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Scattering properties

Holstein 1993; Pitaevskii & Rosch 1997

• two-particle scattering:
   how does coupling g change when zooming out?
   

• coupling always energy dependent (log. running coupling)
• never scale invariant (quantum anomaly breaks classical scale invariance)
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(49) and determining the point at which � vanishes.87 From the resulting
linearized gap equation (or Thouless criterion) one obtains88
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A more thorough calculation that includes Gorkov–Melik-Barkhudarov cor-
rections56 yields the BCS result above reduced by a factor of e.
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Fig. 15. Schematic phase diagram throughout the BCS-Bose crossover. The critical
temperature for superfluidity is represented by the solid line, and corresponds to an
interpolation between the known limits. The dashed lines correspond to µ ⇡ 0 and the
onset of pairing T ⇤, which approximately bound the pseudogap region above T

c

. The
µ(T ) ⇡ 0 line is obtained by setting T = µ(0), while T ⇤ is estimated from the Thouless
criterion (64).

Referring to Fig. 15, we see that the results for T
c

in the BCS and Bose
limits can be smoothly interpolated, suggesting that T

c

/T
F

never exceeds
0.1. Note that T

c

has a maximum in the regime | ln(k
F

a
2D

)| < 1. As yet,
there is no experimental observation of T

c

in the 2D Fermi gas.

5.1.1. Quasi-2D case

Given that experiments deal with quasi-2D Fermi gases, it is important to
understand the e↵ect of a finite confinement length on T

c

. This is in general
a challenging problem to address throughout the BCS-Bose crossover, but
it is possible to estimate the dependence on "

F

/!
z

in the BCS limit. Using
the mean-field approach for the quasi-2D system described in Sec. 4.2, one
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news & views

One of the most stimulating areas 
of research in ultracold atoms 
is the exploration of strongly 

interacting Fermi gases1. As reported2 
in Nature Physics, John Gaebler et al. 
make a significant contribution to 
this subject by providing the first 
experimental evidence of an energy gap, 
called the pseudogap, owing to pairing 
correlations above the superfluid phase-
transition temperature Tc of the unitary 
Fermi gas. Their measurement uses 
the new technique of angle-resolved 
radiofrequency (RF) spectroscopy, 
which is an analogue of angle-resolved 
photoemission spectroscopy3,4 (ARPES), 
one of the most powerful probes of 
correlated electrons in solid-state 
materials. Despite crucial differences, 
there are also some interesting 
similarities between the pseudogap 
above Tc in ultracold Fermi gases 
and the underdoped regime of high-
temperature superconductors.

To appreciate the significance of 
these results, it is useful to recall that 
the unitary Fermi gas is in the middle of 
the crossover between two very different 
limits: Bardeen–Cooper–Schrieffer 
(BCS) superfluidity of fermion pairs 
and Bose–Einstein condensation (BEC) 
of bosons. Most superconductors or 
superfluids studied in the past hundred 
years are firmly in one or the other limit. It 
is only in the past few years that an atomic 
physics technique called the Feshbach 
resonance1 has allowed us to actually 
tune the attractive interactions between 
fermionic atoms (6Li, 40K) and span the 
entire BCS to BEC crossover shown 
in Fig. 1.

In the BCS limit, a weak attraction 
between fermions leads to the formation — 
and condensation — of Cooper pairs with 
an effective size much larger than the 
interparticle distance. The normal state 
above Tc is a Fermi liquid with a Fermi 
surface of gapless excitations. In the BEC 
limit, on the other hand, strong attraction 
leads to tightly bound diatomic molecules 
that are weakly repulsive bosons. The state 
above Tc is a normal Bose gas and only at 

very high temperatures do the molecules 
dissociate into atoms.

The unitary regime lies between these two 
very different limits. Here the interaction 
parameter between atoms, the s-wave 
scattering length, diverges and the cross-
section is limited only by unitarity, that is, 

the conservation of probability. The ground 
state near unitarity is a strongly interacting 
superfluid of pairs, the size of which is of 
the order of the interparticle spacing of 
constituent fermions. This also leads to a very 
high Tc, in which Tc = (0.15–0.2)EF, where EF 
is the Fermi energy5,6.

ULTRACOLD FERMI GASES

Pre-pairing for condensation
Pair formation and condensation usually occur together in Fermi superfluids. The observation of a pseudogap that 
implies pairing above the condensation temperature in a strongly interacting Fermi gas is thus an exciting development.

Mohit Randeria

Figure 1 | Phase diagram of the BCS to BEC crossover as a function of the dimensionless attraction 
1/(kFas) (where kF is the Fermi momentum and as is the scattering length) and the temperature T 
in units of EF. The pictures show schematically the evolution of the ground state from the BCS limit 
with large, spatially overlapping Cooper pairs to the BEC limit with tightly bound molecules. The 
ground state at unitarity (1/(kFas) = 0) has strongly interacting pairs with size comparable to 1/kF. 
As a function of increasing attraction, the pair-formation crossover scale T* diverges away from Tc 
below which a condensate exists. Most Fermi superfluids and superconductors are close to the BCS 
limit where these two temperatures coincide. The experiments reported by Gaebler et al.2 probe the 
unitary regime and reveal a pairing pseudogap in the range of temperatures between Tc and T*. This 
global phase diagram is based on ref. 5; for recent quantum Monte Carlo calculations near unitarity, 
see refs 6 and 8.
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Thermodynamics & scale invariance
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Thermodynamics & scale invariance

scale invariance in 2D:

interacting 2D Fermi gas:

scale invariance broken

P = E

P = E +
C

4⇡m
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Local many-body correlations
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Local many-body correlations

P=E+E’/2
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subtract two-body binding energy:

strong local correlation in crossover: 
quantify scale invariance breaking
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experimental results in Ref. [30] have been addressed in
Refs. [31,32], in which the damping of collective modes is
analyzed using kinetic theory.

For large values of j lnkFa2Dj, the energy per particle can
be stated in closed analytical form. We can use this to
derive analytical expressions for the frequency shifts. In
the limit lnkFa2D ! 0, the system forms a Bardeen-
Cooper-Schrieffer (BCS) superfluid and the frequency
shift is

!!

!0
¼ 1

4"2 #
#

2"3 þOð"#4Þ; (19)

where " ¼ lnkFa2D and # ¼ 0:06' 0:02 has been deter-
mined in Ref. [11]. Equation (19) is indicated by the green
dotted line in Fig. 1. In the Bose-Einstein condensate
(BEC) limit, the system can be described as a gas of bosons
with an effective dimer scattering length ad ( 0:55a2D
[11,33]. We obtain the anomalous frequency shift

!!

