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Experimental indications

RHIC data exhibit strong collective phenomena in the asymmetric
azimuthal distribution around the beam axis:

p0
d3N

dp3

∣

∣

∣

∣

pz=0

= v0(p⊥) [1 + 2v2(p⊥) cos(2φ) + 2v4(p⊥) cos(4φ) + · · · ] ,

where (px , py , pz) = (p⊥ cos φ, p⊥ sinφ, pz).

The large elliptic flow v2 ≃ 0.06 cannot be described just by two-body
interactions between partons.

Particles of different mass are emitted from the fireball with a common
fluid velocity.

Relativistic hydrodynamics reproduces v2 very well, up to p⊥ ∼ 1.5GeV

(P. Huovinen, U.W. Heinz, ’01).
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Experimental indications

Lmfp of a parton, which traverses an (ideal quantum) liquid is much
smaller than the thermal wavelength ∼ β ≡ 1

T
, i.e.

L
liq.
mfp

β
≪ 1.

Instead, in the dilute-gas model of the QGP,

L
gas
mfp ∼ (ρσt)

−1,

where ρ ∼ T 3 is the particle-number density, σt ∼ g4
T β2 ln g−1

T is the
Coulomb transport cross-section, and gT is the perturbative finite-T QCD
coupling

⇒
L

gas
mfp

β
∼ 1

g4
T ln g−1

T

≫ 1

⇒ the experimental results could have only been reproduced by the
dilute-gas model if σt were larger by an order of magnitude (D. Molnar,
M. Gyulassy, ’02).
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General properties of the viscosities

Shear viscosity η represents the ability to transport momentum:

η

s
∼ Lmfp

β
,

where s is the entropy density ⇒ η
s

is large in the dilute-gas model of the
QGP, and gets smaller for a strongly interacting QGP.

E.g., for T ∼ 200MeV and Lmfp ∼ 0.1 fm, η
s
∼ 0.1.

When a parton propagates through the QGP over the distance Lmfp, its
mean momentum change ∆p is ∼ T

⇒ η

s
∼ Lmfp

β
∼ Lmfp · ∆p

is nonvanishing due to the Heisenberg uncertainty principle
⇒ η cannot vanish completely.
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General properties of the viscosities

• How small can η
s

be ?

• What is the temperature behavior of η
s

?

The minimal possible value of η
s

is conjectured to be that in N = 4 SYM
(G. Policastro, D.T. Son, A.O. Starinets, ’01):

η

s

∣

∣

∣

N=4 SYM
=

1

4π
≃ 0.08.

It is a temperature-independent constant (because N = 4 SYM is a CFT).

Rather, in perturbative QCD (P. Arnold et al., ’01, ’03),

η

s

∣

∣

∣

pQCD
∼ 1

g4
T ln g−1

T

≫ 1.

Note that plasma instabilities can generate an anomalous viscosity ηA

(M. Asakawa, S.A. Bass, B. Müller, ’06):

ηA

s
∼ 1

g
3/2
T

<
η

s

∣

∣

∣

pQCD
, but still ≫ 1.
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General properties of the viscosities

For known liquids, η
s
≫ 1 for small and large T , where η is dominated by

potential- and kinetic-energy contributions, respectively.

Around the liquid-gas phase transition, these two contributions are nearly
equal, and η

s
has a minimum, corresponding to the most difficult condition

to transport momentum.

This behavior is exhibited by liquids of a very different nature, such as
helium, nitrogen, and water.

The empirical minima of η
s

are at least by one order of magnitude larger
than 1

4π .
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General properties of the viscosities

The energy-momentum tensor of an ideal liquid:

Θµν = −p · gµν + Ts · uµuν ,

where uµ is the velocity of energy transport.

The principal deviation from the ideality:

∆Θµν = η · (∆µuν + ∆νuµ) +

(

2

3
η − ζ

)

Hµν∂ρuρ,

where Hµν = uµuν − gµν , ∆µ = ∂µ − uµuν∂ν .

