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Ferromagnetism is among the most spectacular manifestations of interactions within many-body fermion
systems1. In contrast to weak-coupling phenomena, it requires strong repulsion to develop, making a
quantitative description of ferromagnetic materials notoriously difficult. This is especially true for itin-
erant ferromagnets2–4, where magnetic moments are not localized into a crystal lattice. In particular, it
is still debated whether the simplest case envisioned by Stoner5 of a homogeneous Fermi gas with short-
range repulsive interactions can exhibit ferromagnetism at all. In this work, we positively answer this
question by studying a clean model system consisting of a binary spin-mixture of ultracold 6Li atoms,
whose repulsive interaction is tuned via a Feshbach resonance. We drastically limit detrimental pairing
effects6 that affected previous studies7–9 by preparing the gas in a magnetic domain-wall configuration.
We reveal the ferromagnetic instability by observing the softening of the spin-dipole collective mode that
is unequivocally linked to the increase of the spin susceptibility while approaching the ferromagnetic tran-
sition for increasing interaction strength10. The ferromagnetic behaviour of the gas beyond the critical
value of repulsion is additionally confirmed by the emergence of a time window during which the two
spin domains remain immiscible, corresponding to a vanishing spin diffusion11,12. We extract the criti-
cal values of repulsion and temperature for a ferromagnetic phase to exist, at least in a metastable sense.
Our findings provide a benchmark for current and future theories2,13 supporting a minimal description of
itinerant ferromagnetism, and our approach opens up new perspectives for investigating repulsive Fermi
systems.

Stoner’s model of ferromagnetism5 represents a corner-
stone for our understanding of a variety of systems which
owe their magnetic properties to itinerant, i.e. delocalised,
fermions, such as transition metals1,2, normal 3He liquids14,
neutron and quark matter within the crust of neutron stars3,4.
Stoner’s picture is an intuitively simple mean-field model:
a free electron gas is predicted to become ferri- or ferro-
magnetic once a short-ranged screened Coulomb repulsion
between oppositely oriented electron spins overcomes the
effect of Fermi pressure, which would favour a paramag-
netic state with no spin ordering. A sufficiently strong re-
pulsion promotes the parallel alignment of magnetic mo-
ments, at the price of an increased kinetic energy, leading
to spontaneous magnetization. Although Stoner’s approach
is quantitatively unreliable since it neglects significant be-
yond mean-field effects1,2, more rigorous approaches based
on Landau’s Fermi liquid theory and quantum Monte Carlo
(QMC) calculations6,13,15–19 confirm the occurrence of a fer-
romagnetic instability driven just by short-range repulsion in
a homogenous Fermi gas. Still, the ferromagnetic behaviour
of such a minimal system lacks experimental evidence. In-
vestigating this scenario with solid-state materials is compli-
cated by the unavoidable presence of intricate band structures
and disorder2. Liquid 3He in its normal phase, although pre-
senting a very high magnetic susceptibility, does not become
ferromagnetic even at the highest applicable pressures, be-
ing the increase of susceptibility mainly ascribable to mass
renormalisation14.

Ultracold atomic Fermi gases appear in turn as an ideal en-

vironment for testing Stoner’s model15. The harmonic con-
finement leads to simple dispersion relations and the short-
range repulsive interactions between spin-↑ and ↓ ultracold
atoms, encoded in the s-wave scattering length a, can be
continuously adjusted via magnetic Feshbach resonances20.
Since the populations of ↑ and ↓ fermions are independently
conserved, spontaneous magnetization translates into devel-
opment of spatial domains with unequal ↑ and ↓ densities.
However, first pioneering experiments aiming to observe the
para-to-ferro-magnetic transition in ultracold atomic gases7,8

found the Stoner instability to be hindered by the pairing
one6. The latter arises from the fact that zero-range repulsion
necessarily implies the existence of a weakly bound molecu-
lar state20. Hence, the repulsive Fermi gas corresponds to a
metastable excited (upper) energy branch of the many-body
problem13,21,22 (see Fig. 1a), a fact that makes it intrinsically
unstable against decay processes8,9,22 that are rapid with re-
spect to the development of magnetic domains6,8,9. In our
experiment we are able to maintain a Fermi gas on the up-
per branch by preparing a spin ↑ – ↓ mixture in an arti-
ficial magnetic domain-wall structure (see Fig. 1b). Such
a fully-ferromagnetic initial configuration features a vanish-
ingly small ↑ – ↓ density overlap in contrast to a paramag-
netic state7,8. This greatly suppresses the effect of pairing pro-
cesses, ensuring that the overall relaxation rate remains much
slower than the Fermi energy.

We reveal the ferromagnetic instability through two distinct
but interconnected measurements of spin dynamics. On the
one hand, by probing the spin-dipole mode10, i.e. the out-of-
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FIG. 1. Realising an artificial ferromagnet with a repulsive Fermi
gas of ultracold atoms. a, A Fermi mixture with resonant short-
range interactions, parametrised by 1/kF a, features two distinct en-
ergy branches, the lower (upper) being associated to a net inter-
species attraction (repulsion). Ferromagnetism develops at strong
repulsion along the upper branch, which becomes unstable due to
enhanced decay processes onto the lower branch. Depending on the
spin imbalance, the lower branch corresponds either to a paired phase
or to an attractive Fermi liquid. b, In our experiment we circumvent
the pairing instability by preparing an atomic Fermi gas in a fer-
romagnetic domain-wall structure, probed via spin-selective in situ
imaging (see lower image). The initial state is obtained by segregat-
ing the two spin components into two initially disconnected reser-
voirs by means of a 2µm thin optical barrier (sketched in green).

phase relative oscillation of the approaching spin ↑ – ↓ clouds,
we obtain information on the behaviour of the spin suscepti-
bility as a function of interaction. On the other hand, study-
ing spin diffusion11,12 at short and long evolution times pro-
vides important insights on the stability of the ferromagnetic
state and on its relaxation mechanisms, respectively. In par-
ticular, while it appears infeasible for a paramagnetic gas to
become ferromagnetic due to short-range repulsion6,8,13, our
work shows that a ferromagnetic state, once artificially cre-
ated, can exist in a metastable sense.

We initially prepare a weakly interacting mixture of ultra-
cold 6Li atoms23, equally populating the two lowest Zeeman
states, hereafter denoted as |↑〉 and |↓〉. The atoms are held
in a cylindrical optical dipole trap with axial and radial fre-
quencies νz ' 21 Hz and ν⊥ ' 265 Hz, respectively. By
adjusting the evaporation procedure we can tune the degree of
degeneracy from T/TF < 0.1 up to ∼ 1. Here T is the gas
temperature, while TF is the Fermi temperature of a single-
component Fermi gas of N atoms in a harmonic trap, given
by kBTF = EF = h(6Nνzν

2
⊥)1/3, with h and kB denot-

ing the Planck’s and Boltzmann’s constants. At a magnetic

field of about 1 G, where the magnetic moments of |↑〉 and |↓〉
states are opposite, the application of a magnetic field gradient
allows us to spatially separate the two spin components along
the weak axis of the trap. Once the overlap between the two
clouds is perfectly zero, we superimpose a 2 µm thin optical
repulsive barrier as high as V0 ∼ 10EF onto the centre of the
harmonic potential, in order to split the trap into two indepen-
dent reservoirs24, as sketched in Fig. 1b. We then adiabatically
turn off the magnetic field gradient and end up with all ↑ (↓)
fermions in the left (right) reservoir (see also Methods and
Supplementary Information). This creates two macroscopic
spin domains at rest, separated by a distance only a few times
wider than the mean interparticle spacing of the gas. Such
configuration resembles the density distribution expected for
a spin-mixture undergoing full magnetization in an elongated
harmonic trap, with a central domain wall of thickness around
the interparticle spacing, additionally surrounded by an unpo-
larised low-density shell on the cloud surface.

From here, we let the two spin components start interacting
by removing the optical barrier. Before switching off the bar-
rier, the interaction strength is adjusted by setting the magnetic
field close to the centre of a broad ↑ – ↓ Feshbach resonance
located around 832 Gauss25.

In a first experiment the spin dynamics is triggered by
abruptly switching off the barrier from its initial value V0 '
10EF on a µs timescale. Owing to the small initial separation
of about 5µm, the two spin clouds approach each other with
small relative momentum ~k � ~kF =

√
2mLiEF . We fol-

low the clouds dynamics by resonant in-situ absorption imag-
ing (see Methods), monitoring the evolution of the two spin
domains. On top of an overall slow drift, the relative distance
between their centres of mass d(t) = z↑(t)− z↓(t) presents a
small-amplitude out-of-phase oscillation, signalling the exci-
tation of the spin-dipole mode (see Fig. 2a-c). The measure-
ment of the spin-dipole frequency νSD, analogously to the
one of spin fluctuations8,10, is a prominent tool for disclos-
ing the magnetic behaviour of the system: the trend of νSD
is directly related to the inverse of the spin susceptibility χ,
weighted over the inhomogeneous density distribution10 (see
Methods).

