Hadrons as Holograms

Hilmar Forkel, HU Berlin

HF, T. Frederico, M. Beyer, JHEP 07 (2007) 077, IJMPE 16 (2007) 2794, ... + W. de Paula, PRD 79 (2009) 075019; HF, PRD 78 (2008) 025071; HF, E. Klempt, PLB 679 (2009) 77

Gauge/string correspondence and `AdS/QCD'

Meson & baryon spectra, lin. Regge trajs.

Diquark correlations in baryons

Dynamical AdS/QCD

Hadron correlators, espec. glueballs

Wrapping up...

Hilmar Forkel

HU Berlin

Gauge/string correspondence in a (tiny) nutshell

2 equivalent descriptions of $E \ll 1/l_s$ excitations of $N_c \gg 1$ D3-branes:

1) Open m=0 string modes on D3s :

 $\begin{array}{l} \lambda = {} gN_c \rightarrow 0 \text{:} \quad G_{(10)} \sim g^2 \, I_s{}^8 \rightarrow 0 \text{:} \\ \text{little distortion of metric: (almost) flat} \\ \text{closed strings & bulk fields decouple,} \\ + \text{ open string modes } (m \neq 0 \text{ inaccessible}) \rightarrow \end{array}$

(S)U(N_c) (S)Yang-Mills fields on D3s, strongly coupled (+...)

2) SUGRA soln. sourced by branes:

λ≫1: metric`throat´, ends at horizon, in far region: flat, gravity decoupled,
+ near horizon: fin. E excits. redshifted at ∞, cannot escape from horizon

Graviton- & other excits. in AAdS₅ x X⁵, weakly coupled (+...)

AAdS₅ bulk backgrounds expected for QCD

3

Hadron dual-modes: rad. & orbital excitations in AAdS₅

⇔

Example: vector bulk modes:

 $V_{z}\left(x,z\right) = f_{V}\left(z\right)\varepsilon_{z}e^{-iPx}$

→ **bulk vector equation:** with (Polchinski, Strassler) bc:

$$f_i(z) \xrightarrow{z \to 0} z^{\tau_i}, \qquad \tau_i = \Delta_i - \sigma_i$$

⇒ Sturm-Liouville problem:

$$\left[-\partial_{z}^{2}+V_{M}\left(z\right)\right]\varphi\left(z\right)=M_{M}^{2}\varphi\left(z\right)$$

Analog. for spin-0 mesons, baryons:

$$\begin{split} V_{S}\left(z\right) &= \frac{3}{2} \left[A'' + \frac{3}{2} A'^{2} - 3\frac{A'}{z} + \frac{5}{2} \frac{1}{z^{2}} \right] + m_{5,S}^{2} R^{2} \frac{e^{2A}}{z^{2}}, \\ V_{B,\pm}\left(z\right) &= m_{5,B} R \frac{e^{A}}{z} \left[\pm \left(A' - \frac{1}{z}\right) + m_{5,B} R \frac{e^{A}}{z} \right] \end{split}$$

Hilmar Forkel

dual to QCD meson interpolator:

$$\mathcal{O}_{M,\bar{\tau}=L+2} = \bar{q}\gamma^{\mu}D_{\{\ell_1}\dots D_{\ell_m\}}q$$

$$\left[\partial_{z}^{2} + 3\left(A' - \frac{1}{z}\right)\partial_{z} + 3\left(A'' + \frac{1}{z^{2}}\right) - \left(m_{5,V}R\frac{e^{A}}{z}\right)^{2} + M^{2}\right]f_{V}(z) = 0.$$

$$V_V\left(z\right) = \frac{3}{2} \left[-A'' + \frac{3}{2}A'^2 - 3\frac{A'}{z} + \frac{1}{2}\frac{1}{z^2} \right] + m_{5,V}^2 R^2 \frac{e^{2A}}{z^2}$$

AdS/CFT dictionary sets bcs. \Rightarrow

$$m_{5,S}^2 R^2 = \bar{\tau}_M (\bar{\tau}_M - 4) = L^2 - 4,$$

$$m_{5,V}^2 R^2 = \bar{\tau}_M (\bar{\tau}_M - 4) + 3 = L^2 - 1,$$

$$m_{5,B} R = \bar{\tau}_B - 2 = L + 1,$$

Trajectory structure in the light hadron spectrum

Simplest dual models, based on Polchinski-Strassler's 'hard wall':

Linear trajectories in the baryon spectra

How to obtain observed meson & baryon trajs. with universal slope? Addtl. bulk fields necessary, or 5d metric background sufficient?