!0
¼ # 1

4"
þOð"#2 ln"2Þ; (20)

which is indicated by the red dashed line in Fig. 1.
Equation (20) holds for a Bose gas as well, where ad has

to be replaced by the 2D scattering length a2D. Following
the notation in Ref. [20], we relate a2D to the 3D scattering
length a3D via a22Dn ¼ $e#1=%=&e2'Eþ1, where $ ¼
&e2'Eþ1ðC2DÞ2n~a2z , C2D ( 1:47 and % ¼ a3D=

ffiffiffiffi
&

p
~az, and

~az ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=m!z

p
is the harmonic oscillator length [3]. If we

assume % ) minð1; 1=j ln$jÞ, the leading-order term in
Eq. (20) reproduces the result for the anomalous frequency
shift obtained by Olshanii et al., ! * !!=2!0 ¼
a3D=4

ffiffiffiffi
&

p
~az [20].

It is instructive to compare the present analysis to the
Fermi gas in one and three dimensions (1D/3D). There, the

commutator relations between the dilatation operator and
free Hamiltonian are

1D: ½D;H, ¼ 2iH þ ia1D
2m

I (21)

and

3D: ½D;H, ¼ 2iH þ ia#1
3D

4&m
I: (22)

As for the 2D case, we can use the commutator relations to
derive the virial theorem and the pressure relation in 1D
[15,34] and in 3D [12,13,15]. Moreover, the symmetry is
broken explicitly at the finite scattering length, and there is
a parameter—the (inverse) scattering length a1D and a#1

3D—
that sets the strength of the breaking. For small parameter
values, we can treat the correction as a small perturbation.
This has been exploited to calculate the shift in hydro-
dynamic mode frequencies close to the unitary limit in
3D [35,36].
In conclusion, we studied the effect of quantum fluctua-

tions on the symmetry properties of a 2D Fermi gas in a
harmonic trap. We showed that there is a quantum anom-
aly, i.e., that the Pitaevskii-Rosch symmetry which exists
on a classical level is not a symmetry of the quantum
system. The anomaly manifests itself in a deformation of
the Lie algebra associated with the symmetry group. We
derived that the anomalous operator appearing in the com-
mutator relations is the contact operator and used this result
to present a field-theoretical derivation of two thermody-
namic Tan relations, the virial theorem and the pressure
relation. We extracted the anomalous frequency shift of the
breathing mode from Monte Carlo simulations at T ¼ 0
and compared the result to recent measurements of the
mode frequency at finite temperature. The findings of
this Letter underline the subtle role that is played by the
contact operator in the physics of interacting quantum
gases. We can interpret it as an anomalous operator that
is introduced by quantum fluctuations.
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T>0: Luttinger-Ward approach

• repeated particle-particle scattering dominant in dilute gas:

                                                    self-consistent T-matrix 

                                                    self-consistent fermion propagator
                                                    (400 momenta / 400 Matsubara frequencies)   

• spectral function A(k,ω)                         density of states ρ(ω)

Haussmann 1993, 1994;
Haussmann et al. 2007

Bauer, Parish & Enss PRL 2014

μ is taken to be the same for both species in a spin-balanced
gas. The energy scale is set by the Fermi energy εF ¼
kBTF ¼ ℏ2k2F=2m for a total density n ¼ k2F=2π. The bare
attractive contact interaction g0 has to be regularized and
is expressed in terms of the physical binding energy εB of
the two-body bound state which is always present in an
attractive 2D Fermi gas. We define the 2D scattering length
as a2D ¼ ℏ=

ffiffiffiffiffiffiffiffiffi
mεB

p
and parametrize the interaction strength

by lnðkFa2DÞ ¼ lnð2εF=εBÞ=2. In the following, we set
kB ¼ 1, ℏ ¼ 1, and write β ¼ 1=kBT.
We investigate the behavior of the strongly interacting

Fermi gas in the normal state using the Luttinger-Ward, or
self-consistent T-matrix, approach [14,15], which goes
beyond earlier works [6,16] by including approximately
the interaction between dimers as well as dressed Green’s
functions. Thermodynamic precision measurements for the
unitary Fermi gas in 3D [17] have confirmed the accuracy
of this method, both for the value of Tc=TF ¼ 0.16ð1Þ and
the Bertsch parameter ξ ¼ 0.36ð1Þ [15,17]. Recently, the
Luttinger-Ward approach has been extended to study trans-
port properties [18]. The success of this method in three
dimensions encourages its application to the homogeneous
2D Fermi gas, which is particularly challenging due to the
logarithmic energy dependence of the scattering amplitude.
Within the Luttinger-Ward approach, pairs of dressed

fermions with Green’s function Gðk;ωÞ ¼ ½−ωþ εk − μ −
Σðk;ωÞ&−1 can form virtual molecules whose dynamics are
described by the T matrix ΓðK;ΩÞ. The fermions can scatter
from these molecules, which determines their lifetime and
self-energy Σðk;ωÞ (see Supplemental Material [19]). From
the self-consistent solution Gðk;ωÞ one obtains the spectral
function Aðk;ωÞ ¼ ImGðk;ωþ i0Þ=π.

Density of states.—The density of states ρðωÞ describes at
which energies fermionic quasiparticles can be excited, and is
computed as the momentum average of the spectral function,
ρðωÞ ¼

R
dkAðk;ωÞ=ð2πÞ2. Figure 1 shows the density of

states for an interaction strength of lnðkFa2DÞ ¼ 0.8, which
is weak enough that there should be a Fermi surface at low
temperatures [20]. For decreasing temperature, we see that
the density of states is strongly suppressed at the chemical
potential, while it increases on either side of the Fermi
surface. This marks the pseudogap regimewhich is part of the

FIG. 1 (color online). Density of states ρðωÞ, normalized by
ρ0 ¼ m=2π for the free Fermi gas, at interaction lnðkFa2DÞ ¼ 0.8
for different temperatures: T ¼ 0.45TF (top curve at ω ¼ 0) to
T ¼ 0.07TF (bottom). Inset: Spectral function Aðk;ωÞ for
T ¼ 0.07TF. The grey dashed line marks the maximum in the
spectral weight of the bottom band.

FIG. 2 (color online). Density n of the 2D Fermi gas vs chemical
potential βμ, for different interaction strengths βεB (see legend).
Since the density is normalized by n0ðβμÞ for the noninteracting
gas, the nonmonotonic behavior of n=n0 reflects the impact of
interactions, while the compressibility κ ¼ ð∂n=∂μÞ=n2 is always
positive. The inset shows a typical trajectory in T=TF vs lnðkFa2DÞ
corresponding to the dotted line of fixed βεB ¼ 1. Along this line,
βμ increases with decreasing T=TF.