In particular, the increase of χ and its divergence at the fer-
romagnetic transition10,18, first reached in the denser central
region of the trap, are univocally identified by a substantial
decrease of νSD, i.e. by a softening of the spin-dipole mode.

The measurement of this collective oscillation is extremely
challenging when starting from a paramagnetic configuration
due to strong damping26 and inelastic processes8,22. Here, in
turn, where the two spin domains just partially overlap over
the timescale of the measurement, we are able to trace a few
oscillation periods of the spin-dipole mode from which we
extract νSD through a fit to a damped sinusoidal function
(see Methods). Performing such a measurement at several
magnetic field values, we obtain the trend of the spin-dipole
frequency as a function of the repulsive interaction strength,
displayed in Fig. 2d for two distinct temperatures. The in-
teraction strength is described by the dimensionless parame-
ter κFa, where κF (and correspondingly εF ) is the average
Fermi wave number (energy) weighted over the initial den-
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FIG. 2. Spin-dipole mode of a repulsive Fermi gas across the ferromagnetic instability. a-c, After subtracting a slow exponential drift from
d(t), the residual out-of-phase dynamics ∆d(t) of the two spin clouds after sudden barrier removal is fitted to a damped sinusoidal function
(dashed lines), from which νSD is extracted for several interaction strengths. The bare trap oscillation is shown for comparison (dotted red line
in a). Shaded areas denote the standard confidence bands of the fits. Data points result from at least 5 independent measurements with error
bars given by the standard error of the mean (s.e.m.) combined with the uncertainty on the subtracted exponential drift. d, The normalised
spin-dipole frequency νSD/νz is plotted versus κF a for T/TF = 0.12(2) (blue circles) and T/TF = 0.25(4) (purple circles), with error
bars being 95% confidence intervals of sinusoidal fits. A decrease of νSD followed by a clear discontinuity is visible, marking the critical
interaction strength of the ferromagnetic instability. The dashed blue (violet) lines are the average νSD/νz measured beyond the critical point
at T/TF = 0.12 (T/TF = 0.25) up to unitarity. The solid (dashed) green lines are the T = 0 predictions from a sum-rule approach assuming
25% (100%) ↑ – ↓ spatial overlap (see Methods).

sity distribution close to the interface between the two do-
mains (see Methods). Let us discuss here the results for the
colder samples at T/TF ∼ 0.12(2). By starting from the
weakly interacting regime, where νSD ' νz (see Fig. 2a),
an increase of the interspecies repulsion leads to a progressive
reduction of the spin-dipole frequency, down to values as low
as νSD ' 0.6 νz at about κFa ' 1 (Fig. 2b). We find the de-
crease of νSD to be accompanied by a strong increase of the
damping of the oscillations26. By further increasing the inter-
species repulsion, an abrupt change occurs in the spin dynam-
ics: for κFa & 1.1, the spin-dipole frequency jumps above
the bare trap frequency, νSD ' 1.70(4)νz (see Fig. 2c), while
the damping of the oscillations is strongly reduced. Once this
narrow interaction region is crossed, a further increase of κFa
does not produce any significant change, neither in the damp-
ing rate nor in νSD. Our observation of the mode softening
matches a recent linear-response theory prediction10 (see lines
in Fig. 2d) based on a sum-rule approach and on the knowl-
edge of χ(κFa) obtained by QMC calculations for a homo-
geneous zero-temperature Fermi gas18 (see Methods). The
good agreement between such a non-perturbative theory ap-
proach and the experimental data strongly suggests that the
repulsive Fermi liquid exhibits the ferromagnetic instability at
κFa ' 1. Furthermore, for κFa > 1.1, the value of νSD is in
good agreement with theory models27 based on the hydrody-
namics of two repulsive spin clouds bouncing off each other
and previous measurements at unitarity11.

If the ferromagnetic phase were indefinitely stable above a
critical κFa, the two spin domains would remain immiscible,
i.e. spin diffusion would be impeded26. To investigate this as-
pect, we study spin diffusion in a second set of measurements,

exploring various interaction and temperature regimes.
We initialise the dynamics by adiabatically lowering the

barrier height through a 30 ms linear ramp from V0 ∼ 10EF
down to 2EF , letting the two clouds slowly approach each
other. Their relative distance is reduced from about 5µm
down to 1µm, yet each spin domain remains confined within
its own reservoir. At this point, we remove the barrier in 5 ms
and we monitor the subsequent evolution of the relative popu-
lation of the i =↑, ↓ component in the left and right reservoirs,
Mi = (Ni,L − Ni,R)/(Ni,L + Ni,R), from which we obtain
the magnetization ∆M = (M↑ −M↓)/2. Since the distance
between the two nearby cloud edges is approximately equal to
the local interparticle spacing at the interface between the two
spin domains, this procedure does not excite any detectable
relative centre-of-mass oscillation.

In Fig. 3a we show the short-time evolution ∆M(t) for
different interaction strengths: above a critical value of re-
pulsion, after an initial slight decrease of ∆M , we indeed
observe a time window during which spin diffusion is com-
pletely arrested. The duration of this “plateau” in the spin dy-
namics is however finite, since the stability of our ferromag-
netic state is limited by the intrinsic tendency of the system to
relax from the excited upper branch onto lower-lying energy
states6,13 (see Fig. 1a). A thorough characterisation of this in-
teresting feature is summarized in Fig. 3b, where we plot the
measured plateau duration τp of constant ∆M as a function of
1/(κFa), for various temperatures. The value of τp is deter-
mined through a piecewise linear fit to the data, yielding zero
when no noticeable halt of spin dynamics is detected. Our
measurements provide several relevant informations. First, a
non-zero τp is detected only above a critical κFa value and
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FIG. 3. Metastability of an ultracold atomic ferromagnet. a, Evolution of ∆M(t) for different interactions at T/TF = 0.12(2). For
κF a ≥ 1.1 a time window τp of vanishing spin diffusion is detected. Error bars are the s.e.m. of 4-5 independent measurements. Data
sets are relatively shifted by 0.05 along the y-axis for clarity. b, τp from piecewise fits to the data (dashed lines in a) is plotted at varying
1/κF a for various temperatures, with error bars being the fit standard uncertainty. Shaded curves are derived from the proposed model for
domain-wall melting (see Methods), adjusting E+c within a 20% variation. c, Connection between τp (green diamonds) and νSD (red circles)
at T/TF = 0.12(2). The dotted line represents the prediction on νSD for the repulsive Fermi liquid (see Fig 2d). d, (Meta-)stability (τp > 0)
region of the ferromagnetic state in the temperature-interaction plane. y-error bars denote the experimental uncertainty on T/TF , while x-error
bars account for the uncertainty on estimating the critical κF a at which a τp > 0 is observed. The solid line is a power-law fit (see text) to
T/TF < 0.3 points, extended over all values of κF a as a dashed line. The black arrow marks the temperature at which τp = 0 for any κF a.

below a certain T/TF .
Notably, finite plateaus appear above an interaction strength

nearly coincident with the one at which the spin-dipole mode
frequency in Fig. 2d exhibits an abrupt change (see Fig. 3c).
Furthermore, by increasing κFa (increasing T/TF ) τp gets
longer (shorter), reaching its maximum at the unitary point
1/(κFa) = 0. On the other hand, no plateau in the dynamics
is observed for T/TF ≥ 0.7. In addition, at low temperatures
the trends for τp and νSD (see Fig. 3c) suggest that we access
the upper branch even within a 1/(κFa) < 0 narrow region
beyond unitarity (see Supplementary Information).

We find the behaviour of the plateau duration for
1/(κFa) > 0 to be captured (see curves in Fig. 3b) by a
phenomenological model based only on the knowledge of the
lifetime and energy spectrum of the upper and lower branches
of the many-body system28, calculated in the extremely po-
larised limit of one single ↑ (↓) impurity embedded in a ↓ (↑)
Fermi gas13,28. Based on such a description, the ferromagnetic
state is destroyed by inelastic processes occurring at the inter-
face between the two macroscopic spin domains: fermions
of one kind, overcoming the surface tension associated with a
domain wall, can deposit an overall excess energy through de-
cay from the upper to the lower branch. Only after some time,

once a sufficient energy has been released into the system, the
domain wall is melted and spin diffusion is established (see
Methods).

