SYNCHROTRON RADIATION IN STRONGLY COUPLED CONFORMAL FIELD THEORIES

Dominik Nickel
Institute of Nuclear Theory, Seattle

C.Athanasiou, P. Chesler, H. Liu, DN, K. Rajagopal arXiv:I00I. 3880

W

OUTLINE

- motivation: patterns of radiation
- gauge/gravity duality
- synchrotron radiation
- outlook

RADIATION IN CLASSICAL ELECTRODYNAMICS

- accelerated charge radiates

$$
\frac{d P}{d \Omega}=\frac{e^{2}}{4 \pi} a^{2} \sin ^{2} \theta
$$

\Rightarrow total power radiated (energy loss)

$$
P=\frac{2}{3} \frac{e^{2}}{4 \pi} a^{2}
$$

\Rightarrow free propagation of radiation (distribution of power)

RADIATION IN GAUGE THEORIES? - JETS

factorization in jet production

$$
e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow \text { hadrons }
$$

- hard production process
- showering
- hadronization

understanding from first principles challenging?

CONFORMAL COLLIDER PHYSICS

D. Hofman, J. Maldacena [arXiv:0803.1467]
study decay of off-shell bosons in a strongly coupled CFT

quantities of interest:

$$
\begin{aligned}
\langle\mathcal{E}(\hat{r})\rangle & =\lim _{r \rightarrow \infty} r^{2} \int d t\langle\psi(t)| \hat{r} \cdot \mathbf{S}|\psi(t)\rangle \\
\left\langle\mathcal{E}(\hat{r}) \mathcal{E}\left(\hat{r}^{\prime}\right)\right\rangle & =\ldots
\end{aligned}
$$

> key result: all N-point functions isotropic!

CONFORMAL COLLIDER PHYSICS

D. Hofman, J. Maldacena [arXiv:0803.1467]
study decay of off-shell bosons in a strongly coupled CFT

quantities of interest:

$$
\langle\mathcal{E}(\hat{r})\rangle=\lim _{r \rightarrow \infty} r^{2} \int d t\langle\psi(t)| \hat{r} \cdot \mathbf{S}|\psi(t)\rangle
$$

$$
\left\langle\mathcal{E}(\hat{r}) \mathcal{E}\left(\hat{r}^{\prime}\right)\right\rangle=\ldots
$$

> key result: all N-point functions isotropic! no jets at strongly coupling?

WHERE DOES THE ISOTROPY COME FROM?

- choice of initial conditions?
- propagation through strongly coupled vacuum?
parton branching picture:
Y. Hatta, E. lancu,A. Mueller [arXiv:0803.248I]

WHERE DOES THE ISOTROPY COME FROM?

- choice of initial conditions?
- propagation through strongly coupled vacuum?
parton branching picture:
Y. Hatta, E. lancu,A. Mueller [arXiv:0803.248I]

weak coupling

strong coupling

A SIMPLE EXPERIMENT

radiating source in compact domain

- real-time propagation
- power spectrum at infinity
- depletion of short-wavelength modes?

concentrate on theories with classical gravity dual
>exact solution for synchrotron radiation<

ADS/CFT

Maldacena's conjecture:

string theory on aymptotic $A d S_{5} \times X^{5}$ classical gravity
 $4 d$ (supersymmetric) CFT large $\quad N_{c}, \lambda$

geometrical realization / 'dictionary':

gravity in 5d	4d CFT
gravitational fields	source for stress-energy tensor
gauge fields	source for global currents
open strings	
black hole	quarks
$S_{\text {gravity }}[\phi]=S_{\text {gravity }}^{\text {boundary }}\left[\phi_{0}\right]=S_{\mathrm{CFT}}\left[\phi_{0}\right]$	

A PICTORIAL PRESENTATION OF HOLOGRAPHY

deformation of background near
boundary encodes relevant information for CFT

(cartoon for illustrative purposes only; courtesy of P. Chesler)

background deformation

- similarity to induced surface charge on a conductor
- deformations from $A d S_{5}$ in bulk give different ensembles

A PICTORIAL PRESENTATION OF HOLOGRAPHY

deformation of background near boundary encodes relevant information for CFT
(cartoon for illustrative purposes only; courtesy of P. Chesler)

- similarity to induced surface charge on a conductor
- deformations from $A d S_{5}$ in bulk give different ensembles

