
1 0
0 1

)
−
(

0 1
1 0

))
ψ+ = 0, (5.78)

because it is an eigenstate to both matrices to eigenvalue 1. From this it follows

(
ψL − ψR
ψR − ψL

)
= 0 , ψL = ψR. (5.79)
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5.3 Solutions of free Dirac equation

Explicitly we can write for the four components




(ψ+)1 − (ψ+)3
(ψ+)2 − (ψ+)4
−(ψ+)1 + (ψ+)3
−(ψ+)2 + (ψ+)4


 = 0. (5.80)

So we choose (ψ+)1 = (ψ+)3, (ψ+)2 = (ψ+)4 and thus loose two degrees of freedom
(just as we wanted!). The a field, which has only ψ+ components, must therefore
have identical entries in zero and second component, and also in first and third
component:

a(p) =




a↑
a↓
a↑
a↓


 =

1√
2m

(
a1(p)u1(p) + a2(p)u2(p)

)
. (5.81)

The a1(p) and a2(p) are scalar prefactors which specify a give field a(p) while the
u1 and u2 are fixed basis spinors. But how exactly do we have to choose them? In
the rest frame we normalize the u-vectors

u1 =

√
2m√
2




1
0
1
0


 , u2 =

√
2m√
2




0
1
0
1


 . (5.82)

Therefore the normalization condition in the rest frame is

u†1u1 = u†2u2 = 2m. (5.83)

In this way, we ensure that the propagator of the a fields in eq. (5.69) as well as
the ai fields have residua 1.

As the spin-operator in the rest frame is defined by

~S =
1

2

(
~τ 0
0 ~τ

)
(5.84)

we identify u1 with spin sz = +1
2 and u2 with spin sz = −1

2 .

Similarly as we did it here for a, the relation

(
1 1
1 1

)
ψ− = 0, (5.85)

leads to the following decomposition of the field b̄:

b∗(−p) =
1√
2m

(
b∗1(−p)v1(−p) + b∗2(−p)v2(−p)

)
. (5.86)
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If you would have expected a v̄, think again of the decomposition of ψ: ψ is a
column spinor and so v should be. The basis spinors are here:

v1 =

√
2m√
2




1
0
−1
0


 , v2 =

√
2m√
2




0
1
0
−1


 (5.87)

We identify v1 describing the spin up state and v2 describing the spin down state.

5.3.2 General decomposition of Dirac Spinor

Summary

The field a describes the two spin states of the electron in the basis us, s = 1, 2,
the field b̄ describes the two spin states of the positron in basis vs.

• Decomposition of Dirac Spinor

Lets us now write down the final decomposition of the Dirac Spinor (cf. eq. (5.69)):

ψ(p) =
1√

2E(p)
(as(p)us(p)Θ(ω) + b∗s(−p)vs(−p)Θ(−ω)) (5.88)

The index s is a summation index.

This equation is valid for arbitrary p. Furthermore, the as and b∗s fields have the
correct normalization, because the us and vs contain a factor

√
2m, and thus the

overall normalization is
√

E
m as demanded in (5.69).

The step to the operator formalism can now easily be done. We link

– as(p) to the annihilation operator âs(p) for electrons.

– b∗s(−p) to the creation operator b̂†s(−p). b̂†s(p) is the creation operator for
positrons.

As a and b are normalized correctly, they obey the standard anti-commutations
relations at equal time:

{âs(p), â†t (q)} = {b̂s(p), b̂†t (q)} = (2π)3δ3(p− q)δst (5.89)

Of course we still have to respect the on shell condition for the spinors:

/pus(p) = imus(p),

/pvs(−p) = imvs(−p) or /pvs(p) = −imvs(p) (5.90)

Furthermore we have

Θ(p0)us(p) = us(p), Θ(p0)vs(p) = vs(p). (5.91)
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5.3 Solutions of free Dirac equation

For us and vs we have positive energies:

p0 = ω = E =
√

p2 +m2 (5.92)

The normalization in the rest frame is

u†sus = v†svs = 2m. (5.93)

In the last equation, note that we do not mean a summation over s, but that the
equation is valid for s = 1, 2.

Finally, we write down the decomposition of ψ̄

Ψ̄(p) =
1√

2E(p)
(a∗s(p)ūs(p)Θ(ω) + bs(−p)v̄s(−p)Θ(−ω)) (5.94)

where ūs(p) = u†sγ0 and v̄s(p) = v†sγ0.

5.3.3 Reduced matrix element and scattering

5.3.4 Basis spinors for arbitrary momentum
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