The bulk viscosity ζ is the other first-order transport coefficient.

While η characterizes a change in shape of a fixed volume, ζ characterizes
a change in volume of the liquid of a fixed shape.
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General properties of the viscosities

Cf. the Navier–Stokes’ equation in hydrodynamics:

ρ ·
[

∂v

∂t
+ (v∇)v

]

= −grad p + η · ∆v +
(

ζ +
η

3

)

· grad div v ⇒

– η enters foremost through η · ∆v;

– ζ is relevant only when div v 6= 0, i.e. for compressible liquids.

For helium, nitrogen, and water, ζ
s

has a maximum near the liquid-gas
phase transition.

In N = 4 SYM, ζ ≡ 0 (again because it is a CFT), unlike QCD, where the
non-conformality effects are manifest in ε − 3p up to T = (2 ÷ 3)Tc .
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The Kubo formulae

η and ζ are defined through the spectral densities,

η = π
dρ

(s)
T

dω

∣

∣

∣

∣

∣

ω=0

and ζ =
π

9

dρ
(b)
T

dω

∣

∣

∣

∣

∣

ω=0

,

which can be obtained from the Euclidean Kubo formulae (A. Hosoya et
al., ’84; F. Karsch & H.W. Wyld, ’87)

∫ ∞

0
dω ρ

(s),(b)
T (ω)

cosh
[

ω
(

x4 − β
2

)]

sinh(ωβ/2)
=

∫

d3x

+∞
∑

n=−∞

U
(s),(b)
T (x, x4 + βn),

where

U
(s)
T (x, x4) =

〈

Θ12(0)Θ12(x, x4)
〉

T
, U

(b)
T (x, x4) =

〈

Θµµ(0)Θνν(x, x4)
〉

T
,

and in the Yang–Mills theory

Θ12 = g2F a
1µF a

2µ, Θµµ =
β(g)

2g
(F a

µν)2.
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The Kubo formulae

Θµν of the gluon plasma receives contributions from

– stochastic background fields, characterized by
〈

g2(F a
ij )

2
〉

T
and µT ;

– valence gluons, which are confined at large spatial separations.

Such a two-component model of the gluon plasma is efficient to describe

– radiative energy loss of a parton traversing the plasma (H.-J. Pirner &
D.A., ’08);

– pressure and interaction measure (ε − 3p)/T 4 of the plasma
(H.-J. Pirner, M.G. Schmidt & D.A., ’09).
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Figure: The jet quenching parameter q̂(T ) for various values of the
dimensional-reduction temperature, T∗ = 1.28Tc and T∗ = 2Tc .
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Figure: Lattice data on the interaction measure (ε − 3p)/T 4 (courtesy of
F. Karsch) compared to the prediction of the two-component model.
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The Kubo formulae

At T ≫ Tc , the two contributions become strictly additive:

ρ = ρbackgr + ρpert,

and ρpert ∝ g4
Tω4 together with 〈Θµν(0)Θλρ(x)〉

pert
∝ g4

T/|x |8 can be
isolated simultaneously.

This project (to be realized through the Kubo formulae):

– Using the stochastic vacuum model at finite temperature
(Yu.A. Simonov, N.O. Agasian, ’95 – ’08), calculate ρbackgr.
To be presented below.

– Calculate the contribution of valence gluons to ρ at T ∼ Tc .
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The Kubo formulae

A reminder on the stochastic vacuum model (SVM).

While QCD sum rules assume
〈

g2(F a
µν)2

〉

, the SVM additionally assumes
a finite correlation length of the vacuum, µ−1 < ∞ (Pisa group, ’86-’03):

〈

F a
µν(x)F b

λρ(0)
〉

∼ e−µ|x | ⇒

the SVM can quantitatively describe confinement with the string tension
σ ∝ µ−2

〈

g2(F a
µν)2

〉

.