In light of the close correspondence between the trends
of νSD and τp (see Fig. 3c), we identify, for each temper-
ature considered, the lowest κFa value at which a non-zero
τp is observed as the critical point beyond which a ferromag-
netic phase would indefinitely exist in the absence of decay.
This allows us to trace a curve in the interaction-temperature
plane along which the repulsive Fermi liquid exhibits the fer-
romagnetic instability. The result of such analysis is pre-
sented in Fig. 3d. By fitting the T/TF < 0.3 data points to
T/TF ∝ ((κFa)(T ) − (κFa)(0))α, we obtain α = 0.52(5)
and (κFa)(0) = 0.80(9). The fitted exponent matches within
its uncertainty the value α = 1/2 expected from the low-
temperature behaviour of a Landau-Fermi liquid (see Sup-
plementary Information). Furthermore, the extracted critical
value (κFa)(0) is found in good agreement with the ones ob-
tained from recent QMC calculations18,19.

Once spin diffusion is established, the analysis of the long-
time evolution ∆M(t) (or equivalently d(t)) within a simple
kinetic model (see Methods) allows us to determine also the
spin drag coefficient11 ΓS as a function of temperature and
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interaction.
The results are displayed in Fig. 4. These are compared

with theoretical predictions for ΓS , calculated for a single
impurity moving in a homogeneous ideal Fermi gas within
kinetic theory and T -matrix approximation for the scattering
cross section (see Supplementary Information). The compar-
ison is surprisingly good (see Fig. 4): the model is able to
quantitatively reproduce not only the maximum ΓS measured
for T/TF ≥ 0.3, but also the overall trend versus κFa at all
temperatures. At low temperatures, although a poorer agree-
ment with theory is expected as the T -matrix approximation
is not quantitatively correct, the data sets exhibit an apprecia-
ble asymmetry around the unitary point towards κFa > 0.
Such a feature, which disappears progressively as tempera-
ture is increased, highlights the significant effect of collisions
within the medium of surrounding particles on the dynamical
properties of the diffusing quasi-particles (see Supplementary
Information). A similar asymmetry in transport coefficients
has already been reported for the shear viscosity29 and trans-
verse spin diffusion30, but not in previous measurements of
the longitudinal spin diffusion11.

In conclusion, we have probed the ferromagnetic behaviour
of the repulsive Fermi gas by investigating a resonantly inter-
acting ultracold 6Li spin mixture.

Our study points to the occurrence of the ferromagnetic in-
stability driven by short-range repulsive interactions, as first
proposed by Stoner5, and it provides a test-bed for theories
on repulsive Fermi systems. In the future, our setup may be
exploited to tackle other fundamental issues, such as identi-
fying the order of the ferromagnetic transition2, eventually in

the presence of weak optical lattices31, controlled disorder or
reduced dimensionality.

METHODS

Experimental protocols

Our procedure to create weakly-interacting two-component
Fermi mixtures of 6Li atoms has been already described
elsewhere23 (see also Supplementary Information). The gas
degeneracy parameter T/TF is adjusted by exploiting the tun-
ability of the collisional properties of 6Li mixtures25 during
evaporation. We typically end up with 50×103 atoms per spin
component, confined in a cigar-shaped harmonic potential
characterised by axial (radial) trap frequency of νz = 21.0(1)
Hz (ν⊥ = 265(5) Hz). To spatially separate the two spin com-
ponents, at a magnetic field of about 1 G, where the ↑ and ↓
states possess equal but opposite magnetic moments, we turn
on a magnetic quadrupole gradient of about 1 G/cm along the
weak trap axis, that pushes the two spin clouds towards op-
posite directions. Once the overlap between the two compo-
nents is zero, a repulsive optical potential centred at z = 0,
and characterised by a short (long) 1/e2 waist of wz = 2.0(2)
µm (wy = 840(30) µm) is employed to confine the two clouds
into two disconnected reservoirs24. These are characterised by
an axial oscillation frequency νR = 1.78(5)νz , and no appre-
ciable particle tunnelling is detected over more than 2 seconds
with a barrier height of about 10 EF .

To excite the spin-dipole mode at a fixed Feshbach field, we
abruptly switch off the barrier potential within less than one
µs. The two spin clouds, initially separated by a distance of
about 5 µm, start moving one towards the other at a small,
though non-zero, relative velocity. From here on, we monitor
the dynamics of the relative distance between the centres of
mass of the two components. For each value of evolution time,
in two independent and successive experimental runs, we ac-
quire two in-situ absorption images with two high-intensity
optical pulses, each of which is resonant only with one spin
state. For each point of interaction, temperature, and evolu-
tion time herein investigated, the relative distance between the
two clouds is determined by averaging over at least five inde-
pendent measurements.

The centre of mass of each cloud is equivalently determined
either via a Gaussian fit to the imaged density distribution
(used for data displayed in Fig. 2a-c) or via the evaluation
of the centre of mass zi of each sample i =↑, ↓ obtained via
direct integration of the bare images. Once the spin dynam-
ics is recorded, we fit d(t) = (z↑ − z↓)(t) to an exponen-
tial decay. By subtracting the fitted exponential drift from
d(t), we extract the spin-dipole collective dynamics ∆d(t),
whose frequency is then derived by means of a damped sinu-
soidal function. Similarly, direct integration of the images at
each evolution time allows to determine the relative popula-
tion of the i =↑, ↓ component in the left and right reservoirs,
Mi = (Ni,L − Ni,R)/(Ni,L + Ni,R), from which we obtain
the magnetization ∆M = (M↑ −M↓)/2. The behaviour of
d(t) closely reflects the one of ∆M(t).
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Effective Fermi energy and wavevector

In the main text we have defined κF and εF as rel-
evant length and energy scales. These are evaluated by
approximating the thin barrier at z = 0 as a delta-like
potential. This is reasonable considering that the barrier
thickness of 2µm is about 70 times smaller than the typ-
ical Thomas-Fermi radius of the cloud along the z-axis.
Namely, we approximate the density distribution of a Fermi
gas of N atoms confined in a “half” of the harmonic
trap bisected by the thin barrier as half of the distribu-
tion of a Fermi gas of 2N atoms in the whole harmonic
trap. The latter is evaluated using the finite-temperature
Fermi-Dirac distribution of an ideal Fermi gas nF (r, T/TF ),
given the measured T/TF , trap frequencies and atom num-
ber. From nF (r, T/TF ) the local wavevector and Fermi en-
ergy are given by kF (r, T/TF ) = (6π2nF (r, T/TF ))1/3

and EF (r, T/TF ) = ~2k2F (r, T/TF )/(2mLi), respectively.
The two parameters κF and εF are derived by averaging
kF (r, T/TF ) and EF (r, T/TF ) over a region as thick as
the local interparticle spacing (6π2)1/3/kF (x, y, 0, T/TF )
around z = 0. Parallel to this, integration of nF (r, T/TF )
within such region yields the total number Nint of ↑ and ↓
fermions at the interface between the two spin domains (see
Supplementary Information for details).

Sum-rule approach for the spin-dipole mode frequency

Given a perturbation operator D, the moments of the
strength distribution function, or sum rules, are given by
mk =

∑
n |〈0|D|n〉|2(En − E0)k. In particular, the spin-

dipole mode is excited by the operator D =
∑
i↑ zi−

∑
i↓ zi,

where z is the longitudinal coordinate and i↑,↓ = 1, . . . , N↑,↓.
The frequency ωSD of the spin-dipole oscillation is estimated
using the ratio (see Supplementary Information and Ref. 10):

~2ω2
SD =

m1

m−1
(1)

Within the local density approximation (LDA) one can obtain
(see Supplementary Information):

ω2
SD =

N↑ +N↓
m
∫
drz2χ(n)

(2)

where χ(n) is the zero-temperature magnetic susceptibil-
ity of a uniform gas obtained at the density n from QMC
calculations18. The dashed green line plotted in Fig. 2 is cal-
culated through Eq. (2) by inserting the density profile n(r)
of two fully overlapped spin components, determined in LDA
using the equilibrium condition µ(n) − Vtrap = µ0, where
µ(n) is the chemical potential as a function of local density n
from QMC calculations and µ0 is fixed by the normalisation
condition. The solid green line in Fig. 2 accounts instead for a
reduced overlap of 25% around the trap centre, in closer anal-
ogy to the experimental condition. In this case, the integral
in Eq. (2) over the outer spin-polarised regions contributes
thus only with the spin susceptibility χ0 of an ideal Fermi gas,

yielding a reduced deviation of the spin-dipole frequency from
the bare trap frequency. Therefore, we expect the measured
frequencies to be higher than the results of Ref. 10, derived at
full overlap. Consequently, the solid and dashed lines in Fig. 2
delimit a confidence region in which most experimental data
are found. Most importantly, the critical interaction strength
at which the abrupt change in ωSD occurs does not depend
on the initial overlap configuration. Moreover, the spin diffu-
sion dynamics happens on a longer timescale (& 200 ms), as
displayed in the Supplementary Information, compared to the
spin-dipole period (∼ 50− 100 ms). Hence, while we cannot
assume that the system oscillates near an equilibrium config-
uration as in linear-response theory, the (slow) timescale for
diffusion is sufficiently separated from the (faster) timescale
for the spin oscillations.

