
Holographic
p-wave Superfluids

Patrick Kerner
MPI für Physik, Munich

EMMI Workshop, Heidelberg

in collaboration with: M. Ammon, J. Erdmenger,
V. Grass, M. Kaminski, A. O’Bannon 

based on: 0810.2316, 0903.1864, 0912.3515



What can we learn about QCD 
using gauge/gravity duals? 

! Insides into strong 
coupling regime, 
relevant e.g. for RHIC 
especially hydrodynamic 
expansion



What can we learn about QCD 
using gauge/gravity duals? 

! Insides into strong 
coupling regime, 
relevant e.g. for RHIC 
especially hydrodynamic 
expansion

! Finite temperature and 
finite chemical potentials 
possible      explore the 
phase diagram

⇒



What can we learn about QCD 
using gauge/gravity duals? 

! Insides into strong 
coupling regime, 
relevant e.g. for RHIC 
especially hydrodynamic 
expansion

! Finite temperature and 
finite chemical potentials 
possible      explore the 
phase diagram

! What kind of matter can 
we find?

⇒



Meson Superfluids

! QCD has                                            global flavor 
symmetry. For             ,            is isospin symmetry.Nf = 2 SU(2)

U(Nf ) = U(1)×SU(Nf )



Meson Superfluids

! QCD has                                            global flavor 
symmetry. For             ,            is isospin symmetry.

! Introduce isospin chemical potential 
which breaks             down to           .

Nf = 2 SU(2)

µI = µτ3

SU(2) U(1)3

U(Nf ) = U(1)×SU(Nf )



Meson Superfluids

! QCD has                                            global flavor 
symmetry. For             ,            is isospin symmetry.

! Introduce isospin chemical potential 
which breaks             down to           .

! For                     , mesons condense due to BEC and 
break            spontaneously      Meson Superfluids

Nf = 2 SU(2)

µI = µτ3

SU(2) U(1)3

µ > Mmeson

U(1)3 ⇒

U(Nf ) = U(1)×SU(Nf )



Meson Superfluids

! QCD has                                            global flavor 
symmetry. For             ,            is isospin symmetry.

! Introduce isospin chemical potential 
which breaks             down to           .

! For                     , mesons condense due to BEC and 
break            spontaneously      Meson Superfluids

! If vector mesons condense      rotational symmetry 
broken      p-wave superfluids

Nf = 2 SU(2)

µI = µτ3

SU(2) U(1)3

µ > Mmeson

U(1)3 ⇒

U(Nf ) = U(1)×SU(Nf )

⇒
⇒

QCD: Son, Stephanov; Splittorff; Sannino ...
Sakai-Sugimoto: Aharony, Peeters, Sonnenschein, Zamaklar



p-wave Superfluids
in Gauge/Gravity duals

! First:
Simple gravity model with SU(2) symmetry

! Later: 
Embedding into string theory      superfluidity in 
explicit field theory:

                           SYM coupled to two  
hypermultiplets

N = 2N = 4 SU(Nc)

⇒

0912.3515
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Gauge/Gravity Duality

! Type IIB SUGRA on                   
is dual to
Conformal Field Theory at large      and large    
in the sense

! Black holes correspond to thermal field theories

!  Gauge fields       are dual to global currents 
especially vevs     ,     induce finite chemical 
potentials      ,    (source) and finite densities       , 
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Gravity model 

! Einstein-Yang-Mills theory with            gauge group

! Superfluid condensate in addition to chemical potential:
Take         dual to       (only the vev)

!        spontaneously breaks            down to      and            
down to                  p-wave superfluid

! Probe limit           studied by Gubser and Pufu ’08
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ĝ

A1
x

U(1)3 Z2 SO(3)
SO(2)⇒

α = 0

�Jx
1 �

�Jx
1 �



Interpretation of       

! Holographic calculations of Weyl anomaly:
                ,   : number of degrees of freedom 

! Correlators of             currents proportional to 
             counts degrees of freedom charged under 
                .