THE GRAVITATIONAL SETUP

AdS background:

$$
d s^{2}=\frac{L^{2}}{u^{2}}\left(-d t^{2}+d \mathbf{x}^{2}+d u^{2}\right)
$$

\Rightarrow rotating string $X^{\mu}(\sigma, \tau)$
\Rightarrow gravitational waves $h_{\mu \nu}(x)$ towards boundary
\Rightarrow stress-energy tensor/energy density

$$
T^{\mu \nu}(x)=\lim _{u \rightarrow 0} \frac{2}{\sqrt{-g}} \frac{\delta S_{\text {gravity }}}{\delta h_{\mu \nu}(x)}
$$

simplification: $G_{\text {Newton }} \sim 1 / N_{c}^{2} \rightarrow$ gravitational response linear

THE ROTATING STRING

- Nambu-Goto action in AdS background:

$$
S_{\mathrm{NG}}=-T_{0} \int d t d u \sqrt{-\operatorname{det}\left(\gamma_{a b}\right)}, \quad \gamma_{a b}=G_{\mu \nu}^{\mathrm{AdS}} X^{\mu} X^{\nu}
$$

- parameterization of worldsheet: $\quad X^{\mu}=\left(t, R(u), \pi / 2, \phi(u)+\omega_{0} t, u\right)^{\mu}$
- equations of motion:

$$
\begin{aligned}
& R^{\prime \prime}=-\frac{R\left(u+2 R R^{\prime}\right)\left(1+R^{\prime 2}\right)}{u\left(u^{4} \Pi^{2}-R^{2}\right)}-\frac{1+R^{\prime 2}}{R\left(1-\omega_{0}^{2} R^{2}\right)}, \\
& \phi^{\prime 2}=\frac{u^{4} \Pi^{2}\left(1-\omega_{0}^{2} R^{2}\right)\left(1+R^{\prime 2}\right)}{R^{2}\left(R^{2}-u^{4} \Pi^{2}\right)} .
\end{aligned}
$$

- additional constraint: $\quad 1-\omega_{0}^{2} R\left(u_{\Lambda}\right)^{2}=0 \quad \Leftrightarrow \quad R\left(u_{\Lambda}\right)^{2}-u_{\Lambda}^{2} \Pi^{4}=0$
- therefore only one constant of integration: $R_{0} \equiv R(u=0)$

THE ROTATING STRING

- Nambu-Goto action in AdS background:

$$
S_{\mathrm{NG}}=-T_{0} \int d t d u \sqrt{-\operatorname{det}\left(\gamma_{a b}\right)}, \quad \gamma_{a b}=G_{\mu \nu}^{\mathrm{AdS}} X^{\mu} X^{\nu}
$$

- parameterization of worldsheet: $\quad X^{\mu}=\left(t, R(u), \pi / 2, \phi(u)+\omega_{0} t, u\right)^{\mu}$
- equations of motion:

$$
\begin{aligned}
& R^{\prime \prime}=-\frac{R\left(u+2 R R^{\prime}\right)\left(1+R^{\prime 2}\right)}{u\left(u^{4} \Pi^{2}-R^{2}\right)}-\frac{1+R^{\prime 2}}{R\left(1-\omega_{0}^{2} R^{2}\right)}, \\
& \phi^{\prime 2}=\frac{u^{4} \Pi^{2}\left(1-\omega_{0}^{2} R^{2}\right)\left(1+R^{\prime 2}\right)}{R^{2}\left(R^{2}-u^{4} \Pi^{2}\right)} .
\end{aligned}
$$

- additional constraint: $1-\omega_{0}^{2} R\left(u_{\Lambda}\right)^{2}=0 \Leftrightarrow R\left(u_{\Lambda}\right)^{2}-u_{\Lambda}^{2} \Pi^{4}=0$
- therefore only one constant of integration: $R_{0} \equiv R(u=0)$
- solution (remarkable luck!):

$$
R(u)=\sqrt{R_{0}^{2}+\frac{v^{2} u^{2}}{\sqrt{1-v^{2}}}}, \quad \phi(u)=-\frac{u \omega_{0}}{\sqrt{1-v^{2}}}+\arctan \left(\frac{u \omega_{0}}{\sqrt{1-v^{2}}}\right)
$$

- bonus: energy loss from flux on string A. Mikhailov [hep-th/0305196]

$$
E=-\pi_{t}^{u} \equiv \frac{\delta S_{\mathrm{NG}}}{\delta \partial_{u} X^{t}}=\frac{\lambda}{2 \pi}\left(\frac{R_{0} \omega_{0}^{2}}{1-v^{2}}\right)^{2}
$$

GRAVITATIONAL WAVES AND GAUGE INVARIANTS

- linearized equations of motion for $G_{M N}=G_{M N}^{\mathrm{AdS}}+h_{M N}$ from

$$
R_{M N}-\frac{1}{2} G_{M N}(R+2 \Lambda)=8 \pi G_{\text {Newton }} t_{M N}^{\text {rotating string }}
$$

