(1) SELF INTERACTIONS

SoLUTION: We have given a Hamiltonian with nearest neighbor interaction,
D 1
1= {200+ 0} )
J

Now we add a so-called self-interaction term, i. e. an interaction at the same lattice site:
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Now we want to express Hg.r in terms of annihilation and creation operators in Fourier
space. Therefore, we express (Q; in terms of annihilation and creation operators in
position space and make the Fourier transformation.
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In the last line we have used the identity % > j ' = §; , for our periodic lattice. This
Kronecker-Delta corresponds to conservation of momentum.

(2) ONE-PHONON STATES

SOLUTION: (a) Uncoupled phonon state:

For uncoupled phonons on our one-dimensional grid, we want to compute the mean
square displacement for a one-phonon state, i. e. (j ]QJ2| J). First we express @); in terms
of annihilation and creation operators. Therefore
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Now a2 acti ) g 2|j) = a;[0) = 0 las a!” acti . N
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remember 7y = agaq and use the commutator [a,, aT] = 1. Then we get
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(b) Phonon state with nearest-neighbor interaction:
In a phonon state with nearest-neighbor interaction, the physical creation and annihila-
tion operators in Fourier space are given by
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Now we transform back to position space by
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Adding (6) and (7) gives
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Doing the same calculation as in 2.1, it follows that
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So in the special case « = 1 and § = 0, we get the same result as in 2.1.



(3) Two Point FuncTION

SOLUTION: (a) We first write Q; and Q;1a; in terms of a4 and aT_q:
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Then we wish to change to equation with A, and AI,. For this we use the transformation
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and find
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Then we calculate the product of the two,
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When calculating (0/Q;Q;+;|0) we see, that only the AqAJL , term survives. Through
the commutator relation, we get a d, _, function,
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The result is
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(b) Without nearest neighbour interaction, oy = 1 and 3; = 0. Using the result from
(a) we then have
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(4) OPERATOR GYMNASTICS

SOLUTION: (a) We use the commutator relation [gﬁ(f),(ﬁ(gj’)} = §(Z — ). This leads
directly to the result:
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(b) We use the hint in the form
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When calcultating the 4 point correlation function, the first term on the right above
vanishes. One then replaces the commutors by their delta functions, and uses then the
result from (a) twice, yielding

(013(21)B(2) ! (F3)T (F4)[0) = 6(Fy — T3)8(T1 — Z4) + 0(Z2 — T)o(F1 — 73).  (3)

(5) MATRIX ELEMENTS
SOLUTION: (a) We express (x| and |¢) with the creation and annihilation operators:
(alq) = (01$()"(q)[0)- (1)

Using ¢'(q) = ¥ €9t (y) we obtain
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(b) We can write
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For the second equation, we can use the result from Problem 4(b):
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The second term vanishes, since Z # 1. We finally get
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(6) ATOM PROPAGATOR
SOLUTION: (a)
(x|z0) = (0]¢(2)@ (x0)]0) (1)
(b)
P(x —xg) = 0(t — to)(x|zo) (2)

Apart from 0, all the operators in D = i0; + ﬁ — u commute with 6(¢t — ty). Therefore
we can compute
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In the last step we have used the equation of motion for ¢(z).
(c) We go to energy-momentum space with(p = (E,p)) by

Plao—a) = [ Plp)e e, (4)
p,

Using the result of (b) and remembering the Fourier transform of the delta-function, as
well as the translation of 0; and A in Fourier space, we find that
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(d) Now we transform back to position space to get an explicit result for P(z — x¢).
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where we introduced © = w — % —u, T =1i(t —tp) and p = p+ %(f — 2p). The
remaining 3-dimensional momentum integration can be done by defining a = 53; and
going to polar coordinates. The integrand is spherically symmetric, therefore we can

evaluate the integral by
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where we renamed the integration variable. So the propagator in position space is given
by
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(7) POTENTIAL ENERGY

SOLUTION: (a) The interaction energy in classical theories is often given by some
density at place & times some density at place ¥ times some factor, like for instance
in the Newtonian theory of gravity. Therefore, one could write down a term like
V(|Z — §)a(@n(g) = V(Z — §)at (£)a(Z)a’ (§)a(f). This expression makes sense if & # 7.
Then we have an interaction if there is at least one particle at both positions. If ¥ = ¢/, it
also gives a contribution, also if there is only one particle at this position. However, we
do not want such a behaviour, since we only want to describe interactions between par-
ticles. This can be done if we change the order of the operators, leading to the following
expression: V(|7 —¢])a’ (£)a’(i)a(F)a(¥). This term gives the same result if & # ¥, since
in this case the operators just commute. However if £ = ¢ and there is just one particle
at this position, the result is zero. For convenience, I will now suppress arrows above x
and y, though of course they are 3-vectors. Now after the previous considerations, we
can write down the interaction Hamiltonian:
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where we just used the definition of the number operator, as well as the canonical
commutator relations. Now the interaction Hamiltonian reads

Hing = & / V(IZ = gD (=n(z)d(x — y) + n(x)A(y)). (3)
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ii)We calculate the action of the number operator on a three-particle state:
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= (6(z1 — 2) + 822 — @))|wrw23) + al (@)al (21)al (22) (6(x — 23) + @l (a3)a())|0)
= (0(z1 —z) + 0(x2 — x) + 6(z3 — x))|x12223), (4)
where we have used the definition of the number operator and the canonical commutator

relations.
iii)Normalization:

(z139m3|m12023) = [6(0)]* = V7, (5)

where Vj is the space volume of our field theory. If we only consider fields in a finite
box, this volume will also be finite.
iv) Now we compute the interaction energy for a three-particle state:
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