! Intuitively, 
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ĝ2
∝ # charged degrees of freedom

# total degrees of freedom



! Reissner-Nordström black hole

Behavior at finite chemical 
potential

ds2 = −N(r)dt2 +
1
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! Reissner-Nordström black hole

! At low temperature the back hole unstable
against fluctuations in            Condensation
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Condensation Process
! Sketchy action for      :

! Due to black hole                   ,   
        can be lower than BF-
bound     Instability   
    Condensation    vector hair

! Hair is stabilized by the 
equilibrium of electric and 
gravitational force in AdS space.
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Figure 1: A superconducting condensate floats above a black hole horizon because of a
balance of gravitational and electrostatic forces. The condensate carries a finite fraction of
the total charge density, so there is more electric flux above the condensate than there is
right at the horizon. A massive charged particle, labeled ψ+, may be driven upward by the
electrostatic force, but because of the warped geometry of AdS4, its trajectory cannot reach
the boundary. So ψ+ must participate in the condensate if it doesn’t fall into the horizon.
The frequency-dependent conductivity can be found by calculating an on-shell amplitude for
a photon propagating straight down into the geometry.
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Solutions in the broken phase
! We numerically solve the Einstein-Yang-Mills 

equations for the ansatz

A = φ(r)τ3dt + w(r)τ1dx

ds2 =−N(r)σ(r)2dt2 +
1
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+ r2f(r)−4dx2 + r2f(r)2
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Solutions in the broken phase
! We numerically solve the Einstein-Yang-Mills 

equations for the ansatz

! Typical solution for            :
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Figure 1: (a) The dimensionless gauge field components φ̃(r) (red dashed) and w̃(r) (green
dot-dashed) and the dimensionless metric function m̃(r), scaled down by a factor of 10,
(black solid) versus the AdS radial coordinate r for α = 0.316 at T ≈ 0.45Tc. (b) The
dimensionless metric functions σ(r) (red dashed) and f(r) (green dot-dashed) versus the AdS
radial coordinate r for α = 0.316 at T ≈ 0.45Tc.

the CFT is a p-wave superfluid phase transition. Our numerical results show that
the phase transition is second order for α < αc and first order for α > αc where
αc ≈ 0.365± 0.001.

For example, for α = 0.316 < αc, we only find solutions with �Jx
1 � = 0 until a

temperature Tc where a second set of solutions, with nonzero �Jx
1 �, appears. Figure 2

shows that �Jx
1 � rises continuously from zero as we decrease T below Tc. Figure 3 (a)

shows the grand potential Ω, divided by π4V T 4
c /κ2

5, versus the rescaled temperature
T/Tc for α = 0.316. The blue solid curve in Figure 3 (a) comes from solutions with
�Jx

1 � = 0 and the red dashed curve comes from solutions with �Jx
1 � �= 0. We see

clearly that at T = Tc the states with �Jx
1 � �= 0 have the lower κ2

5Ω/
�
π4V T 4

c

�
and

hence are thermodynamically preferred. We thus conclude that a phase transition
occurs at T = Tc. The nonzero �Jx

1 � indicates spontaneous breaking of U(1)3 and
of SO(3) rotational symmetry down to SO(2), and hence is an order parameter for
the transition. Figure 3 (b) shows the entropy S, divided by 2π4V T 3

c /κ2
5, versus the

rescaled temperature T/Tc for α = 0.316. The blue solid curve and the red dashed
curve have the same meaning as in Figure 3 (a). Here we see that κ2

5S/
�
2π4V T 3

c

�

is continuous but has a kink, i.e. a discontinuous first derivative, clearly indicating
a second-order transition. For other values of α < αc, the figures are qualitatively
similar.

A good question concerning these second-order transitions is: what are the criti-
cal exponents? In the probe limit, α = 0, an analytic solution for the gauge fields
exists for T near Tc [20], which was used in ref. [18] to show that for T � Tc,
�Jx

1 � ∝ (1− T/Tc)
1/2. In other words, in the probe limit the critical exponent for

�Jx
1 � takes the mean-field value 1/2. Does increasing α change the critical exponent?

Our numerical evidence suggests that the answer is no: for all α < αc, we appear to
find �Jx

1 � ∝ (1− T/Tc)
1/2 (see Figure 2).