- decomposition into helicities: $\quad h_{M N}=h_{a}^{\text {tensor }} \mathbb{T}_{M N}^{a}+h_{a}^{\text {vector }} \mathbb{V}_{M N}^{a}+h_{a}^{\text {scalar }} \mathbb{S}_{M N}^{a}$
- coordinate invariance/conservation laws: only one gauge invariant per helicity required
- scalar equation

$$
\begin{gathered}
\partial_{u}^{2} Z(u)-\frac{5}{u} \partial_{u} Z(u)+\left(-\partial_{t}^{2}+\nabla^{2}+\frac{9}{u^{2}}\right) Z(u)=S(u) \\
S(u) / L^{3}=-u^{2} \partial_{u}\left(\frac{t_{00}}{u^{2}}\right)+\frac{u}{6} \nabla^{2}\left(2 t_{00}-2 t_{55}+t_{i i}\right)-\frac{1}{2} u \nabla_{i} \nabla_{j} t_{i j}+\partial_{t} t_{05}+\nabla_{i} t_{i 5}
\end{gathered}
$$

- energy density:

$$
\mathcal{E}(t, \mathbf{r})=\lim _{u \rightarrow 0} \frac{Z(t, \mathbf{r}, u)}{u^{3}}
$$

ANALYTIC SOLUTION FOR ENERGY DENSITY

- retarded Green's function for desired boundary conditions:

$$
\mathcal{G}(t, \mathbf{r}, u)=\frac{1}{\pi u^{2}} \delta^{\prime}\left(-t^{2}+\mathbf{r}^{2}+u^{2}\right)
$$

- energy density via convolution:

$$
\begin{aligned}
\mathcal{E}(t, \mathbf{r})= & \int d t d \mathbf{r}^{\prime} \int_{0}^{\infty} d u \mathcal{G}\left(t-t^{\prime}, \mathbf{r}-\mathbf{r}^{\prime}, u\right) S\left(t^{\prime}, \mathbf{r}^{\prime}, u\right)+\text { regulators } \\
= & \frac{\sqrt{\lambda}}{24 \pi^{2} \gamma^{4} r^{6} \Xi^{6}}\left[-2 r^{2} \Xi^{2}+4 r \gamma^{2} \Xi\left(t_{\text {ret }}-t\right)+\left(2 \gamma^{2}-4 r^{2} v^{2} \gamma^{2} \omega_{0}^{2} \sin ^{2} \theta+3 r^{2} \gamma^{4} \omega_{0}^{2} \Xi^{2}\right)\left(t_{\text {ret }}-t\right)^{2}\right. \\
& \left.\quad+7 r \gamma^{2} \omega_{0}^{2} \Xi\left(t_{\text {ret }}-t\right)^{3}+4 \gamma^{2} \omega_{0}^{2}\left(t_{\text {ret }}-t\right)^{4}+8 v \gamma^{2} \omega_{0} r\left(t_{\text {ret }}-t\right)\left(t_{\text {ret }}-t+r \Xi\right) \sin \theta \cos \left(\varphi-\omega_{0} t_{\text {ret }}\right)\right]
\end{aligned}
$$

$$
\begin{gathered}
t-t_{\mathrm{ret}}-\left|\mathbf{r}-\mathbf{r}_{\mathrm{quark}}\left(t_{\mathrm{ret}}\right)\right|=0 \\
\Xi \equiv \frac{\left|\mathbf{r}-\mathbf{r}_{\mathrm{quark}}\left(t_{\mathrm{ret}}\right)\right|-\mathbf{r} \cdot \dot{\mathbf{r}}_{\mathrm{quark}}\left(t_{\mathrm{ret}}\right)}{r}
\end{gathered}
$$

$$
\mathbf{r}_{\text {quark }}=\text { quark's trajectory }, \quad \mathbf{r} \equiv\{r, \theta, \phi\}=\text { observer }, \quad \gamma=1 / \sqrt{1-v^{2}}
$$

- analytic solution up to $t_{\text {ret }}$ (as in electrodynamics)
- similar dependence on Ξ as in electrodynamics

ILLUSTRATION OF $\mathcal{E}(t, \mathbf{r})$

radial thickness: $\sim 1 / \gamma^{3}$, azimuthal thickness: $\sim 1 / \gamma$

BEHAVIOR IN FAR ZONE

- radiation does not broaden in far zone!
- similar struture as classical synchrotron radiation
- negative energy density quantum effects

GEOMETRICAL INTERPRETATION

GEOMETRICAL INTERPRETATION

- radiation in fixed relative direction and free without broadening propagation: spiral structure

GEOMETRICAL INTERPRETATION

- radiation in fixed relative direction and free without broadening propagation: spiral structure
- radiation in cone with width α : - when radiated in moving direction $\Delta \sim \alpha R_{0} / v-\alpha R_{0} \sim R_{0} / \gamma^{3}$ - otherwise $\Delta \sim \alpha R_{0}$