FIG. 3 (color online). Pressure P vs interaction strength,
normalized by the pressure P0 ¼ nεF=2 of an ideal Fermi gas
of the same density at T ¼ 0. Luttinger-Ward data at temperature
T=TF ¼ 0.2 (top, dotted line) to T=TF ¼ 0.1 (solid line) in
comparison with experimental data [10] (symbols) and T ¼ 0
QMC results [11] (dashed line).
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Density equation of state: theory

• maximum  &  density driven crossover

μ is taken to be the same for both species in a spin-balanced
gas. The energy scale is set by the Fermi energy εF ¼
kBTF ¼ ℏ2k2F=2m for a total density n ¼ k2F=2π. The bare
attractive contact interaction g0 has to be regularized and
is expressed in terms of the physical binding energy εB of
the two-body bound state which is always present in an
attractive 2D Fermi gas. We define the 2D scattering length
as a2D ¼ ℏ=

ffiffiffiffiffiffiffiffiffi
mεB

p
and parametrize the interaction strength

by lnðkFa2DÞ ¼ lnð2εF=εBÞ=2. In the following, we set
kB ¼ 1, ℏ ¼ 1, and write β ¼ 1=kBT.
We investigate the behavior of the strongly interacting

Fermi gas in the normal state using the Luttinger-Ward, or
self-consistent T-matrix, approach [14,15], which goes
beyond earlier works [6,16] by including approximately
the interaction between dimers as well as dressed Green’s
functions. Thermodynamic precision measurements for the
unitary Fermi gas in 3D [17] have confirmed the accuracy
of this method, both for the value of Tc=TF ¼ 0.16ð1Þ and
the Bertsch parameter ξ ¼ 0.36ð1Þ [15,17]. Recently, the
Luttinger-Ward approach has been extended to study trans-
port properties [18]. The success of this method in three
dimensions encourages its application to the homogeneous
2D Fermi gas, which is particularly challenging due to the
logarithmic energy dependence of the scattering amplitude.
Within the Luttinger-Ward approach, pairs of dressed

fermions with Green’s function Gðk;ωÞ ¼ ½−ωþ εk − μ −
Σðk;ωÞ&−1 can form virtual molecules whose dynamics are
described by the T matrix ΓðK;ΩÞ. The fermions can scatter
from these molecules, which determines their lifetime and
self-energy Σðk;ωÞ (see Supplemental Material [19]). From
the self-consistent solution Gðk;ωÞ one obtains the spectral
function Aðk;ωÞ ¼ ImGðk;ωþ i0Þ=π.

Density of states.—The density of states ρðωÞ describes at
which energies fermionic quasiparticles can be excited, and is
computed as the momentum average of the spectral function,
ρðωÞ ¼

R
dkAðk;ωÞ=ð2πÞ2. Figure 1 shows the density of

states for an interaction strength of lnðkFa2DÞ ¼ 0.8, which
is weak enough that there should be a Fermi surface at low
temperatures [20]. For decreasing temperature, we see that
the density of states is strongly suppressed at the chemical
potential, while it increases on either side of the Fermi
surface. This marks the pseudogap regimewhich is part of the

FIG. 1 (color online). Density of states ρðωÞ, normalized by
ρ0 ¼ m=2π for the free Fermi gas, at interaction lnðkFa2DÞ ¼ 0.8
for different temperatures: T ¼ 0.45TF (top curve at ω ¼ 0) to
T ¼ 0.07TF (bottom). Inset: Spectral function Aðk;ωÞ for
T ¼ 0.07TF. The grey dashed line marks the maximum in the
spectral weight of the bottom band.

FIG. 2 (color online). Density n of the 2D Fermi gas vs chemical
potential βμ, for different interaction strengths βεB (see legend).
Since the density is normalized by n0ðβμÞ for the noninteracting
gas, the nonmonotonic behavior of n=n0 reflects the impact of
interactions, while the compressibility κ ¼ ð∂n=∂μÞ=n2 is always
positive. The inset shows a typical trajectory in T=TF vs lnðkFa2DÞ
corresponding to the dotted line of fixed βεB ¼ 1. Along this line,
βμ increases with decreasing T=TF.

FIG. 3 (color online). Pressure P vs interaction strength,
normalized by the pressure P0 ¼ nεF=2 of an ideal Fermi gas
of the same density at T ¼ 0. Luttinger-Ward data at temperature
T=TF ¼ 0.2 (top, dotted line) to T=TF ¼ 0.1 (solid line) in
comparison with experimental data [10] (symbols) and T ¼ 0
QMC results [11] (dashed line).
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3D: only 
goes up

tion and theory (23). At low temperatures, the
reduced chemical potential m/EF saturates to the
universal value x. As the internal energy E and
the free energy F satisfy E(T ) > E(0) = 3

5N xEF =
F(0) > F(T ) for all T, the reduced quantities
fE ≡ 5

3
E

NEF
¼ p̃ and fF ≡ 5

3
F

NEF
¼ 5

3
m
EF
− 2

3 p̃ (Fig.
3A) provide upper and lower bounds for x (29).
Taking the coldest points of these three curves and
including the systematic error due to the effective
interaction range, we find x = 0.376(4). The un-
certainty in the Feshbach resonance is expected
to shift x by at most 2% (13). This value is con-
sistent with a recent upper bound x < 0.383(1) from
(30), is close to x = 0.36(1) from a self-consistent
T-matrix calculation (23), and agrees with x =
0.367(9) from an epsilon expansion (31). It lies
below earlier estimates x = 0.44(2) (32) and x =
0.42(1) (33) from fixed-node quantumMonteCarlo
calculation that provides upper bounds on x. Our
measurement agrees with several less accurate ex-
perimental determinations (6) but disagrees with
the most recent experimental value 0.415(10) that
was used to calibrate the pressure in (12).

From the energy, pressure, and chemical po-
tential, we can obtain the entropy S = 1

T(E + PV −
mN), and hence the entropy per particle S=NkB ¼
TF
T

p̃ −
m
EF

! "
as a function of T/TF (Fig. 3B). At

high temperatures, S is close to the entropy of
an ideal Fermi gas at the same T/TF. Above Tc,
the entropy per particle is nowhere small com-
pared with kB. Also, the specific heat CV is not
linear in T in the normal phase. This shows that
the normal regime above Tc cannot be described in
terms of a Landau Fermi Liquid picture, although
some thermodynamic quantities agree surpris-
ingly well with the expectation for a Fermi liquid
[see (12) and (13)]. Below about T/TF = 0.17, the
entropy starts to strongly fall off comparedwith that
of a noninteracting Fermi gas, which we again
interpret as the freezing out of single-particle excita-
tions as a result of the formation of fermion pairs.
Far below Tc, phonons dominate. They only have a
minute contribution to the entropy (23), less than
0.02 kB at T/TF = 0.1, consistent with our measure-
ments. At the critical point, we obtain Sc = 0.73(13)
NkB, in agreement with theory (23). It is encourag-
ing for future experiments with fermions in optical
lattices that we obtain entropies less than 0.04 N
kB, far below critical entropies required to reach
magnetically ordered phases.

