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The physical problem

◮ Due to asymptotic freedom in non-Abelian gauge theories [Gross and Wilczek,
1973; Politzer, 1973] , hadronic matter is expected to undergo a change of state to
a deconfined phase at sufficiently high temperatures or densities [Cabibbo and
Parisi, 1975; Collins and Perry, 1974] .

◮ Extensive experimental investigation through heavy ion collisions since the
Eighties: first at AGS (BNL) and SPS (CERN), then at RHIC (BNL)

◮ Present experimental evidence from SPS and RHIC: a ‘A new state of matter’ has
been created [Heinz and Jacob, 2000, Arsene et al. , 2004; Back et al. , 2004;
Adcox et al. , 2004; Adams et al. , 2005] . . .

◮ . . . which behaves as an almost ideal fluid [Kolb and Heinz, 2003] (‘The most
perfect liquid observed in Nature’)

◮ Program to be continued with forthcoming experiments at LHC (CERN) and FAIR
(GSI)

◮ However, the theoretical understanding of the QCD plasma [Rischke, 2003] is still
far from complete . . .



Theoretical approaches - I

◮ Relativistic fluidodynamics is a successful phenomenological
description [Romatschke, 2009] , but is not derived from QCD first principles

◮ The perturbative approach in thermal gauge theory has a non-trivial mathematical
structure, involving odd powers of the coupling [Kapusta, 1979] , as well as
contributions from diagrams involving arbitrarily large numbers of loops [Linde,
1980; Gross, Pisarski and Yaffe, 1980] . . .

◮ . . . and shows poor convergence at the temperatures probed in
experiments [Kajantie, Laine, Rummukainen and Schr öder, 2002]

◮ Dimensional reduction [Ginsparg, 1980; Appelquist and Pisarski, 1981] to
EQCD and MQCD [Braaten and Nieto, 1995] , hard-thermal loop
resummations [Blaizot and Iancu, 2002] , and other effective theory
approaches [Kraemmer and Rebhan, 2004]

◮ Analytical progress in strongly interacting gauge theories: the AdS/CFT
conjecture [Maldacena, 1997] and related theories as possible models for the
non-perturbative features of QCD, including spectral [Erdmenger, Evans, Kirsch
and Threlfall, 2007] and thermal properties [Gubser and Karch, 2009]

◮ In the large-N limit, the Maldacena conjecture relates a strongly interacting gauge
theory to the classical limit of a gravity model



Theoretical approaches - II

◮ Numerical approach: Computer simulations of QCD regularized on a lattice allow
first-principle, non-perturbative studies of the finite-temperature plasma

◮ The lattice determination of equilibrium thermodynamic properties in SU(3) gauge
theory is regarded as a solved problem [Boyd et al. , 1996]

◮ In recent years, finite-temperature lattice QCD has steadily progressed towards
parameters corresponding to the physical point [Karsch et al. , 2000; Ali Khan et
al., 2001; Aoki et al. , 2005; Bernard et al. , 2006; Cheng et al. , 2007; Bazavov
et al. , 2009]—see also [DeTar and Heller, 2009] for a review of recent results

◮ Goals of this work: High-precision determination of the equilibrium thermodynamic
properties in SU(N ≥ 3) Yang-Mills theories, comparison with holographic models,
investigation of possible non-perturbative contributions to the trace anomaly—see
also [Bringoltz and Teper, 2005] and [Datta and Gupta, 2009] for related works
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Motivation, definition and scope - I

◮ QCD is the regnant theory of strong subnuclear interactions
◮ Very strong experimental evidence from processes at high energies, where,

thanks to asymptotic freedom, theorists can rely on perturbative calculations
◮ On the contrary, the main qualitative features of the low-energy domain of hadron

physics (confinement and chiral symmetry breaking) are non-perturbative in
nature

◮ Lattice QCD [Wilson, 1974] is the non-perturbative regularization of QCD
◮ Continuum fields replaced by a discrete set of variables
◮ Divergent integrals regularized through a finite cutoff, inversely proportional to the

lattice spacing a
◮ Amenable to numerical simulations
◮ Retains invariance under gauge transformations and a discrete subgroup of

rotations and translations
◮ Continuum physics recovered for lima→0 limV→∞
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Motivation, definition and scope - II

◮ A systematically improvable approach—no uncontrolled approximation involved
◮ Intrinsically non-perturbative, allows one to extract first principle QCD predictions

at strong coupling (e.g. hadron spectrum, running coupling αs , quark masses,
hadronic matrix elements relevant for the CKM matrix, deconfinement at high
temperature . . . )

◮ Based on the Feynman path integral formulation in Euclidean
spacetime—real-time processes, non-equilibrium thermal quantities, et c. are
typically dealt with indirectly

◮ Technically challenging (‘sign problem’) for systems at finite density
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Lattice formulation for Yang-Mills theories
◮ Discretize a finite hypervolume in Euclidean spacetime by a regular grid with finite

spacing a

a

◮ Transcribe gauge d.o.f. to lattice elements, build lattice observables
◮ Isotropic lattice action for the Yang-Mills theory:

S = β
X

2

„

1 − 1

N
Re Tr U2

«

, with: β =
2N

g2
0

ad−4

◮ Invariant under gauge transformations Uµ(x) → g(x)Uµ(x)g†(x + aµ̂)
◮ Naı̈ve continuum limit: The lattice action is equivalent to the continuum action, up

to O(a2) corrections
◮ Integration measure: DA is replaced by Πx,µdUµ(x)
◮ Numerical simulation (for a finite-hypervolume system): Sample configuration
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Including fermions
◮ Fermionic matter fields defined on the lattice sizes

Matter fields:
spinors on the sites

Gauge fields:

U  (x)µ

(x)ψ

a

group elements
on the oriented bonds

◮ Fermionic contribution to the lattice action:
Nf
X

q=1

X

x

8

<

:

mqψ̄(x)ψ(x) +
1

2a

X

µ

ψ̄(x)γµ

h

Uµ(x)ψ(x + aµ̂) − U†
µ(x − aµ̂)ψ(x − aµ̂)

i

9

=

;

◮ Exact analytical integration of the Grassmann variables leads to the determinant
of the Dirac matrix: large computational overhead

◮ Naı̈ve lattice discretization yields 2d doublers:

mq + (i/a)
X

µ

γµ sin(pµa)

◮ Wilson’s fix: Include a higher-dimensional operator to remove 2d − 1 doublers (but
chiral symmetry for mq = 0 is lost)

◮ Alternative: staggered fermions (a lattice formulation of Dirac-Kähler fermions)
reduce the number of doublers to 2⌈d/2⌉ [Kogut and Susskind, 1975] ,
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conserving a remnant of chiral symmetry in the massless limit

◮ Chiral lattice fermions: domain wall fermions [Kaplan, 1992] and overlap
fermions [Narayanan and Neuberger, 1993; Neuberger, 1997] —huge
computational overhead
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◮ Lattice QCD provides an effective continuum theory for the low-energy physics

Seff =

Z

d4x
h

L0(x) + aL1(x) + a2L2(x) + . . .
i

◮ The physical value of the spacing a is set using a low-energy observable (e.g., the
asymptotic slope σ of the potential between infinitely heavy external sources)

◮ Lattice renormalization: hadronic renormalization schemes, mean-field improved
perturbation theory [Parisi, 1980; Lepage and Mackenzie, 1993] , recursive
finite-size technique [Lüscher, Weisz and Wolff, 1991]

◮ Improved actions
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finite-size technique [Lüscher, Weisz and Wolff, 1991]

◮ Improved actions



◮ Lattice QCD provides an effective continuum theory for the low-energy physics
◮ The physical value of the spacing a is set using a low-energy observable (e.g., the

asymptotic slope σ of the potential between infinitely heavy external sources)
◮ Lattice renormalization: hadronic renormalization schemes, mean-field improved

perturbation theory [Parisi, 1980; Lepage and Mackenzie, 1993] , recursive
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Thermodynamics on the lattice

◮ Thermal averages from simulations on a lattice with compactified Euclidean time
direction, with T = 1/(aNτ )

◮ Pressure p(T ) via the ‘integral method’ [Engels et al. , 1990]:

p = T
∂

∂V
logZ ≃ T

V
logZ =

1

a4N3
s Nτ

Z β

β0

dβ′ ∂ logZ
∂β′

=
6

a4

Z β

β0

dβ′ (〈U2〉T − 〈U2〉0)



Thermodynamics on the lattice

◮ Other thermodynamic observables obtained from indirect measurements
◮ Trace of the stress tensor ∆ = ǫ − 3p:

∆ = T 5 ∂

∂T

p

T 4
=

6

a4

∂β

∂ log a
(〈U2〉0 − 〈U2〉T )

◮ Energy density:

ǫ =
T 2

V

∂

∂T
log Z = ∆ + 3p

◮ Entropy density:

s =
S

V
=

ǫ − f

T
=

∆ + 4p

T
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Simulation details

◮ Lattice sizes N3
s × Nτ , with Ns = 20 or 16, and Nτ = 5

◮ Simulation algorithm: heat-bath [Kennedy and Pendleton, 1985] for SU(2)
subgroups [Cabibbo and Marinari, 1982] and full-SU(N) overrelaxation [Kiskis,
Narayanan and Neuberger, 2003; Dürr, 2004; de Forcrand and Jahn, 2005]

◮ Cross-check with T = 0 simulations run using the Chroma suite [Edwards and
Joó, 2004]

◮ Physical scale for SU(3) set using r0 [Necco and Sommer, 2001]
◮ Physical scale for SU(N > 3) set using known values for the string tension σ

[Lucini, Teper and Wenger, 2004; Lucini and Teper, 2001] in combination with
the 3-loop lattice β-function [All és, Feo and Panagopoulos, 1997; Allton, Teper
and Trivini, 2008] in the mean-field improved lattice scheme [Parisi, 1980;
Lepage and Mackenzie, 1993]