GEOMETRICAL INTERPRETATION

- radiation in fixed relative direction and free without broadening propagation: spiral structure
- radiation in cone with width α : - when radiated in moving direction $\Delta \sim \alpha R_{0} / v-\alpha R_{0} \sim R_{0} / \gamma^{3}$ - otherwise $\Delta \sim \alpha R_{0}$

Lesson: - radiation more or less isotropic in rest frame ($\alpha \sim 1 / \gamma$)

- free propagation without broadening
- strong similarities to ED/weak coupling regime

COMPARISON TO WEAK COUPLING AND ED

- time-averaged power distributions:

$$
\frac{d P}{d \Omega}=\frac{1}{T} \int_{t}^{t+T} d t^{\prime} \underbrace{\hat{\mathbf{n}} \cdot \mathbf{S}}_{\rightarrow r^{2} \mathcal{E}}
$$

- weak coupling: one vector and one scalar field coupling to $e_{\text {eff }}^{2}=\lambda / 2$

$$
\begin{aligned}
\frac{d P^{\lambda \ll 1}}{d \Omega} & \propto \frac{d P^{\text {vector }}}{d \Omega}+\frac{d P^{\text {scalar }}}{d \Omega} \\
\frac{d P^{\lambda \gg 1}}{d \Omega} & \propto \frac{d P^{\text {vector }}}{d \Omega}+2 \frac{d P^{\text {scalar }}}{d \Omega}
\end{aligned}
$$

- overall power radiated:

$$
P^{\lambda \ll 1}=\frac{5 \lambda}{12} \frac{a^{2}}{2 \pi} \quad \longleftrightarrow \quad P^{\lambda \gg 1}=\sqrt{\lambda} \frac{a^{2}}{2 \pi}
$$

different parametric dependence on coupling, but similar profiles

POSSIBLE EXTENSIONS

POSSIBLE EXTENSIONS

- finite temperature: competition between radiation and thermal diffusion -- laboratory for jet quenching?!

POSSIBLE EXTENSIONS

- finite temperature: competition between radiation and thermal diffusion -- laboratory for jet quenching?!

- solution for general acceleration at $\mathrm{T}=0$ - unlikely (due to memory effects)

$$
\begin{aligned}
\mathcal{E}(t, \mathbf{r})= & \frac{L^{3}}{\pi} \int d^{4} r^{\prime} \int_{0}^{\infty} d u \theta\left(t-t^{\prime}\right)\left[\left(4 u t_{00}-t_{M 5} \nabla_{M}^{\prime} \mathcal{W}\right) \frac{\delta^{\prime \prime}(\mathcal{W})}{u^{2}}\right. \\
& \left.+\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{2}\left(4 t_{00}-4 t_{55}+2 t_{i i}\right) \frac{\delta^{\prime \prime \prime}(\mathcal{W})}{3 u}-\left(t_{i j} \nabla_{i}^{\prime} \mathcal{W} \nabla_{j}^{\prime} \mathcal{W}\right) \frac{\delta^{\prime \prime \prime}(\mathcal{W})}{2 u}\right]
\end{aligned}
$$

POSSIBLE EXTENSIONS

- finite temperature: competition between radiation and thermal diffusion -- laboratory for jet quenching?!

- solution for general acceleration at $\mathrm{T}=0$ - unlikely (due to memory effects)

$$
\begin{aligned}
\mathcal{E}(t, \mathbf{r})= & \frac{L^{3}}{\pi} \int d^{4} r^{\prime} \int_{0}^{\infty} d u \theta\left(t-t^{\prime}\right)\left[\left(4 u t_{00}-t_{M 5} \nabla_{M}^{\prime} \mathcal{W}\right) \frac{\delta^{\prime \prime}(\mathcal{W})}{u^{2}}\right. \\
& \left.+\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{2}\left(4 t_{00}-4 t_{55}+2 t_{i i}\right) \frac{\delta^{\prime \prime \prime}(\mathcal{W})}{3 u}-\left(t_{i j} \nabla_{i}^{\prime} \mathcal{W} \nabla_{j}^{\prime} \mathcal{W}\right) \frac{\delta^{\prime \prime \prime}(\mathcal{W})}{2 u}\right]
\end{aligned}
$$

- (late-time) model for single jets - study $\mathcal{E}(t, \mathbf{x})$ for classes of string profiles

SUMMARY

- gauge/gravity duality nice tool to study real-time evolution
- synchrotron radiation solved analytically
\Rightarrow no isotropization observed
- hope/ideas for modeling jets

Thank you for your attention!