From the chemical potential m/EF andT=TF ¼
4p

ð3p2Þ2=3
1

ðnl3Þ2=3, we finally obtain the density EoS

n(m,T ) ≡ 1
l3
fnðbmÞ, with the de Broglie wave-

length l ¼
ffiffiffiffiffiffiffiffi
2pħ2
mkBT

q
. The pressure EoS follows

as P(m,T ) ≡ kBT
l3

fPðbmÞ, with fP ¼ 2
5
TF
T p̃fnðbmÞ.

Figure 4 shows the density and pressure nor-
malized by their noninteracting counterparts at
the same chemical potential and temperature. For
the normal state, a concurrent theoretical calcu-
lation employing a new Monte Carlo method
agrees excellently with our data (34). Our data

deviate from a previous experimental determi-
nation of the pressure EoS (12) that was cal-
ibrated with an independently measured value of

x = 0.415(10) (35) and disagree with the energy
measurement in (11) that used a thermometry in-
consistent with the Virial expansion (10). Around
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Fig. 3. (A) Chemical potential m, energy E, and free energy F of the unitary Fermi gas versus T/TF. m (red
solid circles) is normalized by the Fermi energy EF, and E (black solid circle) and F (green solid circle) are
normalized by E0 = 3

5N EF. At high temperatures, all quantities approximately track those for a non-
interacting Fermi gas, shifted by xn − 1 (dashed curves). The peak in the chemical potential signals the
onset of superfluidity. In the deeply superfluid regime at low temperatures, m/EF, E/E0, and F/F0 all approach
x (blue dashed line). (B) Entropy per particle. At high temperatures, the entropy closely tracks that of a
noninteracting Fermi gas (black solid curve). The open squares are from the self-consistent T-matrix
calculation (23). A few representative error bars are shown, representing mean T SD.
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Fig. 4. (A) Density and (B) pressure of a unitary Fermi gas versus m/kB T, normalized by the density and
pressure of a noninteracting Fermi gas at the same chemical potential m and temperature T. Red solid
circles: experimental EoS. Blue dashed curves: low-temperature behavior with x = 0.364 (upper), 0.376
(middle), and 0.388 (lower). Black dashed curve: low-temperature behavior with x at upper bound of 0.383
from (30). Green solid circles (black fine dashed line): MIT experimental data (theory) for the ideal Fermi
gas. Blue solid squares (blue curve): diagrammatic Monte Carlo calculation (34) for density (pressure, with
blue dashed curves denoting the uncertainty bands). Solid green line: third-order Virial expansion. Open
black squares: self-consistent T-matrix calculation (23). Open green circles: lattice calculation (36). Orange
star and blue triangle: critical point from the Monte Carlo calculations (26) and (27), respectively. Solid
diamonds: Ecole Normale Supérieure experiment (12). Purple open diamonds: Tokyo experiment (11).
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Equation of state: cold atom experiment (Jochim)
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FIG. 3: EOS in the crossover regime shown as the density normalized by the ideal gas result n0(µ, T ) = 2��2
T log(1+ e�µ). The

experimental data points (filled shapes) are compared to the second order virial expansion at low values of �µ (coloured dashed
lines). The displayed errors are purely statistical, with systematic uncertainties estimated at 13-15%. We compare our results
to theoretical predictions for the EOS in the 2D BCS-BEC crossover from LW theory ([22], solid black lines) and fermionic
QMC simulations ([23], dotted black lines), with the corresponding value of �"B being attached to the curves. Note that the
vertical scale di↵ers by a factor of 10 in each panel.

We further analyze density profiles obtained from Quan-
tum MC (QMC) computations for the trapped Bose gas
with similar trapping parameters as used in the experi-
ment. We refer to Refs. [32, 57, 58] for details on the
simulations. The QMC profiles allow us to determine T

and µ̃0 from the Boltzmann regime, and thus, applying
the LDA, we can extract an EOS. The latter need not
necessarily coincide with the one of a classical homoge-
neous gas.

We find excellent agreement of our results with the
EOS extracted from the QMC profiles with the LDA. For
g̃ = 0.60 our data is slightly below the bosonic simulation
for large �µ̃, whereas this trend changes for larger cou-
plings. We attribute this behavior to systematic errors
in the determination of T and µ̃0. Both our results and
QMC are, however, well below the classical predictions
for large �µ̃ from classical MC and mean field theory.
There are two e↵ects which could explain this behavior:
On the one hand, quantum fluctuations become impor-
tant for large g̃ and high densities. On the other hand,
both experiment and QMC are performed in a quasi-2D
setting with nonzero extent in the z-direction. We do
not expect e↵ects beyond LDA to play a role at the high
central densities found on the Bose side.

In Fig. 3 we show the EOS in the strongly correlated
crossover regime between the bosonic and the fermionic
limits. We obtain the EOS from sampling h(x, y) over
approximately 150 shots for each of the magnetic fields
B[G] = 812, 832, 852, 892. The central chemical potential
µ̃0 is determined from the TF fit of the central region,
and the binding energy "B again refers to the central
value. The temperature is estimated by T = (TV+TB)/2,
where TV and TB are obtained from second order virial
and Boltzmann fits to the outer region, respectively. This
choice is motivated by the fact that TV and TB are ex-
pected to give upper and lower bounds on the true tem-
perature of the sample for the interaction strengths con-

sidered here [42]. On the Fermi side, both temperatures
approach each other. The quality of the virial and Boltz-
mann fits is reflected in the overall good agreement of
the corresponding central chemical potentials with the
TF values.
We compare our results for the EOS in the crossover

regime to theoretical predictions for the homogeneous 2D
BCS-BEC crossover from Luttinger–Ward (LW) theory
[22] and fermionic QMC simulations [23]. We find an
overall good agreement between theory and experiment
for n/n0 varying over two orders of magnitude and con-
firm that n/n0 has a maximum of height 2e�"B/2 around
µ ⇡ �"B/2 for large �"B. The origin of this scaling
can be understood from the virial expansion of the PSD
in the Bose limit: n

�

�

2
T

⇡ 2 exp(2�µ̃) = 2 at �µ̃ = 0.
This implies n/n0 ⇡ 2/ log(1 + e

��"B/2) ⇡ 2e�"B/2 at
µ = �"B/2. The di↵erence of the EOS obtained from
LW and QMC methods lies within our systematic errors
from the T - and µ0-determination and thus cannot be
resolved with the present analysis.