As α increases past αc = 0.365± 0.001, we see a qualitative change in the thermo-
dynamics. Consider for example α = 0.447. Here again we only find solutions with
�Jx

1 � = 0 down to some temperature where two new sets of solutions appear, both
with nonzero �Jx

1 �. In other words, three states are available to the system: one with
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! Order parameter         determined by boundary 
behavior of      .
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Figure 2: The order parameter �Jx
1 �, multiplied by κ2

5/(2π3α2T 3
c ), versus the rescaled tem-

perature T/Tc for different α: α = 0.032 < αc (green dotted), α = 0.316 < αc (blue solid)
and α = 0.447 > αc (red dashed). The black dot-dashed curve is the function a(1−T/Tc)

1/2

with a = 160. The green dotted curve is scaled up by a factor of 8 while the red dashed
curve is scaled down by a factor of 5 such that a, which depends on α, coincides for the green
dotted and blue solid curves. If we decrease T toward Tc, entering the figure from the right,
we see that the blue solid and the green dotted curves rise continuously and monotonically
from zero at T = Tc, signaling a second-order phase transition. The close agreement with the
black dot-dashed curve suggests that these grow from zero as (1− T/Tc)

1/2. In the α = 0.447
case, the red dashed curve becomes multi-valued at T = 1.061 Tc. In this case, at T = Tc,
the value of κ2

5�Jx
1 �/(2π3α2T 3

c ) jumps from zero to the upper part of the red dashed curve,
signaling a first-order transition.
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Figure 3: (a) κ2
5Ω/
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versus the rescaled temperature T/Tc for α = 0.316. The

blue solid curve comes from solutions with �Jx
1 � = 0 while the red dashed curve comes from

solutions with nonzero �Jx
1 �. For T > Tc, we have only the blue curve, but when T ≤ Tc

the red dashed curve appears and has the lower κ2
5Ω/

`
π4V T 4

c

´
, indicating a phase transition

at T = Tc. κ2
5Ω/

`
π4V T 4
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´
is continuous and differentiable at T = Tc. (b) κ2

5S/
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´

versus T/Tc for α = 0.316. The blue solid and red dashed curves have the same meaning as in
(a). κ2

5S/
`
2π4V T 3

c

´
is continuous but not differentiable at T = Tc, indicating a second-order

transition.
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Phase transition 
! Order parameter         determined by boundary 

behavior of      .

! For             order parameter increases 
monotonically     2nd order transition (mean field)

! For large              order parameter becomes 
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Thermodynamics
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! Superfluid thermodynamically preferred in red 
and blue region

! Phase transition second order for              and 
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Embedding in String Theory
Setup

! Gravity model can be embedded into 
D3/D7 brane setup (see Johanna’s lecture)

! D3/D7 brane setup dual to                            SYM 
coupled to             hypermultiplets

! The D7-branes provide a non-Abelian gauge field    
     Global flavor symmetry

N = 4 SU(Nc)
N = 2

⇒



Embedding in String Theory
non-Abelian DBI action

! Need non-Abelian DBI action (best guess, correct 
up to          )(α�)4

SDBI = TD7 Str
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String Theory Embedding
Evaluation of Str 

! Str prescription only correct up to fourth order

! We use 2 different approaches:

1) expand action to fourth order 
+: include maximal number of terms we can trust
-: approximation breaks down in superfluid phase

2) adapt Str prescription: set                   inside Str
+: can handle all terms
-: strictly valid only if                  contradict probe
   approximation

�
τ i

�2 = 1

Nf →∞
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1) expand action to fourth order 
+: include maximal number of terms we can trust
-: approximation breaks down in superfluid phase

2) adapt Str prescription: set                   inside Str
+: can handle all terms
-: strictly valid only if                  contradict probe
   approximation

�
τ i

�2 = 1

Nf →∞give the same physics!!!