The spatial string tension at T > Tc :

σs(T ) ∝ µ−2
T

〈

g2(F a
ij )

2
〉

T
,

i.e. the chromo-magnetic vacuum still confines.
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The Kubo formulae

Since
Θµν = O

(

g2(F a
αβ)2

)

,

the expected contributions of the background fields to the viscosities are

η ∝ ζ ∝
〈

g2(F a
ij )

2
〉2

T

µ5
T

,

in agreement with

σSVM
total ∝

〈

g2(F a
µν)

2
〉2

(Heidelberg group,′ 91 −′ 03)

⇒ at temperatures T > T∗,

η ∝ ζ ∝ (g2
T T )3,

whereas s ∝ T 3 at T & 2Tc ⇒
η

s
∝ ζ

s
∝ g6

T at T & 2Tc .

We get the coefficients in these formulae.
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Calculation of the viscosities

Notations:

〈

g2(F a
µν)2

〉

≡
〈

G 2
〉

,
〈

g2(F a
ij )

2
〉

T
≡

〈

G 2
〉

T
, ρbackgr ≡ ρT , ωk = 2πTk.

Assuming at T = 0 exponentially falling off Ansätze

U
(s),(b)
T=0 (x) = N(s),(b)

α

〈

G 2
〉2 · K2−α(M|x |)

(M|x |)2−α
, where α > 0,

we get at T > Tc the Fourier transformed (
∑

k

eiωkx4 fk) Kubo formulae:

∫ ∞

0
dω ρ

(s),(b)
T (ω)

ω

ω2 + ω2
k

= π22αΓ(α)N(s),(b)
α

〈

G 2
〉2

T

M2α−4
T

(ω2
k + M2

T )α
. (∗)
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Calculation of the viscosities

Lorentzian-type spectral densities

ρ
(s),(b)
T (ω) = C

(s),(b)
T · ω

(ω2 + M2
T )α+ 1

2

ensure that both sides of Eq. (*) have the same large-|k| behavior.
MT ∼ µT is the momentum scale, below which PT breaks down.

• For |k| ≫ 1,

LHS of Eq. (∗) =
C

(s),(b)
T

ω2α
k

[

π

2 sin(πα)
+ O

(

M2
T

ω2
k

)

+

∞
∑

i=2

ci

(

MT

ωk

)i−2α]

⇒ the leading term in the brackets is k-independent only for α < 1.

RHS of Eq. (∗) = π22αΓ(α)N(s),(b)
α

〈

G 2
〉2

T

ω2α
k

M2α−4
T ·

[

1 + O
(

M2
T

ω2
k

)]

.
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Calculation of the viscosities

⇒ η
∣

∣

∣

|k|≫1
= π22α+1Γ(α)N(s)

α sin(πα)

〈

G 2
〉2

T

M5
T

.

Note: |k| ≫ 1 means |k| ≥ 3, since MT

ω3
< 0.35 for any T > Tc .

• For |k| ∼ 1 (e.g. k = 0 for T > T∗), O
(

ω2
k

M2
T

)

-terms and higher can be

disregarded ⇒

η
∣

∣

∣

|k|∼1
= π5/22α+1Γ

(

α +
1

2

)

N(s)
α

〈

G 2
〉2

T

M5
T

.

The ratio
η
∣

∣

∣

|k|≫1

η
∣

∣

∣

|k|∼1

=
Γ(α) sin(πα)
√

πΓ
(

α + 1
2

) for 0 < α < 1

is equal to 1 at α = 1
2 , i.e. η

∣

∣

∣

α= 1
2

is k-independent.
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Calculation of the viscosities
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Calculation of the viscosities

For α = 1
2 , ρ

(s),(b)
T (ω) take the purely Lorentzian form, with

C
(s),(b)
T = (2π)3/2N

(s),(b)
1/2 ·

〈

G 2
〉2

T

M3
T

.

The coefficients N
(s),(b)
1/2 can be determined via the Gaussian-dominance

hypothesis, which disregards the connected parts of
〈

Θµν(0)Θλρ(x)
〉

.

The SVM parametrizes the remaining two-point functions.