(Affirmative) answer constructively: assume only background metric, check whether A can be constructed such that desired spectra arise!

Construction of metric for univ. lin. trajectory spectra

Lin. Trajectories require oscillator-type Sturm-Liouville potentials

Univ. slopes can be obtained from AdS₅ 1/z² potentials via: $\bar{\tau}_i \rightarrow \bar{\tau}_i + \lambda^2 z^2$.

$$V_M^{(\text{LT})}(z) = \left[\left(\lambda^2 z^2 + L \right)^2 - \frac{1}{4} \right] \frac{1}{z^2} \qquad V_{B,\pm}^{(\text{LT})}(z) = \left\{ (L+1)\left(L+1\mp 1\right) + \left[2\left(L+1\right)\pm 1\right]\lambda^2 z^2 + \lambda^4 z^4 \right\} \frac{1}{z^2} \right\}$$

Derive dual geometry by equating to gen.-A potentials \Rightarrow ODEs for A(z), \exists unique warp factor solutions A(z):

Resulting spectra and properties

Dual eigenmodes and mass spectra (obtained analytically):

- Lin. trajectories of universal slope in baryon sector, too
- Encoded via AdS₅ IR deform. (orbital flucts. backreacted?)
- Dual confinement signatures (metric singularities)
- New relations between slopes and ground state masses

Diquark correlations in light baryons holographically

Nucleon excitations improved by incl. diquark-content dependent anomalous dims of interpolators

$$\eta_t(x) = 2 \left[\eta_{pd}(x) + t \eta_{sd}(x) \right]$$

$$\eta_{pd} = \varepsilon_{abc} (u_a^T C d_b) \gamma^5 u_c$$
$$\eta_{sd} = \varepsilon_{abc} (u_a^T C \gamma^5 d_b) u_c$$

⇒ string-mode mass corrections:

$$\Delta m_5^{(\kappa_{\rm gd})} = \gamma_t^{(\kappa_{\rm gd})} = \frac{\Delta M_{\kappa_{\rm gd}}^2}{4\lambda^2 R}$$

dep. on "good-diquark fraction" κ !

$$M_{N,L}^{2} = M_{N,L+\Delta m_{5}R}^{(\text{ms})2} = 4\lambda^{2} \left(N + L + \frac{3}{2} \right) + \Delta M_{\kappa_{\text{gd}}}^{2}.$$

L, N	Kgd	Resonance	:				Pred.
0, 0	$\frac{1}{2}$	N(940)				input:	0.94
0, 0	0	$\Delta(1232)$					1.27
0, 1	$\frac{1}{2}$	N(1440)					1.40
1, 0	1/4	N(1535)	N(1520)				1.53
1, 0	0	N(1650)	N(1700)	N(1675)			1.64
1, 0	0	$\Delta(1620)$	$\Delta(1700)$		L, N = 0, 1:	$\Delta(1600)$	1.64
2, 0	$\frac{1}{2}$	N(1720)	N(1680)		L, N = 0, 2:	N(1710)	1.72
2, 0	0	N(1900)	N(1990)	N(2000)	$\Delta(1910)$	$\Delta(1920)$	1.92
2, 0	0	$\Delta(1905)$	$\Delta(1950)$	$\Delta(1900)^{\bullet}$	$\Delta(1940)^{*}$	$\Delta(1930)^{*}$	1.92
0, 3	$\frac{1}{2}$	N(2100)					2.03
3, 0	$\frac{1}{4}$	N(2070)	N(2190)	L, N = 1, 2:	N(2080)	N(2090)	2.12
3, 0	0	N(2200)	N(2250)	$\Delta(2223)$	$\Delta(2200)$	L, N = 1, 2:	2.20
						$\Delta(2150)$	
4, 0	$\frac{1}{2}$	N(2220)					2.27
4, 0	ō	$\Delta(2390)$	$\Delta(2300)$	$\Delta(2420)$	L, N = 3, 1:	$\Delta(2400)$	2.43
						$\Delta(2350)$	
5,0	$\frac{1}{4}$	N(2600)					2.57
6, 0	$\frac{1}{2}$	N(2700)					2.71
6, 0	0	$\Delta(2950)$			L, N = 5, 1:	$\Delta(2750)$	2.84