Embedding in String Theory
Comparison to Gravity Model

! D7-branes are probes in D3-brane background. 
Background determined by Type IIB SUGRA

SIIB ⊃ N2
c

�
d5x
√
−gR



Embedding in String Theory
Comparison to Gravity Model

! D7-branes are probes in D3-brane background. 
Background determined by Type IIB SUGRA

! DBI action determines embedding of the D7-
branes and the gauge fields on these branes 

SIIB ⊃ N2
c

�
d5x
√
−gR

SDBI = −TD7

�
d8ξ

�
det (P [g] + 2πα�F )

⊃ NcNf

�
d5x
√
−gF 2



Embedding in String Theory
Comparison to Gravity Model

! D7-branes are probes in D3-brane background. 
Background determined by Type IIB SUGRA

! DBI action determines embedding of the D7-
branes and the gauge fields on these branes 

! Action is similar to EYM action
with back-reaction dilaton have to considered, too
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here= 0



! Conjugate momenta                    approach       at boundary 

! Normal phase:
     constant      isospin density only produced at horizon
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Figure 3: Profiles of the relevant dimensionless gauge fields Ã on the D7-branes and their dimen-
sionless conjugate momenta p̃ versus the dimensionless AdS radial coordinate ρ near the horizon
at ρ = 1. The different curves correspond to the temperature T = Tc (blue) and T ≈ 0.9Tc (red).
The plots are obtained at zero quark mass m = 0 and by using the adapted symmetrized trace
prescription. Similar plots may also be obtained at finite mass m "= 0 and by using the DBI ac-
tion expanded to fourth order in F . These plots show the same features: (a) The gauge field Ã3

0

increases monotonically towards the boundary. At the boundary, its value is given by the dimen-
sionless chemical potential µ̃. (b) The gauge field Ã1

3 is zero for T ≥ Tc. For T < Tc, its value
is non-zero at the horizon and decreases monotonically towards the boundary where its value has
to be zero. (c) The conjugate momentum p̃3

0 of the gauge field Ã3
0 is constant for T ≥ Tc. For

T < Tc, its value increases monotonically towards the boundary. Its boundary value is given by the
dimensionless density d̃3

0. (d) The conjugate momentum p̃1
3 of the gauge field Ã1

3 is zero for T ≥ Tc.
For T < Tc, its value increases monotonically towards the boundary. Its boundary value is given
by the dimensionless density −d̃1

3.

5. Thermodynamics & Phase Transition

In this section we study the thermodynamics of the fundamental matter sector which is

dual to the thermal contributions of the D7-branes. According the AdS/CFT dictionary

the partition function Z of the boundary field theory is given in terms of the Euclidean

on-shell supergravity action Ion-shell,

Z = e−Ion-shell . (5.1)

Thus the thermodynamical potential, i. e. in the grand canonical ensemble the grand po-

originate from the DBI action [27].
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Solutions in normal phase

p =
∂S

∂(∂A)
�J�

p3
t ⇒

normal phase
superfluid phase



! Broken phase:
    not constant     isospin density generated in bulk

!      increases towards boundary     condensate only 
created in bulk

p3
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p1
x ⇒

5 10 15 20
0.0

0.5

1.0

1.5

2.0

2.5

3.0

ρ

Ã3
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Figure 3: Profiles of the relevant dimensionless gauge fields Ã on the D7-branes and their dimen-
sionless conjugate momenta p̃ versus the dimensionless AdS radial coordinate ρ near the horizon
at ρ = 1. The different curves correspond to the temperature T = Tc (blue) and T ≈ 0.9Tc (red).
The plots are obtained at zero quark mass m = 0 and by using the adapted symmetrized trace
prescription. Similar plots may also be obtained at finite mass m "= 0 and by using the DBI ac-
tion expanded to fourth order in F . These plots show the same features: (a) The gauge field Ã3
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increases monotonically towards the boundary. At the boundary, its value is given by the dimen-
sionless chemical potential µ̃. (b) The gauge field Ã1

3 is zero for T ≥ Tc. For T < Tc, its value
is non-zero at the horizon and decreases monotonically towards the boundary where its value has
to be zero. (c) The conjugate momentum p̃3

0 of the gauge field Ã3
0 is constant for T ≥ Tc. For

T < Tc, its value increases monotonically towards the boundary. Its boundary value is given by the
dimensionless density d̃3