Polaron model for the domain-wall melting

The proposed explanation of the plateau data shown in
Fig. 3 proceeds along the following line of thought. In the
case of purely repulsive interaction, the ferromagnetic state,
if energetically allowed, would be indefinitely stable and the
miscibility of the two components would be prevented by the
existence of a domain wall. In particular, a ↓ fermion at the
interface would need to pay a finite amount of energy σ > 0
in order to access the other spin domain forming a repul-
sive polaron at energy E+. In our metastable system, how-
ever, if a repulsive polaron is created, it can subsequently de-
cay onto the lower branch with a rate Γ, releasing an energy
equal to the mismatch between the two branches, E+ − E−.
Hence, this two-step process will cause a net increase of en-
ergy ∆E = E+ − E− − σ at a rate Γ. Importantly, the
behaviour of Γ, E+ and E− as a function of the interaction
strength can be derived from recent non-perturbative theory
approaches13,28. We assume that at the beginning of the dy-
namics, the energy associated to the domain wall is given by
σNint, Nint being the total number of fermions within a slice
around z = 0 of total thickness equal to one interparticle spac-
ing. The duration of the plateau τp is then set by the condition:

σNint = (E+ − E− − σ)τpΓ (3)

We assume that σ = E+ − E+c, where E+ is the energy of a
repulsive polaron, whileE+c is the energy of one free fermion
at the interface, left as a phenomenological parameter, and
is independently adjusted for each T/TF herein investigated.
From Eq. (23) we fit the experimental data by optimising the
only free parameter E+c (see also Supplementary Informa-
tion).

Diffusion model for extracting the spin drag coefficient

The equation for the dynamics of the relative centre of mass
d = z↑− z↓ can be easily obtained from the Boltzmann equa-
tion and is written as (see Supplementary Information)

d̈+ Γsḋ+ ω2
zd = 0, (4)
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where ωz is the longitudinal trap frequncy, and Γs the spin
drag coefficient due to collisions11,12. We obtain the experi-
mental spin drag coefficient by fitting the solution of Eq. (4)
to the data, considering as initial condition d(0) = d0 and
ḋ(0) = 0. The results are reported in Fig. 4.

In the same figure we compare the experimental results with
a theoretical prediction based on a T -matrix approximation
for the scattering cross-section corrected by the available scat-
tering states in order to have a well defined scattering ampli-
tude in the collisional integral.

The agreement is especially good down to temperatures as
low as T = 0.3TF . At lower temperatures, both the shape
and the magnitude of the spin drag coefficient as a function of
the interaction compare more poorly. This is expected since
at very low temperature the Boltzmann approach is not quan-
titatively correct, and moreover the gas may suffer some heat-
ing during the dynamics due to decay processes, making its
temperature higher than the one measured at the start of the
dynamics, which is used for the comparison with the theory
model. Further details are available in the Supplementary In-
formation.
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SUPPLEMENTARY INFORMATION

I. EXPERIMENTAL PROCEDURES

Our procedure to create weakly-interacting two-component
Fermi mixtures of 6Li atoms has been already described
elsewhere23. To realize highly degenerate samples at T/TF ≤
0.2, a balanced mixture of atoms equally populating the low-
est and third-to-lowest Zeeman states (hereafter denoted |1〉
and |3〉, see Fig. 5a) is evaporated in a crossed optical
dipole trap (ODT) at a bias magnetic field of 300 Gauss. At
such a field the |1〉 − |3〉 mixture features a large25, though
off-resonant, scattering length value of about -900 a0 which

makes the forced evaporation process extremely efficient23.
Here a0 is the Bohr’s radius. We typically end up with
N ' 50×103 atoms per spin component, confined in a cigar-
shaped harmonic potential characterized by axial and radial
trap frequencies νz = 21.0(1) Hz and ν⊥ = 265(5) Hz, re-
spectively. For the investigation of less degenerate samples,
we either heat up in a controlled way the cloud by quickly
turning off and on the ODT for an excitation time up to 1 ms,
or we perform evaporation at 300 Gauss with a |1〉 − |2〉 mix-
ture. This features an interspecies scattering length of about
-300 a0, which makes the evaporation process less efficient
than for the |1〉 − |3〉 spin combination, leading to similar
atom number and trap frequencies, though at higher tempera-
ture. The degeneracy parameter T/TF is determined by fitting
the cloud density profiles in situ or after 5 ms of time of flight
to a finite temperature Fermi-Dirac distribution. At the end of
evaporation in the |1〉−|3〉mixture, we transfer all atoms from
the |3〉 to the |2〉 state via a resonant 80µs radio-frequency
(RF) π-pulse. To avoid detrimental finite-state interaction ef-
fects, that would limit the transfer efficiency, we perform the
transfer at a bias field of 584.5 G, where the scattering lengths
of the |1〉− |3〉 and |1〉− |2〉 spin mixtures are equal and non-
resonant25.

Spin separation procedure
The procedure for creating two separate spin domains is here
described and summarised in Fig. 5c. In order to spatially sep-
arate the |1〉 and |2〉 components, we adiabatically lower the
magnetic field down to ∼ 1 G, where the two states are essen-
tially non-interacting and possess equal but opposite magnetic
moments (see Fig. 5b). Subsequently, we turn on a magnetic
quadrupole gradient of about 1 G/cm along the weak trap axis
through a 40 ms linear ramp, shifting the two spin clouds in
opposite directions. After 180 ms, once the overlap between
the two components is completely zeroed, we turn on through
a 40 ms linear ramp a strongly anisotropic 532 nm optical
beam24 centred at z = 0, and characterised by a short (long)
1/e2 waist of wz =2.0(2)µm (wx =840(30)µm). The beam,
blue-detuned with respect to the 671 nm lithium main tran-
sition, results in a repulsive potential which bisects the cloud
along the weak axis into two reservoirs. The typical maximum
barrier height after the 40 ms ramp, is about 10 EF , a value
that impedes any appreciable particle tunnelling between the
two reservoirs over more than 2 seconds. Once the two spin
clouds are separated and disconnected, we adiabatically turn
off the magnetic gradient and increase the bias Feshbach field
with a 500 ms linear ramp up to the target value. To prevent
atom losses due to the magnetic field gradient, after the evapo-
ration we turn on two additional elliptic plug beams at 532 nm
with short (long) waist of wz =50µm (wy =120µm). The
short waist is aligned along the weak trap axis and the plugs
enter perpendicularly to this, creating two effective repulsive
walls that reduce as much as possible spilling of atoms due
to the magnetic gradient. The plugs are turned on through a
200 ms linear ramp after evaporation and switched off through
a 450 ms linear ramp when the Feshbach field is increased up
to the final target value. The overall spin-separation proce-
dure causes a decrease of about 25% of the atom population,
whereas no change of T/TF is measured. The degeneracy pa-
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FIG. 5. (a) Hyperfine and Zeeman levels structure of 6Li in the F = 1/2 and F = 3/2 manifolds as a function of the magnetic field. (b)
Energy dependence of the two lowest Zeeman states (|1〉 and |2〉) at low magnetic field. Below 5 G, the two states have magnetic moments
with nearly equal amplitude but opposite sign. (c) The experimental sequence used for spin separation is sketched: the Feshbach field (light
blue), the magnetic gradient (purple), the side plugs (dark green) and the central barrier (light green) are plotted as a function of time.

rameter after spin separation is estimated by a finite tempera-
ture Fermi-Dirac distribution fit of the density distribution of
spin polarised clouds recorded after a 5 ms time-of-flight ex-
pansion at a bias field of 300 G. It is important to stress that the
final configuration is perfectly symmetric, both in total spin
population and density distribution, and each component does
not present any appreciable shape nor center-of-mass oscilla-
tion within the separated reservoirs. We note here that a mea-
surement of the oscillation frequency of a single spin com-
ponent within one isolated reservoir yields νR = 1.78(5)νz .
This is only about 10% lower than the value 2νz expected for
the case of an infinitely thin barrier. This justifies the approx-
imation of the barrier potential as delta-like for modelling the
cloud density, as discussed in detail in the following.