Measurements of the plaquette
◮ High precision determination of (〈U2〉T − 〈U2〉0) required
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Measurements of the plaquette
◮ High precision determination of (〈U2〉T − 〈U2〉0) required
◮ Data reveal a strong first order bulk transition for SU(N ≥ 4)
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Improved holographic QCD model vs. lattice data - I

◮ Kiritsis and collaborators [Gürsoy, Kiritsis, Mazzanti and Nitti, 2008] proposed
an AdS/QCD model based on a 5D Einstein-dilaton gravity theory, with the fifth
direction dual to the energy scale of the SU(N) gauge theory

◮ Field content on the gravity side: metric (dual to the SU(N) energy-momentum
tensor), the dilaton (dual to the trace of F 2) and the axion (dual to the trace of FF̃ )

◮ Gravity action:

SIHQCD = −M3
PN2

Z

d5x
√

g
»

R − 4

3
(∂Φ)2 + V (λ)

–

+ 2M3
PN2

Z

∂M
d4x

√
h K

◮ Φ is the dilaton field, λ = exp(Φ) is identified with the running ’t Hooft coupling of
the dual SU(N) YM theory

◮ The effective five-dimensional Newton constant G5 = 1/
`

16πM3
PN2

´

becomes
small in the large-N limit



Improved holographic QCD model vs. lattice data - II

◮ Dilaton potential V (λ) defined by requiring asymptotic freedom with a
logarithmically running coupling in the UV and linear confinement in the IR of the
gauge theory; a possible Ansatz is:

V (λ) =
12

ℓ2

»

1 + V0λ+ V1λ
4/3
q

log
`

1 + V2λ4/3 + V3λ2
´

–

, (1)

where ℓ is the AdS scale (overall normalization)
◮ V0, V1, V2 and V3 are free parameters: two of them can be fixed by imposing that

the dual model reproduces the first two (scheme-independent) perturbative
coefficients of the SU(N) β-function, and one is left with two independent
parameters



Improved holographic QCD model vs. lattice data - III
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Improved holographic QCD model vs. lattice data - III
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Improved holographic QCD model vs. lattice data - III
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AdS/CFT vs. lattice data in a ‘quasi-conformal’ regime

For T ≃ 3Tc , the lattice results reveal that the deconfined plasma, while still strongly
interacting and far from the Stefan-Boltzmann limit, approaches a scale-invariant
regime . . .

0 0.5 1 1.5 2 2.5 3

ε  / T 4
, normalized to 1 / 3 of its lattice SB limit

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
p 

/ T
4 , n

or
m

al
iz

ed
 to

 th
e 

la
tti

ce
 S

B
 li

m
it

SU(3)
SU(4)
SU(5)
SU(6)
SU(8)
conformal limit
weak-coupling expansion

p(ε) equation of state and approach to conformality



AdS/CFT vs. lattice data in a ‘quasi-conformal’ regime

. . . in which the entropy density is comparable with the supergravity prediction for
N = 4 SYM [Gubser, Klebanov and Tseytlin, 1998]
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Note that a comparison of N = 4 SYM and full-QCD lattice results for the drag force on
heavy quarks also yields λ ≃ 5.5 [Gubser, 2006]



T 2 contributions to the trace anomaly?

The trace anomaly reveals a characteristic T 2-behavior, possibly of non-perturbative
origin [Megı́as, Ruiz Arriola and Salcedo, 2003; Pisarski, 2006; A ndreev, 2007]
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Extrapolation to N → ∞

Based on the parametrization [Bazavov et al. , 2009]:
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Conclusions

◮ Equilibrium thermodynamic observables in SU(N) YM theories at temperatures
0.8Tc ≤ T ≤ 3.4Tc show a mild dependence on N

◮ Successful comparison with the IHQCD model
◮ Quasi-conformal regime of YM and N = 4 SYM predictions—Can lattice data

help to pin down realistic parameters for AdS/CFT models of the sQGP?
[Noronha, Gyulassy and Torrieri, 2009]

◮ ∆ seems to have a T 2 dependence also at large N
◮ Extrapolation to the N → ∞ limit



Projects for the future - I

◮ SU(N) screening masses and spatial string tensions, comparisons with
AdS/CFT [Bak, Karch and Yaffe, 2007] and with IHQCD [Alanen, Kajantie and
Suur-Uski, 2009]

◮ TrF 2 correlators and dilaton potential [Noronha, 2009]
◮ Observables related to thermodynamic fluctuations: specific heat, speed of sound

et c. [Gavai, Gupta and Mukherjee, 2005] —relevant for the elliptic flow
[Ollitrault, 1992; Teaney, Lauret and Shuryak, 2001]

◮ Renormalized Polyakov loops in various representations [Damgaard, 1987;
Damgaard and Hasenbusch, 1994; Dumitru, Hatta, Lenaghan, Or ginos and
Pisarski, 2004; Gupta, Hübner and Kaczmarek, 2008]

◮ Transport coefficients [Meyer, 2007]



Projects for the future - II

◮ High-precision thermodynamics for SU(N) theories in 3D (work in progress with
Caselle, Castagnini, Feo and Gliozzi; see also [Bialas, Daniel, Morel and
Petersson, 2008] )
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