0. (d) The conjugate momentum p̃1
3 of the gauge field Ã1

3 is zero for T ≥ Tc.
For T < Tc, its value increases monotonically towards the boundary. Its boundary value is given
by the dimensionless density −d̃1
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5. Thermodynamics & Phase Transition

In this section we study the thermodynamics of the fundamental matter sector which is

dual to the thermal contributions of the D7-branes. According the AdS/CFT dictionary

the partition function Z of the boundary field theory is given in terms of the Euclidean

on-shell supergravity action Ion-shell,

Z = e−Ion-shell . (5.1)

Thus the thermodynamical potential, i. e. in the grand canonical ensemble the grand po-

originate from the DBI action [27].
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Solutions in superfluid phase

normal phase
superfluid phase



Figure 2: Sketch of our string setup: The figure shows the two coincident D7 branes stretched from
the black hole horizon to the boundary as a green and a blue plane, respectively. Strings spanned
from the horizon of the AdS black hole to the D7-branes induce a charge at the horizon [26,27,32].
However, above a critical charge density, the strings charging the horizon recombine to D7-D7
strings. These D7-D7 strings are shown in the figure. Whereas the fundamental strings stretched
between the horizon and the D7-brane are localized near the horizon, the D7-D7 strings propagate
into the bulk balancing the flavorelectric and gravitational, i.e. tension forces (see text). Thus
these D7-D7 strings distribute the isospin charges along the AdS radial coordinate, leading to
a stable configuration of reduced energy. This configuration of D7-D7 strings corresponds to a
superconducting condensate.

The independent parameters µ, d̃3
0, d̃

1
3,m, c are given by field theory quantities as presented

in (3.25) and (3.26). Again we find that there is no source term for the current J1
3 , which

implies spontaneous symmetry breaking. Therefore the independent parameters in both

prescriptions are the same and we can use the same strategy to solve the equations of

motion as described below (3.26).

4. String Theory Picture

In this section we give a string theory interpretation, i. e. a geometrical picture, of the

formation of a new phase, for which the field theory is discussed in section 2. We show

that the system is stabilized by dynamically generating a non-zero vev of the current

component J1
3 dual to the gauge field A1

3 on the brane. Moreover, we find a geometrical

picture of the pairing mechanism which forms the condensate 〈J1
3 〉, the Cooper pairs.

Let us first describe the unstable configuration in absence of the field A1
3. As known

from [26,27,32], the non-zero field A3
0 is induced by fundamental strings which are stretched

from the D7-brane to the horizon of the black hole. In the subsequent we call these strings

‘horizon strings’. Since the tension of these strings would increase as they move to the

boundary, they are localized at the horizon, i. e. the horizon is effectively charged under

the isospin charge given by (2.1). By increasing the horizon string density, the isospin

charge on the D7-brane at the horizon and therefore the energy of the system grows.

In [32], the critical density was found beyond which this setup becomes unstable. In this

– 12 –

Pairing Mechanism
! D3-D7 strings at horizon produce finite isospin 

density      branes have different charges.

! At large densities system unstable (cf. flashover)

! D3-D7 strings merge and form D7-D7 strings.

! D7-D7 strings propagate towards boundary 
     energy minimized

⇒

⇒



Importance of D7-D7 strings

! They stabilize the system (minimal energy).

! They generate the condensate in the bulk.
     They break the            symmetry.

! They are the duals of the Cooper pairs.

⇒ U(1)3



phase may lead to the usual behavior of a Bose or Fermi liquid.
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Figure 10: Phase diagram for fundamental matter with mass m = 2Mq/(
√

λT ) obtained with
the adapted symmetrized trace prescription: The blue, white and green regions are the same as
in figure 1, but with the unstable normal phase replaced with the superconducting phase. The
dotted curves correspond to lines at finite mass, i. e. constant χ0. These curves are parametrized
by the density d̃3

0. Along the blue curves the field A1
3 is zero while along the red ones the field A1

3

is non-zero. The endpoints of the red curves determine the second order phase transition to the
superconducting phase. The dotted, red curves diverge inside the superconducting phase since the
backreaction of the condensate on the background is not considered. This divergence determines
the boundary of the orange region which is not reachable without backreaction.