Excitation and measurement of the spin-dipole oscillations
In order to excite the spin-dipole mode at a given Feshbach
field, we rapidly turn off the barrier potential from its max-
imum height of about 10EF down to zero, within less than
one µs. At the start, when the Gaussian barrier has its max-
imum height, the two spin clouds have an initial separation
of the order of 5µm, and the sudden release of the barrier
causes the two domains to expand one towards the other at
a small, though non-zero, relative velocity. From here on,
we monitor the dynamics of the relative distance between the
center-of-mass of the two clouds. For each value of evolution
time, in two independent and successive experimental runs,
we acquire two in situ absorption images, each of which is
resonant only with one spin state. For each point of interac-
tion, temperature, and evolution time herein investigated, the
relative distance between the centres of the two clouds is de-
termined by averaging over at least five independent measure-
ments. The determination of the center of mass of each cloud
is obtained either via a Gaussian fit to the imaged density dis-
tribution n2D,σ(y, z) with σ =↑, ↓, or via the evaluation of the
center-of-mass of each sample obtained via direct integration
of the bare images: zσ =

∫
z n2D,σ(y, z) dy dz/Nσ . Once

the spin dynamics is recorded, we fit d(t) = (z↑ − z↓)(t)

to an exponential decay. By subtracting the fitted exponen-
tial decrease of d(t) due to diffusion from the data, we obtain
a measure of the spin dipole mode, whose frequency is ex-
tracted from the data by means of a damped sinusoidal func-
tion f(t) = A cos(2πνs t) e

−t/τ . Besides exciting the spin
dipole mode, our experimental protocol also excites weakly
the breathing mode, which is detected by studying the evolu-
tion of the axial and radial widths of the two clouds. Similarly
to what done for the center-of-mass separation dynamics, we
characterise the breathing oscillation by subtracting to σz(t)
an overall exponential drift and fitting the residual modulation
∆σz(t) with a damped sinusoidal function, as in Fig. 6. For
weak interactions, the breathing mode oscillates at twice the
axial trap frequency νz , as expected for a collisionless regime.
Increasing the interaction strength, we observe a transition to
a hydrodynamic regime, characterised by a decrease of the
breathing mode frequency νB down to

√
12/5νz . Perform-

ing an analysis similar to the one reported by Gensemer et
al.32, the trends of both the frequency and damping rate of
the breathing mode show the transition to occur already for
κFa ≥ 0.2, as shown in Fig. 6b,c. In the strongly interact-
ing regime (κFa ≥ 1), where the ferromagnetic instability
is detected, the amplitude of the breathing mode is extremely
small, generally around 2% of the size of the cloud.

Based on the measured trend of the breathing mode fre-
quency and damping, it is therefore clear that neither the ob-
served softening of the spin-dipole mode below the ferromag-
netic instability nor its sudden frequency increase can be as-
cribed to the collisionless-to-hydrodynamic transition, the lat-
ter occurring already for much weaker interactions, as shown
in Fig. 6b,c.

Measurement of spin transport
As already mentioned in the main text, to investigate the
plateau in the spin dynamics and in general for measuring
the spin drag coefficient, we employ a different protocol that
allows us not to initially excite spin-dipole oscillations. For
these measurements, we turn off the barrier in a two-stage
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Damping time of the breathing mode versus κF a. The transition from a collisionless to a hydrodinamic regime is additionally detected through
the damping time, which reaches a minimum at kF a ' 0.2.
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FIG. 7. Spin diffusion dynamics at hold times t > 50 ms for
T/TF = 0.12(2). The evolution of the magnetisation ∆M(t) is
plotted for various interaction strengths. Data points averaged over
4-5 indipendent experimental realizations (with error bars represent-
ing the s.e.m. of the data) are shown together with fits to the solution
of the simple kinetic model from which we extract ΓS (see Eq. (27)).

sequence. First, we lower the repulsive barrier from 10EF
down to about ≤ 2EF with a linear ramp lasting 30 ms (see
Fig. 5c). The ramp speed and final barrier height are chosen
to ensure an adiabatic re-adjustment of the density distribu-
tions of the two clouds in the barrier region, while preventing
a detectable tunnelling of atoms across the barrier and not in-
ducing any shape excitations. In this way, the magnetization
in each reservoir does not change, but the relative distance
between the edges of the two spin domains near z = 0 is dras-
tically reduced, from 5µm down to about 1µm, a length-scale

comparable with the mean interparticle spacing of our gas at
the interface.

In a second stage, we ramp the intensity of the repulsive
barrier down to zero. We have investigated different durations
of the second ramp, spanning from 0 up to 30 ms. For times
between 10 and 30 ms, we detect an appreciable flow of atoms
across the barrier region already during the ramp. In this case,
once the barrier is off, the spin dynamics is well described by
a continuous, single exponential decay (see Fig. 7). For ramps
shorter than 10 ms, in the strongly interacting regime, we ob-
serve a τp > 0 window of vanishing spin diffusion. For ramp
times below 5 ms, the duration of the plateaus is maximised
and, for each target field explored in this work, it does not
show any dependence on the ramp speed. For the measure-
ments presented in Fig. 3 and 4 of the main text, the barrier is
turned off in 5 ms.

II. EFFECTIVE FERMI ENERGY AND FERMI
WAVEVECTOR

In order to account for the inhomogeneity, the finite tem-
perature, and the initial density of the two spin components
in disconnected reservoirs, in the main text we have defined
κF and εF as relevant length and energy scales. These are
evaluated by approximating the thin barrier at z = 0 as a
delta-like potential. As already discussed in Section I, this is a
reasonable assumption, considering that the barrier thickness
of 2µm is about 70 times smaller than the typical Thomas-
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Fermi radius of the cloud along the z axis. This is also
confirmed by the measurement of the oscillation frequency
within each reservoir, that is found to be ∼ 10% lower than
the value 2νz expected for the case of a delta-like potential.
Namely, we approximate the density distribution of a Fermi
gas of N atoms confined in “half” a harmonic trap as half of
the distribution of a Fermi gas of 2N atoms occupying the
whole dipole trap. This is evaluated with a finite temperature
Fermi-Dirac distribution of an ideal Fermi gas nF (r, T/TF ),
given the measured T/TF , trap frequencies, and atom num-
bers, see Fig. 8a. The obtained profile excellently reproduces
the two ↑ and ↓ clouds, imaged in situ independently. From
nF (r, T/TF ) the local Fermi energy and wavevector are given
respectively by kF (r, T/TF ) = (6π2nF (r, T/TF ))1/3 and
EF (r, T/TF ) = ~2kF (r, T/TF )2/(2mLi).

The two parameters κF and εF are derived by averaging
the local kF (r, T/TF ) and EF (r, T/TF ) over one interpar-
ticle spacing (6π2)1/3/kF (x, y, 0, T/TF ) around z = 0, see
Fig. 8b. Parallel to this, integration of nF (r, T/TF ) within
this region yields the total numberNint of ↑ and ↓ fermions at
the interface between the two pseudospin domains. The def-
inition of such an energy- and length-scale are inspired by a
recent study on the spatial distribution of a fully ferromagnetic
two-fermion mixture in a harmonic trap33, which predicts that
the domain wall at the interface between the two magnetic do-
mains has a total thickness of one interparticle spacing.

III. SUM-RULE APPROACH FOR THE PREDICTION OF
SPIN-DIPOLE FREQUENCY

As emphasized in the main text, the measured out-of-phase
oscillation frequency compares very well with a theoretical es-
timate based on a sum-rule approach supplemented with quan-
tum Monte Carlo (QMC) data and employing a local density
approximation10.

The sum-rule approach is a very powerful method to give
an upper bound of collective modes in confined systems34. It
is based on the knowledge of different momenta of the linear
response of the system to the perturbation exciting the mode
of interest. If the perturbation operator is D, the moments of
the strength distribution function, or sum rules, are given by
mk =

∑
n |〈0|D|n〉|2(En − E0)k. An upper bound to the

mode frequency is provided by the ratios of the sum rules.
The out-of-phase, or spin-dipole mode in particular is ex-

cited by the operator D =
∑
i(zi↑ − zi↓), where z is the

longitudinal coordinate. We estimate the frequency of this os-
cillation using the ratio

~2ω2
SD =

m1

m−1
(5)

The reason is two-fold: (i) the inverse energy weighted sum
rulem−1 is sensitive to low frequencies which dominate since
the stronger the repulsive interaction the softer the spin-dipole
mode; (ii) m−1 is related to the susceptibility of the system.

The so-called energy weighted sum rule m1 is easily calcu-
lated in terms of a double commutator:

m1 =
1

2
〈0|[D, [H,D]]|0〉 = N

~2

2m
. (6)

The inverse energy-weighted sum rule is proportional to the
spin dipole susceptibility. The latter can be determined by
minimizing the total energy of the system in the presence of
an external static coupling of the form −λD.