$$\Delta M^2_{\kappa_{\rm gd}} = -2 \big(M^2_\Delta - M^2_N \big) \kappa_{\rm gd}$$

Manifestly simple spectrum, reprod. all 48 observed N res. better than quark models !

Regge trajectories in a dynamical AdS/QCD dual

$$S = \frac{1}{2\kappa^2} \int d^5x \sqrt{|g|} \left(-R + \frac{1}{2} g^{MN} \partial_M \Phi \partial_N \Phi - V(\Phi) \right),$$

 $\phi = \phi(z)$ and $g_{AAdS5} \rightarrow$ Einstein-dilaton eqs.:

$$6A^{\prime 2} - \frac{1}{2}\Phi^{\prime 2} + e^{-2A}V(\Phi) = 0,$$
$$3A^{\prime \prime} - 3A^{\prime 2} - \frac{1}{2}\Phi^{\prime 2} - e^{-2A}V(\Phi) = 0$$

$$\Phi'' - 3A'\Phi' - e^{-2A}\frac{dV}{d\Phi} = 0$$

Find UV-conformal solution for ϕ , $V(\phi)$ with area-law gen. warp factor

$$A(z) = \ln z + C(z)$$

$$C(z) = \frac{1 + \sqrt{3}}{2S + \sqrt{3} - 1} \frac{(z\Lambda_{QCD})^2}{1 + e^{(1 - z\Lambda_{QCD})}}$$

$$\rightarrow Mass spectra$$

$$m_{n,S}^2 \simeq \frac{1}{10}(11n + 9S - 9),$$

Pert. Log. Corrections can be included in C...

HU Berlin

Glueball correlators: calculational strategy

On-shell action: insert solutions $\varphi(x,z)$ subject to boundary source $\varphi^{(s)}(x)$, i.e.

$$\varphi(x,z) = \int \frac{d^4q}{(2\pi)^4} e^{-iqx} \hat{K}(q,z) \int d^4x' e^{iqx'} \varphi^{(s)}(x')$$

where **K** is the bulk-to-boundary propagator

$$\hat{K}(q,z) = -\frac{R^{3}}{\varepsilon^{3}} \sum_{n} \frac{\psi_{n}'(\varepsilon) \psi_{n}(z)}{q^{2} - m_{n}^{2} + i\varepsilon'}$$

into the bulk action

$$S\left[\varphi;g,\Phi\right] = \frac{1}{2\kappa^2} \int d^{d+1}x \sqrt{|g|} e^{-\Phi} g^{MN} \partial_M \varphi \partial_N \varphi$$

2 funct. derivatives of exp. of on-shell bulk action wrto. $\varphi^{(s)} \Rightarrow$

$$\hat{\Pi}\left(-q^{2}\right) = -\frac{R^{3}}{\kappa^{2}} \left[\frac{e^{-\Phi(z)}}{z^{3}}\hat{K}\left(q,z\right)\partial_{z}\hat{K}\left(q,z\right)\right]_{z=\varepsilon \to 0}$$

Glueball correlators in "hard- and soft-wall" duals

Hard-wall correlator (IR brane at z=z_m):

Dilaton soft-wall correlator ($\phi = \lambda^2 z^2$):

 $\hat{\Pi}(Q^{2}) = \frac{R^{3}}{8\kappa^{2}}Q^{4} \left[2\frac{K_{1}(Qz_{m})}{I_{1}(Qz_{m})} - \ln\left(\frac{Q^{2}}{\mu^{2}}\right)\right]$

$$\hat{\Pi}\left(Q^{2}\right) = -\frac{2R^{3}}{\kappa^{2}}\lambda^{4}\left[1 + \frac{Q^{2}}{4\lambda^{2}}\left(1 + \frac{Q^{2}}{4\lambda^{2}}\right)\psi\left(\frac{Q^{2}}{4\lambda^{2}}\right)\right]$$