• Retaining only confining self-interactions of the background fields:

〈

g2F a
µν(x)F b

λρ(0)
〉

=

〈

G 2
〉

12
· (δµλδνρ − δµρδνλ) · δab

N2
c − 1

· D(x),

where D(x) → e−µ|x |. The compatibility with U
(s)
T=0,α=1/2 is achieved by

D(x) = A ·
√

K3/2(2µ|x |)
(2µ|x |)3/2

and M = 2µ.
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Calculation of the viscosities

⇒ N
(s)
1/2 =

A2

576
.

The constant A is fixed by σf =
〈G 2〉
144

∫

d2x D(x) ⇒

A =
4

∫ ∞
0 dz · z1/4 ·

√

K3/2(z)
≃ 1.05 ⇒

the shear viscosity

η =
π5/2A2

4608
√

2
·
〈

G 2
〉2

T

µ5
T

.

Similarly, in the one-loop approximation where β(g)
2g ≃ − 11

32π2 g
2,

the bulk viscosity

ζ =
A2

1728
√

2π3

(

11

32

)2

·
〈

G 2
〉2

T

µ5
T

.
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Calculation of the viscosities

• Accounting also for the nonconfining nonperturbative self-interactions of
the background fields:

〈

g2F a
µν(0)F b

λρ(x)
〉

=

〈

G 2
〉

12
· δab

N2
c − 1

·
{

κ(δµλδνρ − δµρδνλ)D(x)+

+
1 − κ

2
[∂µ(xλδνρ − xρδνλ) + ∂ν(xρδµλ − xλδµρ)] D1(x)

}

, where κ ∈ [0, 1].
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Calculation of the viscosities

• Accounting also for the nonconfining nonperturbative self-interactions of
the background fields:

〈

g2F a
µν(0)F b

λρ(x)
〉

=

〈

G 2
〉

12
· δab

N2
c − 1

·
{

κ(δµλδνρ − δµρδνλ)D(x)+

+
1 − κ

2
[∂µ(xλδνρ − xρδνλ) + ∂ν(xρδµλ − xλδµρ)] D1(x)

}

, where κ ∈ [0, 1].

Cf. the Wilson loop 〈W (C )〉 =
〈

tr P exp
(

ig
∮

C
dxµT aAa

µ

)〉

:

〈W (C )〉 = exp

{

− C2

〈

G 2
〉

96(N2
c − 1)

[

2κ

∫

Σmin

dσµν(x)

∫

Σmin

dσµν(x
′)D(|x−x ′|)+

+(1 − κ)

∮

C

dxµ

∮

C

dx ′
µ

∫ ∞

(x−x ′)2
dξ D1(

√

ξ)

]}

.

Lattice data (Pisa group) suggest that D1(x) = D(x), and κ ≃ 0.83.

Dmitri Antonov (CFIF, IST) Soft contributions to η and ζ EMMI workshop, 19.03.10 23 / 31



Calculation of the viscosities

U
(s),(b)
T=0 contain terms through O

(

(1 − κ)2
)

⇒ seeking D(x) in the form

D(x) = Aκ · fκ(µ|x |), where fκ = fκ=1 + (1 − κ)f (1) + (1 − κ)2f (2),

Aκ=1 = A and fκ=1(z) =

√

K3/2(2z)

(2z)3/2
=

π1/4

27/4
· e−z

z3/2
· (1 + 2z)1/2.
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Calculation of the viscosities

U
(s),(b)
T=0 contain terms through O

(

(1 − κ)2
)

⇒ seeking D(x) in the form

D(x) = Aκ · fκ(µ|x |), where fκ = fκ=1 + (1 − κ)f (1) + (1 − κ)2f (2),

Aκ=1 = A and fκ=1(z) =

√

K3/2(2z)

(2z)3/2
=

π1/4

27/4
· e−z

z3/2
· (1 + 2z)1/2.