Since our system is inhomogeneous we write the energy
assuming local density approximation to be valid:

E =

∫
dr[ε(n↑(r), n↓(r))− λz(n↑(r)− n↓(r))] (7)

where ε(n↑, n↓) is the energy density of uniform matter. By
expanding ε(n↑, n↓) up to quadratic terms in n↑ − n↓, min-
imisation of E yields the result n↑ − n↓ = λzχ(n) for the
polarisation induced by the external field. Here χ−1(n) =
∂2ε/∂(n↑−n↓)2 is the zero temperature inverse magnetic sus-
ceptibility of the uniform matter calculated at the local value
of the density. The calculation of the induced spin dipole mo-
ment then yieldsm−1 = 1/2

∫
drz2χ(n) and hence the result

ω2
SD =

N

m
∫
drz2χ(n)

(8)

for the spin dipole frequency. Eq. (8) is exact within local
density approximation and it shows that an increase of the
magnetic susceptibility will result in a decrease of ωSD. If
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a ferromagnetic transition occurs, the spin-dipole mode fre-
quency shows a minimum associated with a diverging spin
susceptibility, occurring within the central high density region
of the trap. Once a ferromagnetic domain is formed, Eq. (8)
is no longer valid and the dynamical behaviour of the system
strongly depends on the geometry of the domain wall itself.

For an ideal Fermi gas trapped in a harmonic potential one
gets the simple result ωSD = ωz where ωz is the trap fre-
quency along the z-axis. For a balanced interacting Fermi gas
on the repulsive branch we use both for the energy density and
the bulk magnetic susceptibility the QMC results by Pilati et
al.18. Both quantities can be written easily as an expansion in
kFa above the mean-field results:

ε

ε0
= 1 + kFa+ Cε(kFa)2 (9)

χ0

χ
= 1− 2

π
kFa− Cχ(kFa)2, (10)

where ε0 and χ0 are the chemical potential and the suscep-
tibility of a spin-1/2 free Fermi gas, respectively. The con-
stants Cε = 0.28 and Cχ = 0.62 are fitting parameters to the
Monte-Carlo results. The previous expressions are suitable to
determine an upper bound to the spin-dipole mode frequency
for an unpolarised gas at equilibrium in the trap10.

Providing a rigorous theoretical description of the experi-
mental results shown in Fig. 2 of the main text is challenging
since the gas has a time and space dependent local polarisa-
tion. However, some comments are due here: (i) the position
at which the frequency has an abrupt change (reaches its low-
est value) does not depend on the configuration; (ii) our initial
configuration enhances the effect with respect to the param-
agnetic ground state considered by Recati et al.10; (iii) the
measured frequency should generally be larger than the result
of Recati et al.10 since only part of the gas is interacting dur-
ing the oscillation frequency measurement. We can estimate
an upper bound for the frequency by considering a configura-
tion formed by two outer fully polarised regions (free Fermi
gases) and an inner unpolarised layer, described by the equa-
tion of state Eq. (10). The extension of the inner layer can be
assumed to be the region where the two species have a size-
able overlap during the oscillation, which we estimate to be
at least 25% of the total length of the cloud. The results are
reported in Fig. 2 of the main text as solid (full overlap) and
dashed (25% overlap) lines, and are found to mark a confi-
dence region within which all experimental data fall in.

IV. TEMPERATURE SHIFT OF THE CRITICAL
INTERACTION STRENGTH

Within Landau theory of Fermi liquid the inverse suscepti-
bility at T = 0 can then be written as35

χ−1(T = 0) =
2

g(eF )
(1 + F a0 ) (11)

where F a0 is the l = 0 antisymmetric (magnetic) Landau
parameter, g(eF ) = m∗kF /π

2 is the density of states with
m∗ = m(1 + F s1 /3) > m and F s1 is the l = 1 symmetric

(density) Landau parameter. To the first order in the interac-
tion one has m∗ = m and F a0 = −2kFa/π.

At finite temperature but T � TF we can consider the cor-
rections to previous expression only due to free quasiparticles
which is proportional to n, and therefore to T 2. The inter-
action term depending on n2 will contribute to higher order
O(T 4):

χ−1(T ) =
2

g(eF )
(1 + F a0 + π2/12(T/TF )2) (12)

The paramagnetic state becomes unstable when χ−1 = 0,
which at zero temperature can occur if there exists a critical
value (kFa)c such that F a0 = −1. At low T we can expand
the Landau parameters around their values at the critical point
(kFa)c at zero temperature

F a0 = F a0,c +

(
∂F a0
∂(kFa)

)
c

(kFa− (kFa)c) (13)

F s1 = F s1,c +

(
∂F s1
∂(kFa)

)
c

(kFa− (kFa)c). (14)

Therefore we find that the critical temperature for the param-
agnetic state to be unstable can be simply written as(

T

TF

)
c

=
2
√

3

π

√
−
(

∂F a0
∂(kFa)

)
c

√
kFa− (kFa)c (15)

For instance using the expression for F a0 at the second order
in kFa one gets the first correction to the usual expression. In
particular (kFa)c ' 1.05 and the critical temperature reads(
T

TF

)
c

' 23/2
√

3

π3/2

√
1 + (kFa)c

8

3π
(1− ln 2)

√
kFa− (kFa)c

(16)
In principle, application of the aforementioned power law

as a fit to the experimental data in Fig. 3d (tentative phase dia-
gram) is not justified: in fact, τp > 0 is interpreted as the onset
of the fully ferromagnetic state, whereas Eq. (15) marks the
boundary between para- and partially ferro-magnetic phases.
On the other hand, however, all QMC results show that the
partially ferromagnetic phase for a homogeneous system oc-
cupies a very narrow region of the phase diagram, and we
expect that in our trapped system its presence is essentially
washed out by the inhomogeneity of the clouds density distri-
bution and finite experimental resolution.

V. PAIRING INSTABILITY AND MOLECULE
FORMATION

One major issue that has impeded the observation of the fer-
romagnetic instability in previous experiments with ultracold
Fermi gases7,8 is represented by the pairing instability6. As
discussed in the main text, ferromagnetic behaviour develops
along the upper branch of the many-body system: however,
this state features an additional instability, represented by the
tendency of the paramagnetic phase to turn via inelastic pro-
cesses into a gas of pairs, which represents the true ground
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pulse imaging technique. The peak of molecule formation appears
below the measured critical interactions, at 1/(κF a) ' 1.3.

state of the balanced system at low temperatures. At least
for homonuclear mixtures and broad resonances6,8,13, the pair-
ing instability always overcomes the Stoner’s one. Thanks to
our preparation scheme, that artificially initialises the system
into a fully ferromagnetic configuration, we are able to contain
the system tendency towards pairing, allowing for the inves-
tigation of the metastable upper branch. Furthermore, as dis-
cussed in Sec. VI, attractive polarons, rather than pairs, seem
to be the preferential decay products in our system, at least
in the strongly interacting regime. Nonetheless, molecule for-
mation has represented a major issue in previous experiments,
and ruling out pairing effects for explaining the dynamics ob-
served in our studies is fundamental for further supporting our
interpretation. In previous experiments8, the population of
molecules and atoms has been identified via a rapid magnetic
field ramp technique. After some evolution time at a target
field close to the Feshbach resonance center, where molecules
could be formed via recombination processes, two succes-
sive absorption images were acquired. A first, taken at high
field, allowed to monitor the total population of atoms and
molecules, since the molecule binding energy close to the Fes-
hbach resonance is two to three orders of magnitude smaller
than the natural linewidth of the imaging transition. This al-
lows to take a picture of the molecules with the same imag-
ing light employed for the atom, being the latter in the ↑ or ↓
state. A second imaging pulse was taken after a rapid sweep of
the magnetic field to zero. The ramp converts weakly bound
pairs into deeply bound molecules, which become transparent
to the atom imaging light. Hence, the second imaging selec-
tively monitors the atom population, i.e. the population of
the upper branch. Our setup does not allow to perform fast
(∼102 G/µs) ramps to low fields, hence we employed a dif-
ferent protocol to monitor the presence of molecules in the
system. This is based on acquiring, within a single experi-
mental run, two subsequent absorption images, by means of
4µs long pulses resonant with the ↑ and ↓ states, respectively,
and separated by 300µs. If no molecules are present, the ef-
fect of the first imaging pulse resonant with the ↑ state on ↓

atoms is negligible, the ↑ imaging light being off-resonant to
the ↓ component. Furthermore, the short delay between the
two pulses greatly limits the effect of heating of the ↓ cloud
associated to collisions with escaping ↑ imaged atoms. The ef-
fect of the first imaging pulse is in turn completely different if
molecules, rather than atoms, are considered. Since the ↑ − ↓
dimers are only weakly bound, the first imaging photon, res-
onant with the ↑ optical transition, dissociates the bound state
into two atomic products36, each of which symmetrically ac-
quires a significant momentum. The latter is associated to the
density of states of the two outgoing atoms, to the binding en-
ergy of the dimer (negligible in this case), and to the photon
momentum ~kL. The increase of the cloud size detected by
the second imaging pulse is thus proportional to the amount
of molecules in the system. We therefore monitor the increase
of the radial width after the first pulse for different interaction
strengths and different evolution times during the spin diffu-
sion.