Summarizing our thermodynamical results in a phase diagram, we obtain figure 10.

The choice of the calculational method – adapted symmetrized trace or expansion of the

DBI to fourth order – does not change the qualitative structure of the phase diagram.

The blue phase indicates the known region of stable mesons surviving the deconfinement

transition. It is separated from the white meson melting region by the meson melting

transition (blue line), see [25–27,29,32,50,52,53]. Above a critical isospin density marked

by the green line, a flavor-superconducting phase forms. At even higher isospin density, our

approach, which does not include the back-reaction of the D7-brane, gives diverging order

parameters, signalling the breakdown of this approach. This particular region is indicated

by orange color. Note that this behavior is well-known to occur in systems without back-

reaction. In our case, the gauge fields on the D7-brane grow arbitrarily large close to

zero temperature. This behavior will be cured by including the back-reaction, i. e. the

contribution of the gauge fields to the total energy-momentum tensor. For the Abelian

Higgs model, it is shown in [13] that similar divergences are removed when these terms are

included.

6. Fluctuations

The full gauge field Â on the branes consists of the field A and fluctuations a,

Â = A3
0τ

3dt + A1
3τ

1dx3 + aa
µτadxµ , (6.1)
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Phase diagram
for                           SYM 

coupled to             hypermultiplets

=
√

λT

2Mq

N = 4 SU(Nc)
N = 2



Conductivity

! Real part of conductivity develops a gap. 

! Additional resonances (mesons) can appear in the gap.

! Imaginary part behaves like           
Superfluid density behaves as in GL

ns/w
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Figure 14: Scaled imaginary part of conductivity wIm σ in units of NfNcT/(16π) versus the
dimensionless frequency w = ω/(2πT ) for massless quarks computed from the adapted symmetrized
trace prescription. Distinct curves correspond to T/Tc = ∞ (black), 1 (red), 0.9 (blue), 0.6 (green),
0.5 (orange) and 0.28 (brown). This figure has been scaled to asymptote to a constant at w = 0.
This constant determines the superconducting density ns.
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Figure 15: Scaled real part of conductivity Re σ/(4πw) in units of NfNcT/(16π) versus the
dimensionless frequency w = ω/(2πT ) for massless quarks computed from the expanded DBI action.
Distinct curves correspond to T/Tc = ∞ (black), 1(red), 0.6 (green), 0.5 (orange) and 0.39 (purple).
This figure has been scaled to asymptote to a constant in order to show similarity to the lower
dimensional cases computed from AdS4 and to show common asymptotics.

conductivity correspond to the prominent peaks in the spectral function, see figure 16. As

known from [33, 58] the resonances appearing in the spectral functions of vector fields in

the bulk correspond to vector meson excitations in the dual field theory. Moving to higher

quark mass parameter m = 2.842 and µ̃ = 3.483 near the meson melting transition, we

compare the resulting spectrum, see figure 17 to the supersymmetric mass formula ob-

tained in [24]. The prominent peaks clearly approach the supersymmetric line spectrum

from above. The same behavior was found in figure 7 of [33], where vector mesons were con-

sidered also close to the meson melting transition. Note that the accuracy of our numerics
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ns ∝ (1− T/Tc)
⇒
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Figure 11: Real part of conductivity, Re σ, in units of NfNcT/(16π) versus the dimensionless
frequency w = ω/(2πT ) for massless quarks computed from the adapted symmetrized trace pre-
scription. Distinct curves correspond to T/Tc = ∞ (black), 1(red), 0.5 (orange) and 0.28 (brown).
By decreasing the temperature below the critical one, a gap where the conductivity is approximately
zero appears which is a characteristic feature of a superconductor. In addition prominent peaks
arise.

peaks which we interpret as mesonic excitations below. Increasing the quark mass Mq

from zero to a finite value, these meson peaks become sharper, i.e. more quasiparticle-like.