Spectral representation:

$$\hat{\Pi}\left(Q^{2}\right) = \int_{m_{1}^{2}}^{\infty} ds \frac{\rho\left(s\right)}{s+Q^{2}}$$

with spect. density ρ :

 $\frac{R^3}{\kappa^2} = \frac{2\left(N_c^2 - 1\right)}{\pi^2}.$

 \Rightarrow both correlators have $\rho \geq 0$, mass gap, zero-width Gb poles \leftrightarrow large N_c:

Hard wall:
$$\rho(s) = \frac{R^3}{2\kappa^2 z_m^2} s^2 \sum_{n=1}^{\infty} \frac{\delta\left(s - m_n^2\right)}{J_0^2(j_{1,n})}$$
 \Rightarrow $m_n^{(N)} = \frac{j_{1,n}}{z_m}$ lin. "pomeron" trajectory!Soft wall: $\rho(s) = \frac{\lambda^2 R^3}{2\kappa^2} s\left(s - m_0^2/2\right) \sum_{n=0}^{\infty} \delta\left(s - m_n^2\right)$ \Rightarrow $m_n^2 = 4\left(n + 2\right) \lambda^2$ Hilmar ForkelHU Berlin12

Hard-wall content: small-instanton contributions

At large $Q \gg z_m^{-1}$ npert. Q dependence becomes exponential:

$$\hat{\Pi}^{(np)}\left(Q^{2}\right) \equiv \frac{R^{3}}{4\kappa^{2}} \frac{K_{1}\left(Qz_{m}\right)}{I_{1}\left(Qz_{m}\right)} Q^{4}$$
$$\stackrel{Qz_{m}\gg1}{\longrightarrow} \frac{1}{\pi} \left[1 + \frac{3}{4} \frac{1}{Qz_{m}} + O\left(\frac{1}{\left(Qz_{m}\right)^{2}}\right)\right] Q^{4} e^{-2Qz_{m}}$$

→ No power corrections (expected to be weak from QCD-OPE!)!
 → LET trivially satisfied (no anomaly, no gluon condensate...)

Compare with small-scale QCD instanton contribution to OPE:

$$\hat{\Pi}^{\left(I+\bar{I}\right)}\left(Q^{2}\right) \stackrel{Q\bar{\rho}\gg1}{\longrightarrow} 2^{4}5^{2}\pi\zeta\bar{n}\left(Q\bar{\rho}\right)^{3}e^{-2Q\bar{\rho}}$$

$$\bar{\rho} \simeq z_m, \qquad \bar{n} \simeq \frac{3}{2^4 5^2 \pi^2 \zeta} \frac{1}{z_m^4}, \qquad \qquad \rho^{(\text{hw})} \le z_m \sim \mu^{-1}$$

Crucial small-instanton contribs. (semi-quant.) reproduced!

Hilmar Forkel

HU Berlin

Soft-wall dynamcis: power corrections, UV gluon mass

Asymptotic expansion for $Q^2 \gg \lambda^2 \cong \Lambda^2$:

$$\hat{\Pi} \left(Q^2 \right) = -\frac{2R^3}{\kappa^2} \lambda^4 \left[1 + \frac{Q^2}{4\lambda^2} \left(1 + \frac{Q^2}{4\lambda^2} \right) \left(\ln \frac{Q^2}{4\lambda^2} - \frac{2\lambda^2}{Q^2} - \sum_{n=1}^{\infty} \frac{B_{2n}}{2n} \left(\frac{4\lambda^2}{Q^2} \right)^{2n} \right) \right] \\ = -\frac{2}{\pi^2} Q^4 \left[\ln \frac{Q^2}{\mu^2} + \frac{4\lambda^2}{Q^2} \ln \frac{Q^2}{\mu^2} + \frac{2^{25}}{3} \frac{\lambda^4}{Q^4} - \frac{2^4}{3} \frac{\lambda^6}{Q^6} + \frac{2^5}{15} \frac{\lambda^8}{Q^8} + \dots \right]$$