A simple model allows to link the molecular fraction to the
increase of the cloud width after the first pulse, following the
experimental protocol described above. In general, the size of
a trapped cloud can be written as:

〈x20〉 =
2〈U〉
mω2

(17)

Where 〈U〉 is the potential energy of one atom weighted over
the density distribution of the cloud, the latter being eventu-
ally modified by interaction effects. In the case of a pure gas
of dimers, application of an imaging pulse resonant with the
↑ component causes the dimers to dissociate with a certain
transfer of energy E1 to the ↓ component. Since the photon
energy is always larger than the binding one, we assume E1

to be independent from the molecular binding, and hence in-
dependent from κFa.
According to the same argument of Eq. (17), the width mea-
sured through the second pulse, following the first, can be
written as:

〈x21〉 =
2〈U + E1〉
mω2

(18)

If the gas is a mixture of free atoms and molecules, the mean
size is set by:

〈x2〉 =
Na〈x20〉+Nm〈x21〉

Na +Nm
(19)

Defining the molecular fraction fm = Nm/N , we get:

〈x2〉 =
2

mω2
〈U〉+

2

mω2
〈E1〉fm = 〈x20〉+

2

mω2
〈E1〉fm

(20)
When starting from a pure molecular sample, fm = 1, we
would have:

2

mω2
〈E1〉 = 〈x21m〉 − 〈x20m〉 (21)

We can therefore express the molecular fraction as:

fm =
〈x21〉 − 〈x20〉
〈x21m〉 − 〈x20m〉

(22)
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The denominator of Eq. (22) can be experimentally deter-
mined by applying the double-pulse imaging technique on a
BEC-BCS crossover superfluid at a temperature T/TF < 0.1,
which ensures a molecular fraction fm ' 1 on the BEC side
of the resonance. The change of the density distribution when
moving from the unitary limit to the BEC one is accounted by
renormalizing the measured radial width by the average den-
sity of the gas, evaluated with the conventional single-pulse
absorption imaging.
The numerator of Eq. (22) is evaluated by measuring the ra-
dial size of the cloud 〈x21〉 at different evolution times of the
dynamics. Conversely, 〈x20〉 is the size measured through the
first imaging pulse at the corresponding times. Results of this
analysis are reported in Fig. 9, for various interaction strengths
and different diffusion times, for a repulsive Fermi gas mix-
ture initially prepared at T/TF=0.12(2).

The general trend for these measurements is interpreted as
follows: starting from the weakly repulsive regime, the up-
per branch is very long-lived, and despite rapid mixing of
the two spin clouds only a small number of molecules is
formed. Increasing interactions, the decay rate of the upper
branch monotonically increases13,22,28,37: hence, despite a par-
allel increase of the spin drag coefficient11,26, which tends to
slow down the interpenetration and to reduce the spatial over-
lap of the ↑ and ↓ clouds, the molecule formation becomes
more sizable, reaching a maximum near 1/(κFa) ' 1.3, in
good agreement with Ref. 33. However, as one accesses the
strongly interacting regime where the magnetic susceptibil-
ity is increasing, the molecule formation is again strongly re-
duced, highlighting the resistance of the system to mix the two
spin components. The trend at large κFa values, observed
also after long evolution times even when the spatial overlap
of the two clouds has considerably increased, suggests that
also at small values of local population imbalance the system
may be a Fermi liquid state of attractive polarons, rather than
a Bose gas of dimers. The Fermi liquid state might be favored
by our way to initialize the system dynamics, and also by the
temperature increase associated to the exothermic decay pro-
cess from the upper to the lower branch.

Importantly, for timescales below 100 ms, over which both
the plateau measurements and the spin-dipole oscillations
were acquired, the observed heating is relatively small and the
derived molecule fraction remains below 10% for interaction
strengths exceeding the critical value for the stop of diffusion
to occur. We therefore conclude that neither the behaviour of
the spin-dipole frequency nor the appearance of plateaus in
the spin diffusion can be strongly influenced by dimer forma-
tion. For what concerns the measurement of the spin-dipole
frequency, the possible development of a sizeable cloud of
molecules is expected to strongly reduce the amplitude of the
out-of-phase oscillation. While some additional damping as-
sociated to pairing effects cannot be excluded in our frequency
measurements, we do not envision how the observed dynam-
ics could arise from a lower-branch energy functional, with at-
tractive interactions forming bound pairs38,39. This is equally
true if an attractive Fermi liquid, rather than a Bose gas of
pairs, would be considered: for this latter system, both exper-
imental studies39,40 and theoretical calculations41 indicate that

the spin susceptibility monotonically decreases when moving
from the BCS to the BEC side of the crossover, vanishing at
kFa ∼ 1. This in turn would correspond to a spin-dipole
frequency monotonically increasing when passing from BCS
to BEC side along the lower branch, a qualitatively different
trend with respect to the one revealed in our experiment.

VI. PHENOMENOLOGICAL MODEL FOR THE
MELTING OF THE DOMAIN WALL

In this section, we describe the phenomenological model
developed to explain the finite duration of the plateau in the
spin diffusion, as a function of the interaction and tempera-
ture. Such a model is based on the precise knowledge28 of
the spectral properties and lifetime of ↓ impurities embed-
ded in a Fermi sea of ↑ particles. As discussed in the main
text, the spectral function of such system is characterised by
an upper and a lower branch. Depending on the interac-
tion strength, associated to the lower branch there exist in
the extremely imbalanced case two kinds of Landau’s quasi-
particles, coined attractive polarons and dressed molecules13.
For interaction parameters 1/(κFa) > 0.9 (1/(κFa) < 0.9)
dressed molecules (attractive polarons) represent the absolute
ground state of the many-body system. The upper branch,
in turn, features a third kind of quasi-particle, the repulsive
polaron, whose existence has been recently experimentally
demonstrated investigating both a three-dimensional mass-
imbalanced Fermi mixture of 40K and 6Li atoms22, and also
a two-dimensional Fermi mixture of 40K atoms42. While the
lower branch is associated to a net attractive interaction be-
tween the impurity and the particles of the medium, the upper
one requires repulsion between the two species in order to de-
velop. For increasing repulsive interaction (1/(κFa) → 0+),
the energy of the repulsive polaron progressively increases.
However, parallel to this, the repulsive polaron acquires a pro-
gressively shorter lifetime, set by the tendency of the system
to decay onto the lower-lying states of the attractive branch. It
can be shown13,22 that the main decay mechanism that destabi-
lize the repulsive branch is associated with relaxation into at-
tractive polarons, rather than into dressed molecules. The de-
cay rate Γ associated with such an inelastic process, together
with the energy E+ and E− of the repulsive and attractive
branch, has been determined via recent non-perturbative the-
ory approaches13,28.

Although our system is a 50-50 balanced mixture of ↑ and
↓ fermions, the results obtained in the impurity limit are ex-
tremely relevant for understanding the existence of a plateau
of zero diffusivity in the spin dynamics. Since our studies
start by preparing a fully ferromagnetic phase-separated state,
rather than a mixed paramagnetic phase, the initial mixing
processes at the interface between the two spin domains can be
envisioned as events in which fermions of one kind enter in the
Fermi sea of the other component, and vice-versa. Those are
well describable in terms of the properties of dressed quasi-
particles derived in the impurity limit.

Our proposed explanation of the conductance plateau
shown in Fig. 3 of the paper proceeds along the following
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line of thought. In the case of purely repulsive interaction,
the ferromagnetic state, if energetically allowed, would be in-
definitely stable, and in a system with separately fixed spin
populations would correspond to a phase-separated state. In
fact, the miscibility of the two components would be pre-
vented by the existence of a domain wall: namely, a ↓ fermion
at the interface would need to pay a finite amount of en-
ergy σ > 0 in order to access the other spin domain form-
ing a repulsive polaron. In our metastable system, however,
if a repulsive polaron is created, it can subsequently decay
onto the lower branch with a rate Γ, releasing an energy
equal to the mismatch between the two branches, E+ − E−.
Hence, this two-step process will cause a net increase of en-
ergy ∆E = E+ − E− − σ at a rate Γ. We assume that at the
beginning of the dynamics, the energy associated to the do-
main wall is given by σNint, Nint being the total number of
fermions within a slice around z = 0 of total thickness equal
to one interparticle spacing, see Section II. The duration of the
plateau τp is then set by the condition:

σNint = (E+ − E− − σ)τpΓ (23)

Phenomenologically, we assume that σ = E+−E+c, where
E+ is the energy of a repulsive polaron, while E+c is the en-
ergy of one free fermion at the interface. In homogeneous sys-
tems and in the impurity limit13, E+c = EF . In our inhomo-
geneous sample, and in the vicinity of the interface between
the two spin clouds, we introduceE+c as a phenomenological
parameter.

