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1) Introduction

2

N 2 [ N
L= Yridyy + % (Z zﬁkwk) Gross, Neveu (1974)
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e renormalizable in 1+1 dimensions [92} =1

e 't Hooft limit N — oo, Ng?2 = const.
e asymptotic freedom
e discrete chiral symmetry ¢ — ysv, Y1) — —p

e dynamical fermion mass m, no confinement



e marginally bound scalar meson with Mgs; = 2m

e solitonic baryons (kink, kink-antikink)

e non-trivial phase diagram as a function of (u,T)
three phases (massive and massless Fermi gas, kink crystal)
meeting at a tricritical point

e applications to quasi-one-dimensional condensed matter systems
(conducting polymers, carbon nanotubes, superconductors)

e various generalizations

Principal tool in the large N limit: Semi-classical methods —
relativistic version of time-dependent Hartree-Fock (TDHF)
also applicable at finite temperature and chemical potential



Basic mathematical problem

OoCC

TDHF  (id—S)va=0, S=-¢2Y datha

Dirac sea — Infinite system of coupled, non-linear PDEs

e vacuum: homogeneous condensate — trivial

74

S=m=Aexp|———
" p( N92>

Dimensional transmutation
e baryons, dense matter: inhomogeneous condensates — non-trivial

e mesons: quantized fluctuations of Hartree-Fock solution
(relativistic RPA)

Surprisingly, exact analytical solutions can be found in all cases



2) Kink at rest

0.5

S =mtanhmxz — tanhzx

(Callan, Coleman, Gross, Zee)
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Dirac equation — effective Schrodinger equation with 1/ cosh? poten-
tial (reflectionless). Set m = 1 from now on.
Contribution to condensate from continuum- and discrete states

_ 1
Y = —
VE2 41

Key to solution of self-consistency problem:
All occupied states give contribution ~ S
Example of “type I” solution of TDHF equation

tanhz, Yoo = O



All known analytical solutions of the Gross-Neveu model are type | or
type Il — only one or two functions enter in  ¥aa
In this talk we focus on type | solutions.

Kink has non-trivial fermion number (n valence fermions)

N N N
Ny=n——"=-2..=
2 2 2

Related to topology (Jackiw, Rebbi)

Kink mass independent of N,
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3) Kink crystal

Ground state at finite density: kink crystal favored due to Peierls effect

g — K/SI’I(II}/R,I{)CH(II}/KJ,K,)
T dn(z/k,&) 1
_ 1
P = 2xK
Lamé equation — finite band potential _kF :013
ek = 0.25 o _
1r kp =101 e
krp = 2.51
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type | solution
kdn(a, k)

@Za¢a — —

dn?(a, k) — E/K

At finite temperature, same functional form of .S, but type Il solution.



4) Boosted kink and structure functions

Lorentz boost
S(z) = S(y(w—vt)), y=@Q—v*)"1/?
TDHF gives covariant energy-momentum relation for the kink baryon
E = ~yMyg, P = ~yv Mg

Fermion (quark) and antifermion (antiqguark) momentum distribution in
arbitrary frame

Wo(k) = (HF|a}ay|HF)
Wa(k) = 1— (HFb ,b_|HF)
Free, massive fermion operators ay, by, . Rescaling

_ Pg _ _
k= xPp = T wq g(x) = PpW, z(xPp)

Infinite momentum frame

x € [0, N] — [0, oo]



Kink structure functions (fully occupied valence level)

50 2

wgz(x) = /O dq(,,TQ + 44¢2) sinh?(z 4+ q)
1

we(z) = — 5+ wg(x)

Sum rules

1 = /OO dz (wq(az) — fwa(:c)>

0
1 = /O dzx (wq(:c)—I—wq—(x))

Logarithmic infrared divergence in the number of quarks and antiquarks
from low x region

2

wq(z) ~ wz(z) ~ - (x — 0)

Momentum distribution zw, z(x) well behaved



Quark (thick line), antiquark (thin line) and valence quark (dotted line)
structure functions for the kink baryon

Infinite momentum frame: Fraction of baryon momentum carried by

N

e valence quarks: 12 — 35%

5

e sea quarks: = 50%

N NI

e antiquarks: 1‘&” = 15%



5) Kink-antikink scattering

Dashen, Hasslacher, Neveu (1975): kink-antikink breather,
guessed by analogy with sine-Gordon breather

According to our classification: type Il solution of TDHF
Analytic continuation ¢ — ¢/v : Kink-antikink scattering

Result actually simpler than the breather due to different boundary con-
ditions in scattering problem

Self-consistent potential

v COSh 2~vx — cosh 2vywvt
v COSh 2~vx 4 cosh 2vywvt

describes repulsive kink-antikink encounter with asymptotic velocities
+v In cm frame




Properties of the solution

e continuum states ~ ei(’“_“t), w = —1/k? + 1 (reflectionless)

e two bound states do not contribute to condensate, but lead to ex-
change of valence fermions between kink and antikink

e type | solution

_ 1 _
YR = — S, Yoo =0
k2 4+ 1
e time delay
I
At = ﬂ 1 — ’02 <0
U

e kink and antikink interchange fermion number during the collision
K(n—N/2)4+ K(h— N/2) — K(n— N/2) + K(n — N/2)

— Maple animation



6) Effective bosonic theory

Static solutions: Non-linear Schrodinger equation (¢* theory)
S" — 28345 =0

e c depends on particular solution
e kink-antikink scattering fails (no solitons in ¢* theory)