This is reminiscent of results for condensed matter systems where prominent quasiparticle

peaks appear (e. g. [55]). In figure 12 at fixed µ/Mq = 3, the sharp resonances are also

present inside the gap. In contrast to the adapted symmetrized trace prescription, from

the expanded DBI action we obtain less prominent peaks as seen from figure 15. In the

conductivity obtained from the DBI action expanded to fourth order, the peaks do not

appear until we approach small temperatures. We expect that the terms higher order in

the field strength dominate the generation of the peaks and therefore the generation of the

meson mass. If the higher order terms discussed here are included, we presume that the

quasinormal modes which generate these peaks move closer to the real axis.

Using the Kramers-Kronig relation, which connects the real and imaginary part of the

complex conductivity, we find a delta peak at ω = 0 in the real part of the conductivity,

Re σ(ω) ∼ πnsδ(ω). The corresponding ns/ω-behavior in the imaginary part is visualized

in figure 14. As expected from Ginzburg-Landau theory, our numerics show that the

superconducting density ns vanishes linearly at the critical temperature, ns ∝ (1−T/Tc) for

T ≈ Tc. This field theory definition of the superconducting density ns yields a quantity with

the same linear scaling near Tc as found in our bulk definition (5.18) of the superconducting

density d̃s. This confirms that these two quantities may be identified. Our numerics indeed

indicate that d̃s and ns are proportional to each other.

Note that for translation invariant systems at finite density, there is a delta peak in the

real part of the conductivity even in a normal conducting phase since the charge carriers

cannot lose their momentum. This peak is called Drude peak. In our system, however, the

charge carriers can dissipate their momentum although our system is translation invariant

[56, 57]. The adjoint degrees of freedom can transfer momentum at order N2
c while the
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T =∞
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Re σ ∼ πnsδ(w)
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Figure 19: The line of critical magnetic field versus critical temperature. Below this line the
external magnetic field coexists with the superconducting condensate. Above the line the super-
conducting condensate vanishes. We set the spatial position arbitrarily to x̃ = 0.1 since the critical
line does not depend on x̃.

We succeed in finding numerical solutions g(ρ) and A3
0(ρ) to the set of equations (7.11)

obeying the asymptotics given by equations (7.12) and (7.13). These numerical solutions

are used to approach the phase transition from the superconducting phase by increasing the

magnetic field. We map out the line of critical temperature-magnetic field pairs in figure

19. In this way we obtain a phase diagram displaying the Meissner effect. The critical line

in figure 19 separates the phase with and without superconducting condensate d̃1
3.

We emphasize that this is a background calculation involving no fluctuations. Com-

plementary to the procedure described above we also confirmed the phase diagram using

the instability of the normal phase against fluctuations. Starting at large magnetic field

and vanishing condensate d̃1
3, we determine for a given magnetic field H3

3 the tempera-

ture Tc(H3
3 ) at which the fluctuation a3

1 becomes unstable. That instability signals the

condensation process into the superconducting phase.

The presence of the coexistence phase below the critical line, where the system is still

superconducting despite the presence of an external magnetic field, is the signal of the

Meissner effect in the case of a global symmetry considered here. If we now weakly gauged

the flavor symmetry at the boundary, the superconducting current J1
3 would generate a

magnetic field opposite to the external field. Thus the phase observed is a necessary

condition in the case of a global symmetry for finding the standard Meissner effect when

gauging the symmetry.

8. Discussion and Outlook

We found a holographic realization of superconductivity in the context of gauge/gravity

duality with flavor at finite isospin chemical potential, for which the field theory action

is known explicitly. The condensation process corresponds to a recombination of strings

which leads to a thermodynamically favored configuration. On the field theory side, this

new state may be interpreted as a ρ meson superfluid. We show that the superconducting
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Remnant of Meissner-
Ochsenfeld effect

! Magnetic fields can destroy 
the superfluid state.

! Only for small magnetic 
field, magnetic field and 
condensate can coexist.