Contains all OPE power corrections:

Even addtl. term expected in QCD from UV-ren., gluon mass, 2d-nonlocal cond. :

$$\begin{split} \left\langle G^2 \right\rangle \simeq & \bigodot{10 \over 3\pi^2} \lambda^4, \\ \left\langle gG^3 \right\rangle \simeq & \frac{4}{3\pi^2} \lambda^6, \\ \left\langle G^4 \right\rangle \simeq & -\frac{8}{15\pi^3 \alpha_s} \lambda^8. \end{split}$$

$$\hat{\Pi}^{(\text{CNZ})}(Q^2) = -\frac{2}{\pi^2}Q^4 \ln \frac{Q^2}{\mu^2} \left(1 + 6\frac{\bar{\lambda}^2}{Q^2} + \dots\right)$$

 $\lambda^{*} \simeq \frac{-}{3} \lambda^{2}$

Leading coeff. has sign opposite to QCD, LET → artefact of strong-coupl. UV! Hilmar Forkel HU Berlin 14

Glueball decay constants

Glueball observables beyond spectrum (expt. glueball signatures,...):

$$f_{n} := \frac{1}{m_{n}^{2}} \left\langle 0 \left| \mathcal{O}_{S} \left(0 \right) \right| 0_{n}^{++} \right\rangle \quad \text{where} \qquad \mathcal{O}_{S} \left(x \right) = G_{\mu\nu}^{a} \left(x \right) G^{a,\mu\nu} \left(x \right),$$

Contain crucial information on Gb structure (size!): `WF at origin'
$$x \rightarrow 0$$
:

$$\chi_n(x) = \left\langle 0 \left| 2 \operatorname{tr} \left\{ G_{\mu\nu} \left(-\frac{x}{2} \right) U \left(-\frac{x}{2}, \frac{x}{2} \right) G^{\mu\nu} \left(\frac{x}{2} \right) \right\} \right| 0_n^{++} \right\rangle$$

Existing QCD information:

- older lattice evidence: except. small 0⁺⁺ size (via BS ampl.)
- conflicting predictions of QCD sum rule analyses:
 - neglect npert. Wilson coeffs. (Narison): $f_S = 0.390 \pm 0.15$ GeV
 - include npert. (small inst.) Wilson coeffs. (HF): $f_S = 1.050 \pm 0.10$ GeV
- instanton liquid model (Schäfer, Shuryak) $f_S \cong 0.8$ GeV
- (quenched) lattice (Chen et al. 2006): $f_s = 0.86 \pm 0.18$ GeV

Decay constants holographically

Hard wall (expected to represent more relevant Gb physics):

$$f_n = \lim_{\varepsilon \to 0} \frac{R^3}{\kappa m_n^2} \frac{\psi'_n(\varepsilon)}{\varepsilon^3} = \frac{N_n}{2} \frac{R^3}{\kappa} m_n^2 \qquad \Rightarrow \qquad f_S^{\text{(hw)}} \simeq 0.8 - 0.9 \text{ GeV},$$

Consistent with ILM, IOPE sum rules & lattice results

Hilmar Forkel

HU Berlin

Summary and conclusions

Hadron spectra:

- Linear Regge-type trajectories of universal slope for mesons AND baryons
- Minimal `metric soft wall': encoded solely via IR deformed AdS5 metric
- New relations between trajectory slopes and ground-state masses
 - Diquark effects can enter via anom. dims. of baryon interpolators
 - Decisively improve predictions for light baryon spectra!
 - Backreacted 5d Einstein-dilaton solution: generates area law,
 - Vector meson excitations with linear trajectories dynamically!

Hadron correlators:

Detailed, quantitative testing ground \rightarrow generates new insights:

- → In comparison with QCD-OPE: map impact of strongly-coupled UV
- → Hard/soft wall duals contain complementary gauge/QCD physics
- → (beyond spectra) Predictions of glueball decay constants, coupls.
- → Suggests systematic bottom-up improvement strategies