For type | solutions: TDHF equivalent to N = 1 classical Gross-Neveu
model

Neveu and Papanicolaou (1978): Proof of integrability for N = 1,2

TDHF equation
(1 —S)p =0



Dirac matrices

0 _ 1 . -
Y —0o01, 7 —1102, 75— —03

Light-cone coordinates
z=x—1t, z=x+1

Dirac equation

S
S

_inl,z
210 3

Self-consistency for type | solutions
S = lpyp = £ (P192 + ¥oih1)

What about the other derivatives v z,v¥» ,? ldentities

SP1z — Sz1 = —thilys
SYp , — S = —tholyy



Have introduced

>
[
|

= i(Yiv1z— v19i ;)
ho = (Y32, — Yoth )
with
h1.,=0=hpz —> hio=const

Express all derivatives of 1)1 > through 1 5

Yz =C1v, Y= Co
with

On = SzS™1 —iheS™1 O — 0 iS/2
L=\ —isy/2 0 27 —ihotsTt 5,671

Integrability condition
C1,—Crz+[C1,C3] =0

reminiscent of non-Abelian field strength tensor



Equivalently
1 1
SS .z — 8.5z~ Z54 = hihot? = —
Change of variables
s=e2 0.z =sinh6

C'1, Co Lax pair of sinh-Gordon equation
Discussion

e Kink, kink-crystal and kink-antikink satisfy classical sinh-Gordon equa-
tion after the singular transformation S = e?/2 or § = In $2

e Linearized equation in ordinary coordinates
0uot0 4+ 4sinh 6 ~ (00t +4)6 =0

yields Klein-Gordon equation for scalar meson with mass 2



e Relation to ¢* theory for static case? Functional separable solution of
sinh-Gordon equation

O(x,t) = 4artanh [f(t)g(x)]

fI=Af"+Bf+C, —g3=Cg*+(B+4)g°+ A
e General N soliton solution known for sinh-Gordon equation — can-

didate for TDHF solution of the Gross-Neveu model with N kinks and
antikinks

e Soliton theory provides us with self-consistent potential and TDHF
wave functions if Lax pair is known

e Relation between kink, o meson and sinh-Gordon equation in mass-
less Gross-Neveu model analogous to baryon, =« meson and sine-
Gordon equation in massive NJL, model close to chiral limit (derivative
expansion). Picture of baryons reminiscent of Skyrme model.



7) Relation to string theory

Strings in AdS3 related to sinh-Gordon equation (Jevicki, Jin et al 2007-
2010). Start from Lax pair of o model (Pohlmeyer reduction)

¢z A1, ¢ = Anx¢
Yz = B1y, vz = By

Integrability condition for both pairs of equations

Q Lz = sinh «
Normalization,
1 = ¢1p1 — pop2 = PIb1 — P90
String coordinates
A Y 1 4+iYy = ¢191 — 22
Z Y1 +iYs = 95971 — é195
Satisfy Virasoro constraints and string equation in conformal gauge.

Every solution of sinh-Gordon equation can be transformed into a clas-
sical solution of string rotating in AdS3; solitons = spikes. — Examples



Relationship between Gross-Neveu model and string theory

e type | solutions of TDHF

A}im quantum Gross—Neveu < N = 1 classical Gross—Neveu
— 00

e Neveu and Papanicolaou

N = 1 classical Gross—Neveu <« classical sinh—Gordon

e Jevicki et al

classical sinh—Gordon <« classical strings in AdS3

Relate quantum Gross-Neveu model in the large N limit to classical
strings in AdS3. Basic structural element

C1,—Crz+[C1,C3] =0

Similar to (vanishing) non-Abelian field strength tensor — “ pure gauge”.
Therefore both mappings involve non-Abelian “gauge transformations”.



Jevicki et al find the gauge transformation from the sinh-Gordon model
to the string-related o model

A =0(U-8)Q7, Ay =Q1(V-9)Q7;!

Neveu and Papanicolaou find the gauge transformation from the sinh-
Gordon model to the Gross-Neveu model

C1 = QU -5, Cor=Qu(V —8)025+1

Type | solutions of the large N Gross-Neveu model can therefore be
mapped to string theory by the gauge transformation €2 = Qngl

Fermion

Soliton =  String



21 and €2, are fairly complicated. How bad is €2 = Qngl?

Need three cases ( = —\/2,4i\/2 where { = (k — w)/2 is the
spectral parameter of the TDHF fermion spinor

Simplified notation: ¢ = 0(z,2)/4, n=\"1

€21 (Jevicki) Q5 (Neveu) = Q
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As a result, the construction of AdS3 string solution Z1, Z5 from Gross-
Neveu TDHF type | solution W(¢) and vice versa is very simple.

Define

1
Yo = VIV ({ = —A/2), b = NG [(W(¢ = —iA/2) +iW (¢ = iA/2)]
Normalization conditions

2 _

1 = ¢1¢1 — pop2 = E%%
2 _

1 YY1 — Y5 = Elbbwb

String coordinates

— : — % ok _ 2 - _ @a%bb
Zy = Y1 +iYo = ¢191 — b2 = S Yaty = Faba
2 _ it
Z = Vi +ivs = 630 - 615 = —duinst = —LrN



Example

Vacuum of Gross-Neveu model
(1@ —m) ¥V =0, m =1

Plane wave solution
w(Q) = < f ) (/40

Plug it in — rotating string
ZA

Z1 = —et4- cosh Ay, Zo= ie*4=sinh Ay, Ar=—=x

2
AdS3 embedding

—|Z11% + 1 Zo|* = -1
Conformal gauge equation of motion and Virasoro constraints
1Z1 .17 = 22,12 =0, |Z135° —|Z2z°=0

satisfied

A

2