On the Fermi side of the crossover, the filling-
dependent interaction strength "B varies substantially
inside the trap, and the EOS obtained from a individ-
ual density profile cannot be fully attributed to a single
value of �"B. In order to avoid this e↵ect, the number of
trapped particles should be kept low. In a recent work
by Fenech et al. [41] the EOS on the Fermi side for
�"B < 0.5 has been determined using 6Li-atoms, which
supplements our data from the Bose and crossover regime
to yield a complete picture of the EOS in the 2D BCS-
BEC crossover.

In this work we have measured the EOS of ultracold
fermions in the 2D BCS-BEC crossover. Our results con-
nect the perturbative Bose gas, the strongly interacting
Bose gas, the strongly interacting fermionic superfluid in
the crossover regime, and the perturbative Fermi liquid as
we tune interactions by means of a Feshbach resonance.

Boettcher, Bayha, Kedar, Murthy, Neidig, Ries, Wenz, Zürn, Jochim & Enss PRL 2016
see also Anderson & Drut PRL 2015 (QMC), Fenech et al. PRL 2016 (expt)



Equation of state: Bose side

• agrees with bosonic QMC in quasi-2D geometry (open symbols)3

more we verify g̃ ⇡ �2⇡/ ln(kFa2D) for very small g̃,

which is a result of a2D ' a

(0)
2D on the Bose side, where

the filling correction �w is small.

Far on the Fermi side, our low-temperature data is con-
sistent with the self-consistent Hartree-Fock (HF) pre-
diction µ̃/"F ' µ/"F = 1 � (ln(kFa2D))�1, although
our result is consistently below this prediction. On
the other hand, the Fermi liquid expansion parameter
1/ ln(kFa2D) = 0.23 for ln(kFa2D) = 4.3 is not small.
Note that an extension of the BCS mean-field theory to-
ward the crossover, which works reasonably well in 3D
[45, 46], would give µ̃/"F = 1 for all interaction strengths
in the 2D case and thus clearly misses the crossover
physics [47]. The ground state equation of state has been
investigated theoretically in [48–51].

We now turn to the experimental measurement of
the temperature-dependence of the EOS. Our analysis
relies on determining T and µ0 from the density pro-
file for each individual realization of the gas (“shot”).
From this input we construct the dimensionless functions
f

i

(x, y) and h

i

(x, y) defined as n�

2
T

= f(�µ̃,�"B) and
n/n0 = h(�µ,�"B) for each shot i. Herein, n0(µ, T ) =
2��2

T

log(1+e

�µ) is the EOS of an ideal Fermi gas. Even-
tually we average f

i

and h

i

over 30-150 shots which leads
to a very small statistical error in the EOS, although the
thermodynamic parameters may vary from shot to shot.
We quantitatively compare di↵erent methods to obtain
T and µ0 in the supplemental material [42].

Our measurement of µ̃0 from the TF fit allows to de-
duce µ0 from the dense central region of the cloud. In
order to extract the temperature, the dilute outer region
of the cloud is fitted to a suitable reference EOS. For
very low densities, the gas of dimers or atoms reaches
the Boltzmann limit with nd = �

�2
d e

�µd = 2��2
T

e

2�µ̃

and n

�

= �

�2
T

e

�µ, respectively. The regime of very low
densities, however, is inaccessible in experiment due to
technical noise in the imaging. In the perturbative Bose
limit (small g̃), the wings are described by the HF for-

mula nd�
2
d = � log(1� e

�µd�(g̃/⇡)nd�
2
d).

The low-density limits on the Bose and Fermi side can
be elegantly connected by using the second order virial
expansion given by n

�

�

2
T

= log(1 + e

�µ) + 2b2e2�µ. The
second virial coe�cient b2 of the 2D gas is given in Refs.
[42, 52, 53]. In the weakly interacting Fermi limit b2 ! 0
and n

�

�

2
T

approaches the EOS of an ideal Fermi gas. On
the Bose side, instead, "B becomes large and the fermion
fugacity e

�µ = e

�(µ̃�"

B
/2) is extremely small, such that

the first term can be dropped. However, the virial coe�-
cient scales as b2 = e

�"B up to an exponentially small cor-
rection and we arrive at n

�

= 2��2
T

e

�(2µ+"B) = �

�2
d e

�µd ,
which is the bosonic Boltzmann formula. Hence the sec-
ond order virial expansion is well-defined throughout the
whole crossover and has the correct limiting behavior. It
thus represents a good reference EOS to fit the wings of
the density profile and obtain T in the whole crossover.

βε

βε

βε

λ

βµ

FIG. 2: Phase space density on the Bose side of the crossover.
The experimental data points are shown as filled shapes. We
compare to bosonic theory with e↵ective coupling strengths
g̃ = 0.60, 1.07, 2.75. Open shapes represent the EOS extracted
from the QMC simulation of the quasi-2D Bose gas trapped in
an external potential with similar parameters as employed in
experiment. The dashed curves show the classical MC predic-
tion for the weakly coupled homogeneous 2D Bose gas from
Ref. [54] extrapolated to large values of g̃. For moderate den-
sities we find good agreement between all three approaches.
For large densities, however, experiment and trapped QMC
deviate from the classical homogeneous result which scales like
the mean field prediction nd�

2
d = 2⇡

g̃ �µd+log( 2g̃⇡ nd�
2
d�2�µd).

This may be due to quantum e↵ects showing up at large g̃ or
due to a partial influence of the axial confinement.

In Fig. 2 we show the EOS of the system on the
Bose side of the crossover in terms of the PSD. Due
to the exponentially large binding energy in the Bose
limit, the logarithmic dependence of the EOS on �"B in
n�

2
T

= f(�µ̃,�"B) can be replaced by the g̃-dependence
in n�

2
T

= F (�µ, g̃), where F (x, g̃) is a dimensionless
function which immediately allows for a comparison to
bosonic theory with coupling g̃. The experimental data
corresponds to g̃ = 0.60, 1.07, 2.75. The plotted curves
are the average of the function F (x, g̃) from approxi-
mately 30 individual shots for each interaction strength.
For the weakly coupled gas with g̃ = 0.60 we apply a
HF fit to the outer region to obtain the thermodynamic
parameters T and µ̃0. For the remaining two sets, which
are at larger coupling, we employ the Boltzmann fit to
the low-density region for this information. We find the
variation of µ0 and T with respect to the fit method to
be small on the Bose side [42].

To benchmark our results on the Bose side we com-
pare to classical Monte Carlo (MC) and Quantum Monte
Carlo (QMC) simulations of bosons. The classical MC
computations are valid for the weakly coupled, homoge-
neous 2D Bose gas in the fluctuating regime [54, 55]. In
our case, g̃ is large, and quantum e↵ects are expected to
modify the result. However, an extrapolation of the MC
to large values of g̃ gives a very good description for the
critical temperature of the system for g̃ . 2.75 [32, 56].