! If symmetry was gauged, 
superconducting current 
would generate magnetic 
field      magnetic field 
would be expelled.
⇒

Superfluid

Normal fluid



Summary

! Realization of holographic p-wave superfluids by 
black holes with vector hair

! Order of transition depends on number of charged 
degrees of freedom

! Embedding into string theory:
     Superfluidity in explicit field theory
     Pairing Mechanism in string terms
⇒
⇒



Outlook

! May shed light on:

meson superfluids and non-conventual 
superconductors due to QCP

! Can study additional properties:

hydrodynamic transport, response to 
non-zero superfluid velocities, ...
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Figure 30: A sketch of the positions and movements of the quasinormal modes under
changes of d̃. Color indicates the function: red = Y , green = X , blue = E3. The symbols
indicate the range of d̃: ◦ < d̃crit, • = d̃crit, ! > d̃crit. Poles in the gray region introduce
instabilities.

Figure 31: Contour plot of the spectral function for Y around w = 0 in the complex
w-plane. Left: d̃ = 10 < d̃crit, center: d̃ = 15.352 = d̃crit, right: d̃ = 20.704 > d̃crit. The
three graphs where generated for m = 3, dark shading indicates small values of R, light
shading indicates large values. A pole in the upper half plane introduces an instability.

the upper half plane. The E3-mode does not enter the upper half plane at any
value of d̃ we considered. Compare this to the values of d̃ in fig. 27 and fig. 28
at which the pole induces visible structures at small w. A comparable movement
of poles in a different but related setup was found in [65]. There the quasinormal
modes of correlation functions of electromagnetic currents were investigated as a
function of temperature.

In the following we interpret the observation of decaying mesons and the emer-
gence of a new peak in the spectral function in terms of field theory quantities.
In particular we speculate on a new phase in the phase diagram for fundamental
matter in the D3/D7 setup.

In the far UV, the field theory dual to our setup is supersymmetric, thus
containing scalars as well as fermions, both of which contribute to the bound
states we identified with mesons, even when supersymmetry is eventually broken.
The meson decay at non-vanishing particle densities may be explained by the
change of the shape of the potential for the scalars in the field theory upon the

52

Quasinormal modes
in normal phase

e−iw = e+Imwe−iRew

Fourier decomposition:



built from massive quarks (e. g. [33]). Thus we observe a dynamical mass generation for

the mesons as described in the following subsection.

n = 0

n = 1

n = 0

n = 1

n = 0

Re w
Im w

Figure 18: Movement of quasinormal modes under changes of the temperature T : The different
colors indicate the different fluctuations X (red), Y (green) and a3

2 (blue). The higher excitations
of the fields X and Y behave as excitations with a non-zero quark mass. This indicates a dynamical
generation of the meson mass.

6.3.4 Dynamical mass generation

In this section we discuss dynamical mas generation on the field theory and on the gravity

side. For this issue, it is important to distinguish between the cases where the broken

symmetry is global or local in the boundary field theory.

Field theory observation As explained in section 3.2, the superconducting condensate

breaks the U(1)3 symmetry spontaneously in the field theory living on the AdS boundary.

According to the Goldstone theorem this generates one massless Nambu-Goldstone boson

in the boundary field theory. Let us now discuss the two different cases:

Local U(1)3 symmetry: If the broken symmetry is gauged, the Nambu-Goldstone boson

is eaten by the gauge field A3 charged under the spontaneously broken U(1)3 sym-

metry. In conventional superconductors this mechanism gives mass to the photons

which implies the Meissner-Ochsenfeld effect.

Global U(1)3 symmetry: If the broken symmetry is global, there is no dynamical gauge

field which eats the Nambu-Goldstone boson. Thus the Nambu-Goldstone boson

remains present in the spectrum. Since this is the case in our setup, we need to iden-

tify this Nambu-Goldstone boson in the spectrum. In general, the Nambu-Goldstone

boson corresponds to the phase of the condensate which parametrizes the the coset

space U(1)3/Z2. In our setup, the fluctuations X and Y defined above (6.12) are

charged under the U(1)3 symmetry such that the Nambu-Goldstone boson can be

found in these fluctuations (see fig. 18).

Although in our case the broken symmetry is global, we nevertheless observe dynam-

ical mass generation as see for instance in figures 16 and 18. Therefore in our setup, a

more subtle mechanism then the ordinary Higgs mechanism generates the meson masses

dynamically. Let us explain this mechanism in the dual gravity setup.
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Quasinormal modes in 
superfluid phase