Then

fκ(z) =
π1/4

256 · 23/4
· e−z

[z(1 + 2z)]3/2
·
{

128(1 + 2z)2+

+(1−κ)·16(1+2z)(3+6z+4z2)+(1−κ)2·[9 + 4z · (9 + z · (7 + 4z(1 + z)))]
}
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Calculation of the viscosities

U
(s),(b)
T=0 contain terms through O

(

(1 − κ)2
)

⇒ seeking D(x) in the form

D(x) = Aκ · fκ(µ|x |), where fκ = fκ=1 + (1 − κ)f (1) + (1 − κ)2f (2),

Aκ=1 = A and fκ=1(z) =

√

K3/2(2z)

(2z)3/2
=

π1/4

27/4
· e−z

z3/2
· (1 + 2z)1/2.

Then

fκ(z) =
π1/4

256 · 23/4
· e−z

[z(1 + 2z)]3/2
·
{

128(1 + 2z)2+

+(1−κ)·16(1+2z)(3+6z+4z2)+(1−κ)2·[9 + 4z · (9 + z · (7 + 4z(1 + z)))]
}

The constant Aκ is again fixed via the string tension:

Aκ =
1

∫ ∞
0 dz · z · fκ(z)

.
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Calculation of the viscosities

In particular, Aκ=0.83 ≃ 0.97 ⇒
(

Aκ=0.83
A

)2
≃ 0.85 ⇒

ηκ=0.83 and ζκ=0.83 are by 15% (that is close to 17%) smaller than,
respectively, ηκ=1 and ζκ=1.

Parameters for the numerical calculation:

• Tc = 270MeV.

• The two-loop running coupling in SU(3) YM:

g−2(T ) = 2b0 ln
T

Λ
+

b1

b0
ln

(

2 ln
T

Λ

)

,

b0 =
11Nc

48π2
, b1 =

34

3

(

Nc

16π2

)2

, Nc = 3, Λ = 0.104Tc .
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Calculation of the viscosities

• Temperature dependence:

f (T ) ≡
{

1 at Tc < T < T∗,
g2
T
·T

g2
T∗

·T∗

at T > T∗,

⇒ µT = µ · f (T ), σf(T ) = σf · f 2(T ),
〈

G 2
〉

T
=

〈

G 2
〉

· f 4(T ).

where µ = 894MeV (Pisa group, ’97), σf = (440MeV)2,
〈

G 2
〉

= 72
π σfµ

2.

• Determining T∗ from the equation σf(T∗) = σf , where
σf(T ) = [0.566g2(T )T ]2 (Bielefeld group, ’93, ’96) ⇒ T∗ = 1.28Tc .

• Entropy density s(T ) = dplat

dT
⇒ s(T )/T 3 is nearly constant at T & 2Tc .

Dmitri Antonov (CFIF, IST) Soft contributions to η and ζ EMMI workshop, 19.03.10 26 / 31



Calculation of the viscosities
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Figure: Entropy density s(T ), in the units of T 3, derived from the lattice values
for the pressure (G. Boyd et al., 1996; courtesy of F. Karsch).
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The results
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1/(4π) realized in N = 4 SYM.
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The results
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ln(7.14/gT ) (P. Arnold et al., ’06) is extrapolated down to T = Tc .
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Concluding remarks

• The calculated soft contribution to η/s falls off rapidly at
Tc < T . 2Tc , and further as O

(

g6
T

)

, gradually crossing 1/(4π).

• However, at T ≫ Tc , the perturbative result, with

ηNLL =
T 3

g4
T

· 27.126

ln 2.765
gT

(P. Arnold et al., ’03), takes it over ⇒ A minimum of the full η/s should
exist at intermediate temperatures (cf. other liquids), yielding the
temperature of a possible liquid-gas phase transition.

• For ζ/s, perturbative contributions only enhance the O(g6
T )-behavior to

the O(g4
T )-one.

• At T ∼ Tc , an interference of nonperturbative contributions, produced
by the background fields and by valence gluons, will be studied.

D.A., arXiv:1002.2406 (Annals Phys., in press).
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Many thanks to the organizers for a very nice and interesting workshop.
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