Boettcher, Bayha, Kedar, Murthy, Neidig, Ries, Wenz, Zürn, Jochim & Enss PRL 2016



Universality near critical point

We use both our density and our fluctuation measurements to
evaluate ~nq at various g. Adopting ~mc determined from the universal
behaviour of the density profile, we immediately find that all measure-
ments collapse to a single curve in the range j~m{~mcj=gƒ2 with apparent
growth of quasi-condensate density entering the fluctuation region
(Fig. 3b). The generic function Q we determined is in good agreement
with the classical-field12 and quantum Monte Carlo13 calculations with no
fitting parameters. Both our density and fluctuation measurements show
universal behaviours throughout the fluctuation region where a mean-
field description fails, and confirm universality in a 2D Bose gas near the
BKT phase transition12,13.

The generic functions we describe above offer new avenues to inves-
tigate the critical behaviour of the 2D gas. Following the framework of
scale invariance, we compare the dimensionless compressibility
~k~L~n=L~m~F’(~m) and the fluctuation d~n2~G(~m) extracted from the
measurements at g 5 0.05 and 0.26 (Fig. 4). In the normal gas regime at
low phase space density (G(~m),F’(~m)v3), a simple equality G 5 F9 is
observed. This result is consistent with the fluctuation-dissipation
theorem for a classical grand canonical ensemble25, which gives
kBT LN

Lm ~dN2, where N is the particle number in a detection cell.

In the fluctuation and the superfluid regimes at higher phase space
density, our measurement shows that density fluctuations drop below
the compressibility, G , F9.

Natural explanations for the observed deviation include non-van-
ishing dynamic density susceptibility at low temperature26 and the
emergence of correlations in the fluctuation region27. While the former
explanation is outside the scope of this Letter, we show that the cor-
relation alone can explain our observation. Including correlation, the
compressibility conforms to27,28:

~k(r)~l{2
dB

ð
hd~n(r)d~n(rzr’)id2r’ ð5Þ

~d~n2(r)(1zz) ð6Þ
where h:::i denotes ensemble average and z~
1zn(r)

Ð
½g(2)(r,rzr’){1$d2r’

1zn(r)
Ð

v½g(2)(r,rzr’){1$d2r’
{1 is the relative strength of correla-

tion to local fluctuation d~n2 (ref. 27). Here g(2) is the normalized second-
order correlation function29 and v denotes the effective area of the
resolution limited spot. When the sample is uncorrelated, we have
z 5 0; non-zero z suggests finite correlations in the sample. In the fluc-
tuation region shown in Fig. 4, observing a lower fluctuation than would
be indicated by the compressibility, with z approaching 2, suggests that
the correlation length approaches or even exceeds our imaging cell
dimension,

ffiffiffi
v
p

<2mm. This observation is in agreement with the
expected growth of correlation when the system enters the fluctuation
region. Similar length scales were also observed in the first-order
coherence near the BKT phase transition using an interferometric
method8 and near the superfluid phase transition in three dimensions30.

In summary, based on in situ density measurements at different
chemical potential, temperature and scattering length, we have explored
and confirmed the global scale invariance of a weakly interacting 2D
gas, as well as the universal behaviour near the critical point. Our results
provide a detailed description of critical thermodynamics near the BKT
transition, and offer new opportunities to investigate other critical
phenomena near classical or quantum phase transitions. In particular,
we present experimental evidence of the growing correlations in the
fluctuation region through the application of the fluctuation-dissipa-
tion theorem. Further investigations into the correlations will provide
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Figure 3 | Universal behaviour near the BKT critical point. a, Rescaled
density profiles ~n{~nc measured at various coupling strengths, g 5 0.05 (filled
green triangles), 0.13 (blue diamonds), 0.19 (red circles) and 0.26 (magenta
squares). Inset, original equations of state, ~n(~m). b, Scaled quasi-condensate
density ~nq~
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at different interaction strengths. In both plots, Monte
Carlo calculations from ref. 12 (open circles) and ref. 13 (a, open squares for
g 5 0.07 and open triangles for g 5 0.14; b, open squares) are plotted for
comparison. The shaded area marks the superfluid regime and the solid line in
b shows the superfluid phase space density calculation12. c, d, Critical values ~mc
and ~nc determined from the following methods: universal scaling as shown in
a (see Online Methods; red squares), density fluctuation crossover (see text;
black circles), and Monte Carlo calculations from ref. 11 (solid line).
Experiment values coincide at g 5 0.05 identically, as a result of our analysis
(Online Methods). Error bars, s.d. of the measurement.
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(filled and open symbols, respectively). Diagonal line shows the expectation of
G 5 F9 in the normal gas region. Solid line shows suppressed fluctuation
G~F’=(1zz) with z 5 2. The grey shaded areas mark the normal (left),
fluctuation (middle) and superfluid (right) regimes.
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top to bottom. (b) ρs/mT vs dimensionless chemical potential X. Inset: critical chemical potential µc/U vs U .

We now present our results for these nonuniversal and788

universal properties of the |ϕ|4 model. In Fig. 4(a) we report789

our results for the superfluid fraction ρs for different values of790

U . In Fig. 4(b) we plot the same curves vs the dimensionless791

variable X. We find that they collapse almost perfectly even792

for a wide range of interactions mU = 0.02, . . . ,0.6. Note793

that the spreading between the curves increases for large X,794

as expected, since the universality should hold only in the795

fluctuation regime up to X ≈ 1/mU and we use also rather796

large values of U . To quantitatively determine the function797

f (X), we perform an interpolation of the curves for ρs(X),798

some of them shown in Fig. 4(b), and compute their average799

and variance, which are reported in Fig. 5. The average has800
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X

0.0

0.5

1.0

1.5
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2.5

3.0
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f
(X

)

FIG. 5. Superfluid scaling function f (X) = πρs/2mT (black
line) as a function of the chemical potential variable X (average
and variance over 30 sets of data for different interaction values U ),
the standard deviation is shown as a red shadow. Black dots are the
MC data from [62].