Consequently, from Eq. (23) we obtain the following ex-
pression for τp:

τp =
Nint(E+ − E+c)

Γ(E+c − E−)

1

2πνF
(24)

where hνF = εF .
To compare the prediction of Eq. (24) to our data we em-

ploy the values of E+, E− and Γ given as a function of
the interaction by Schmidt et al.28, and the values of κF ,
εF and Nint obtained after radial averaging over finite tem-
perature density profiles as described in Section II. The only
free parameter of the model, E+c, is fixed by optimizing the
agreement between experimental data and the prediction of
Eq. (24).

It is worth stressing how such a simple theory model, which
accounts for finite temperature effects only via a renormaliza-
tion of κF , εF and Nint evaluated at the interface between the
two spin domains, is able to provide a quantitative description
of the experimentally observed trend.

The model prediction stops at the unitary point and does
not extend on the a < 0 side of the Feshbach resonance,
because the theory becomes not reliable in this region, the
decay rate of the upper branch becoming on the order of
the Fermi energy, hence making the repulsive polaron an ill-
defined quasiparticle28. While the spin dynamics on the BCS
regime definitively deserves further deeper theoretical and ex-
perimental investigation, both τp and νs trends at low tem-
peratures are consistent with the picture that the system tem-
porarily access the upper branch even on the κFa < 0 side of

the Feshbach resonance. This extremely exotic many-body
state, which is a three-dimensional analogue of the super-
Tonks regime in one dimension43, is thus far poorly explored
even in theory and will be the subject of future studies.

VII. THEORY MODEL FOR THE DIFFUSION OF ONE
ATTRACTIVE POLARON

The equation for the dynamics of the relative center of mass
d(t) = z↑− z↓ can be easily obtained starting from the Boltz-
mann equation and using the method of the averages44. One
obtains the following coupled equations

∂t(z↑ − z↓)− (v↑ − v↓) = 0

∂t(v↑ − v↓) + ω2
z(z↑ − z↓) = (∂t(v↑ − v↓))coll, (25)

where ωz is the trapping frequency in the direction of the mo-
tion, v↑ (v↓) is the average velocity of the ↑ (↓) spin compo-
nent and (∂t(v↑ − v↓))coll is the collisional term. The effect
of the medium is included in this approach only in the colli-
sional term. Assuming that the distribution function changes
in time only through the change of velocity, the collisional
term is simply proportional to the relative velocity and can be
written as

(∂t(v↑ − v↓))coll = −ΓS(v↑ − v↓), (26)

where ΓS is the so-called spin drag coefficient. Therefore,
substituting Eq. (26) in Eq. (25) the equation of motion for d
is simply given by the one of a damped harmonic oscillator:

d̈+ ΓS ḋ+ ω2
zd = 0 (27)

The theoretical task is to determine the spin drag. For ↓
impurities moving through a fully polarized noninteracting ↑
Fermi sea, the drag rate can be computed as

~ΓS =
2π

kBTn↓

∫
d3p1

(2π~)3
d3p2

(2π~)3
d3p3

(2π~)3
δ(ε1+ε2−ε3−ε4)

× (4π~2)2

m2

dσ

dΩ
p1j(v1j − v3j)n1↓n2↑(1− n3↓)(1− n4↑).

(28)

This collision integral describes the scattering of an impurity
atom with momentum ~p1 and a medium atom with momentum
~p2 into outgoing states ~p3 and ~p4 = ~p1 + ~p2 − ~p3, conserving
the total momentum and the total kinetic energy ε1+ε2 of both
particles. Each particle has kinetic energy ε~p = p2/2m and
mass m. The drag rate is proportional to the change in impu-
rity velocity, v1j−v3j , where j denotes the spatial component
in the direction of the initial impurity velocity. The scattering
process occurs with probability n1↓n2↑ that the initial states
are occupied, and probability (1−n3↓)(1−n4↑) that the final
states are unoccupied, where n~pσ = [exp(β(ε~pσ−µσ))+1]−1

is the Fermi-Dirac distribution at chemical potential µσ . The
drag rate Eq. (28) is derived from spin diffusion theory for
a polarized Fermi gas45–47 in the limit of vanishing minority
density n↓ (the integral over the impurity distribution n1↓ can-
cels the factor n↓ in the denominator of Eq. (28) to yield a
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finite drag rate). Equivalently, Eq. (28) is obtained from the
impurity drag rate26,48 in the limit of vanishing impurity ve-
locity.

In order to compute the cross section dσ/dΩ for a dilute
Fermi gas we use the T matrix in the ladder approximation49.
In an ultracold Fermi gas the bare interaction is an s-wave
contact interaction between unequal spins, thus also the T ma-
trix only has an s-wave component ` = 0. One can then ex-
press the differential cross section

dσ

dΩ
= |f`=0(~q, ω)|2 (29)

in terms of the s-wave scattering amplitude f`=0(~q, ω) of two
incoming particles with total momentum ~q = ~p1+~p2 and total
kinetic energy ~ω = ε~p1↑ + ε~p2↓. The scattering amplitude,
in turn, is given in terms of the T matrix T` as49

f`=0(~q, ω) = − mQ

4π~2
T`=0(~q, ω). (30)

For two particles scattering in vacuum (Q = 1), the two-body
T matrix reads

T (0)
`=0(~q, ω) =

4π~2a/m
1 + iak

(31)

where a denotes the s-wave scattering length, and ~~k = (~p1−
~p2)/2 is the relative momentum of incoming particles. This
results in a vacuum scattering amplitude f (0)`=0 = −a/(1+iak)

and vacuum scattering cross section dσ(0)/dΩ = |f (0)`=0|2 =
a2/(1+a2k2). At weak coupling |kF↑a| � 1, the drag rate is
proportional to the scattering cross section, 1/τp ∝ a2. Note
that with the vacuum cross section, the drag rate depends only
on the modulus |a| of the scattering length and is symmetric
in a around unitarity (a−1 = 0) in the BCS-BEC crossover.
The experimental data for the drag rate, however, exhibit an
asymmetry in a. A similar asymmetry in transport coefficients
has been observed in the shear viscosity29 and transverse spin
diffusion30.

In order to explain the asymmetry in the drag rate it is
necessary to include medium scattering, where the Fermi sea
is Pauli blocked for intermediate states, and which entails a
tendency toward molecule formation on the BEC side50–52.
Medium scattering is described by the many-body T matrix
T`,

T −1`=0(~q, ω) = T (0)−1
`=0 (~q, ω) +

∫
d3p

(2π~)3
n~p↓ + n~q−~p↑

ω − ε~p↓ − ε~q−~p↑ + i0
.

(32)

The medium T matrix includes the effect of quantum degen-
eracy, which leads to a large increase in the partial-wave scat-
tering amplitudes (30) and would by itself violate the unitarity
bound

|kf`| ≤ 1, (33)

which is the prerequisite for expressing the scattering ampli-
tude kf` = eiδ` sin δ` in terms of real phase shifts δ`(~q, ω).
The definition of the scattering amplitudes (30) in the pres-
ence of the medium therefore includes a phenomenological Q
factor which accounts for the fact that only unoccupied states
are available for outgoing waves49 (Pauli blocking),

Q =

∫ 1

−1

d cos θ

2

(
1− n~q/2+~~k↓ − n~q/2−~~k↑

)
. (34)

The integral averages over the angle θ between total momen-
tum ~q and relative momentum ~~k, while the modulus of ~k
is fixed by the condition ~ω = ε~q/2+~~k↓ + ε~q/2−~~k↑ =

~2k2/m + q2/4m. In vacuum Q = 1, and also at high tem-
peratures T � TF↑ one has Q ≈ 1. However, in a degenerate
Fermi gas Q < 1 lowers the scattering amplitude sufficiently
to always satisfy the unitarity bound (33) also in the case of
medium scattering.

The drag rate Eq. (28) is known analytically in the whole
BCS-BEC crossover in the high-temperature limit T � TF↑
where the majority Fermi gas is non-degenerate47,

(~ΓS
EF↑

)
hightemp

=
16
√

2

9π3/2

(TF↑
T

)1/2[
1− x− x2exEi(−x)

]
x=~2/(ma2kBT )

(35)

where Ei denotes the exponential integral. In this regime, the
medium factor Q = 1. Conversely, medium scattering be-
comes important in a degenerate Fermi gas (T . TF↑). In
general, the collision term in Eq. (28) can be reduced to a
three-dimensional integral which is readily evaluated numeri-
cally. The resulting drag rate exhibits a maximum slightly on
the BEC side of the resonance, in agreement with our experi-
mental results. As the temperature is increased, the maximum
shifts toward unitarity in agreement with the high-temperature
expression (35) which is symmetric in a.
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