been computed over a total number of 30 curves obtained for 801

30 different values of the interaction logarithmically spaced 802

in the interval U ∈ [0,1], the curve f (X) can be trusted also 803

for large X since the statistical weight of large interaction 804

U > 0.5 is small. Agreement with Monte Carlo data [62] is 805

rather good, also considering that we are using the lowest-order 806

perturbative SG results (37) and (38). 807

Our findings for µc as a function of U are given in the inset 808

of Fig. 4(b). Logarithmic corrections to the relation µc ∝ U are 809

found, in agreement with Eq. (51). The coefficient ξµ entering 810

such logarithmic corrections is not reported since the fitting 811

procedure employed was not robust enough and the result 812

strongly depends on the range of interactions considered, even 813

for U ! 0.3 which should be within the range of validity of 814

Eq. (51) [86]. 815

The ρs(X) in Fig. 4(b) determines the function f (X) = 816

πρs(X)/2mT reported in Fig. 5. From f (X) we can obtain 817

estimates for the universal quantities κ ′ and θ0. Fitting with 818

expression Eq. (48), the data in Fig. 5 yield 819

κ ′
(FRG) = 0.67 ± 0.07, (54)

in reasonably good agreement with the Monte Carlo result 820

(49). The latter result has been obtained from a linear fit of the 821

curves in Fig. 4(a) and averaging κ ′ over the values obtained for 822

different interactions. The average is consistent with (54) while 823

the error is partly due to difficulties in fitting procedure close 824

to the transition point and partially to nonperfect universality 825

of the curves in Fig. 4(a). 826

Regarding θ0, we observe that for relatively large X one has 827

f (X) ≈ (π/2)θ (X) − 1/4 in terms of the universal equation 828

of state θ (X) [62]. It should be noted that in order to evaluate 829

θ0 = θ (X = 0) from f (X) one shall extrapolate the value 830

of a curve obtained for large X to the point X = 0. Such 831

extrapolation has been done assuming polynomial behavior of 832

θ (X). A polynomial fit of the ρs curves of different interactions 833

at high values of X yields 834

θ0(FRG) = 1.033 ± 0.032, (55)
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Low temperature: chemical potential

• chemical potential vs interaction strength:

εB ¼ ℏ2=ðMa22DÞ > 0 exists for all values of the coupling
strength. This has to be contrasted with the 3D case, where
a bound state only exists on the Bose side of the resonance.
In both cases, the chemical potential for a single fermion
becomes negative in the Bose limit and approaches
μ ≈ −εB=2. The crossover point between the Bose and
Fermi sides can be defined by the zero crossing of μ [35].
The chemical potential shifted by the bound-state energy,
~μ ¼ μþ εB=2, is positive at high phase-space densities.
At zero temperature, n > 0 is equivalent to ~μ > 0.
In the experimental realization of the quasi-2D gas in an

anisotropic 3D trap, the interaction strength a2D depends on
the typical momenta of scattering particles and thereby on
the filling in the trap with axial frequency ωz. One can write
a2D ¼ að0Þ2De

−1
2Δwð ~μ=ℏωzÞ, where að0Þ2D is the scattering length in

the dilute limit and Δw is a positive function which reduces
a2D at finite density [6,13,36]. The correction to að0Þ2D
vanishes in the Bose limit where ~μ → 0, and becomes
strongest in the Fermi limit where ~μ≃ εF. In our experi-
ment we have ℏωz=kB ¼ 265 nK, which has to be com-
pared with typical values ~μ0 ¼ ð40;…; 200Þ nK and
T ¼ ð60;…; 25Þ nK when going from the Bose to the
Fermi limit. As most particles are in the center of the cloud,
we approximate a2D and εB by their central values using
Δwð~μ0=ℏωzÞ, giving Δw ≈ 0.2, 0.9, and 1.4 in the Bose,
crossover, and Fermi regimes, respectively.
We extract the EOS of the homogeneous gas from the

trapped system by using the local density approximation
(LDA) which assigns a local chemical potential μð~rÞ ¼
μ0 − Vð~rÞ to each point ~r in the trapping potential Vð~rÞ
[37]. Since Vð~rÞ is known to a high precision, the
homogeneous density nðμ; TÞ can be deduced from the
measured local in situ density of the inhomogeneous
system nð~rÞ ¼ n(μ0 − Vð~rÞ; T) once μ0 and T have been
determined [38]. The extraction of the homogeneous EOS
from the trapped gas has been applied to both bosonic and
fermionic systems and successfully compared with theo-
retical calculations [39–46].
Low-temperature EOS.—In order to determine the low-

temperature equation of state nðμ; T → 0; a2DÞwe extract ~μ0
from a Thomas-Fermi (TF) fit of the central region of the
cloud. The TFmodel assumes locally εF ¼ c ~μ for the central
density region. This scaling is valid for large phase space
densities (PSDs) nλ2T , where λT ¼ ½2πℏ2=ðMkBTÞ&1=2 is the
thermal wavelength of atoms. We find that the prefactor c
only weakly depends on the temperature and fitting range
at sufficiently low temperature and high densities, which
confirms the validity of the linear relation εF ∝ ~μ (see the
Supplemental Material [36] for details). We fit c in the
intervals IA ¼ ½0.4; 0.8&npeak and IB ¼ ½0.5; 1&npeak for peak
density npeak, and define ~μ0 ¼ ð ~μ0;A þ ~μ0;BÞ=2 as the average
value of both outcomes.
In Fig. 1 we show the low-temperature EOS across the

2D BEC-BCS crossover in terms of ~μ=εF ¼ 1=c vs
lnðkFa2DÞ, where kF corresponds to the peak density.
The corresponding temperatures (60–25 nK from left to

right) are very low compared to TF (1500–300 nK). For the
plot we averaged the TF slope c over 30 images at the
lowest temperatures for each value of the interaction
strength. We find c to be weakly dependent on temperature
as we increase T=TF by ð40–100Þ%, which is a necessary
condition for the applicability of the linear fit of the central
region. The statistical error of ~μ=εF is 10%within the whole
crossover. We estimate the error due to systematic uncer-
tainties resulting from the absorption imaging, atoms in
noncentral pancakes [47], magnification, and the determi-
nation of the binding energy to be 15% and 13% on the
Bose and Fermi sides, respectively [7,36].
Our measured low-temperature equation of state con-

nects both perturbative limits of the crossover. In the Bose
limit we compare our results with predictions for bosonic
dimers of mass 2M, dimer density nd ¼ n=2, chemical
potential μd ¼ 2~μ, and thermal wavelength λd ¼ λT=

ffiffiffi
2

p
.

The interactions between dimers can be modeled by an
effective 2D coupling strength ~g ¼

ffiffiffiffiffiffiffiffi
16π

p
ð0.6a3D=lzÞ with

lz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ðMωzÞ

p
¼ 0.551 μm the oscillator length of axial

confinement [49]. We find ~μ=εF ¼ 0.024ð2Þ, 0.046(4),
0.12(1) for the data points with lnðkFa2DÞ ≤ −0.71 corre-
sponding to effective boson coupling strengths ~g ¼ 0.60,
1.07, 2.75, respectively. This is in excellent agreement with
the perturbative Bose gas formula ~μ=εF ¼ ~g=ð8πÞ ¼ 0.024,
0.043, 0.11. Furthermore, we verify ~g ≈ −2π= lnðkFa2DÞ
for very small ~g, which is a result of a2D ≃ að0Þ2D on the Bose
side, where the filling correction Δw is small.
Far on the Fermi side, our low-temperature data are

consistently below the Hartree-Fock (HF) prediction

FIG. 1. Low-temperature EOS across the 2D BEC-BCS cross-
over. The experimental results are obtained from measurements
of the quasi-2D gas at the lowest attainable temperatures, which
corresponds to T=TF ≈ 0.05 and 0.1 on the Bose and Fermi sides.
The data points shown as diamonds (circles) correspond to
measurements in the superfluid (normal) phase. The solid red
line on the Bose side corresponds to the mean field formula
~μ=εF ¼ −η−1=4 with η ¼ lnðkFa2DÞ, whereas the dashed and
solid green lines on the Fermi side display the non-self-consistent
and self-consistent Hartree-Fock predictions 1=ð1þ η−1Þ and
1 − η−1 for weakly attractive fermions. The orange line is
the prediction for the ground state EOS from recent QMC
calculations [48].
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Quantum bounds on transport

• 3D spin diffusion                        :

quantum limited 

• 3D spin drag rate:
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Figure 4 | Spin drag coe�cient of a strongly interacting Fermi gas.
h̄�S/✏F is plotted as a function of 1/Fa for 0.31T/TF 0.7 (a), and
T/TF 0.31 (b). Experimental points are obtained by fitting the dynamics at
t>50ms to the solution of a di�usion model (see Methods). Error bars
combine uncertainties of the fit and of our determination of ✏F. Lines are
predictions from a T-matrix kinetic theory (see Supplementary
Information), assuming the nominal initial T/TF and allowing a ±20%
temperature variation (shaded areas).

macroscopic spin domains: fermions of one kind, overcoming the
surface tension associatedwith a domainwall, can deposit an overall
excess energy through decay from the upper to the lower branch.
Only after some time, once a su�cient energy has been released into
the system, is the domain wall melted and spin di�usion established.

Upon identifying for each temperature the lowest Fa value at
which a non-zero ⌧p of steady magnetization is observed, we de-
limit a region in the interaction–temperature plane where the fer-
romagnetic domains remain temporarily immiscible, as displayed
Fig. 3d. The critical interaction strength for the onset of a non-
zero ⌧p displays a nonlinear dependence upon temperature, and
by fitting the T/TF < 0.3 data points with T/TF / ((Fa)(T ) �
(Fa)(0))↵ , we obtain ↵=0.52(5) and (Fa)(0)=0.80(9). The fitted
exponent matches within its uncertainty the value ↵=1/2 expected
from the low-temperature behaviour of a Fermi liquid exhibiting
a magnetic instability (see Supplementary Information). The ex-
tracted zero-temperature value (Fa)(0) is interestingly found in
good agreement with the critical value obtained from repulsive
QMC calculations20,21, and is significantly lower than Stoner’s mean-
field criterion for an unpolarized gas6,12,16–18,20, Fa=⇡/2. Notwith-
standing the metastable nature of the ferromagnetic state and the
dynamical character of our study, our findings agree with theoretical
expectations for a repulsive Fermi gas at equilibrium undergoing a
ferromagnetic instability in the absence of pairing. Moreover, the
close correspondence between the trends of ⌫SD and ⌧p (see Fig. 3c)
further suggests that the critical interaction strength for ⌧p > 0
corresponds to that required for the fully ferromagnetic state to
be favoured.

Long-time di�usive dynamics and spin drag coe�cient
Once spin di�usion is established26–28, the analysis of the long-time
evolution 1M(t) (or equivalently d(t)) within a simple kinetic
model (see Methods) allows us to determine also the spin drag
coe�cient �S as a function of temperature and interaction. The
results are displayed in Fig. 4. These are compared with theoretical
predictions for �S, calculated for a single impurity di�using in a

homogeneous ideal Fermi gas within kinetic theory, accounting for
scattering in all available states within the T -matrix approximation
for the scattering cross-section (see Supplementary Information).
The model is able to quantitatively reproduce the measured
maximum of �S for T/TF � 0.3, which is the expected range of
validity of theT -matrix approximation, as well as the position of the
maximum of �S at all temperatures (see Fig. 4). At low temperatures
the data sets exhibit a small but appreciable asymmetry around the
unitary point towards Fa> 0. Such a feature, which disappears
progressively as temperature is increased, highlights the significant
e�ect of collisions within the medium of surrounding particles
on the dynamical properties of the di�using quasi-particles (see
Supplementary Information). A similar asymmetry in transport
coe�cients has already been reported for the shear viscosity40 and
transverse spin di�usion41, but not in previous measurements of
longitudinal spin di�usion26.

Our studies of the time evolution of an engineered magnetic
domain wall provide an important link between the dynamic
response and the static properties of the repulsive Fermi gas, thereby
pointing to a Stoner-like ferromagnetic instability. The techniques
demonstrated for realizing and probing a spin-domain interface
could be extended to di�erent systems, opening new routes towards
the investigation of dynamics in strongly correlated quantum
mixtures, also in reduced dimensionality42 or in the presence ofweak
optical lattices43 and controlled disorder44.

Note added in proof:After submission of the manuscript, we became
aware of related theoretical work45 by He et al., reporting finite-
temperature predictions qualitatively consistent with our findings.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Quantum bounds in 2D

• 3D unitary Fermi gas strongly interacting, scale invariant, 
quantum critical point (QCP): transport bounds

• 2D Fermi gas strong contact correlations, 
but not scale invariant, no interacting QCP:
transport bounds?

2D transport bounds found for
charge conductivity, ...

transverse spin diffusion:
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Figure 1 |Quench of a 2D Fermi gas in which all atoms were initially prepared in the | #i state. a, A ⇡/2-pulse prepares the Fermi gas polarized in the
S
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-direction. b, A magnetic field gradient @B
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/@x causes the spins to acquire different phase angles �(x) in the equatorial plane. c, Collisions tilt the spins
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, together with the motion of the atoms in the
harmonic trap, impedes rephasing of the spins when the magnetic field gradient is reversed. The spin states are shown in the rotating frame.
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Longitudinal vs transverse spin diffusion

Spin Diffusion in Dilute, Polarized ~Ie-4He Solutions 435 

One of the prime results of  the present theory, previously reported 
elsewhere, 2 is the distinction, in a degenerate Fermi system, between trans- 
verse and longitudinal spin diffusion processes. Since the theory of  this effect, 
given below, is complicated mathematically we would like to present some 
heuristic arguments that may give some insight into the difference. As we 
will see, the main effect is a difference in phase space for the collisions 
responsible for the spin diffusion. Consider first longitudinal spin diffusion. 
Mathematically, we can write the magnetization as m = m~ where m is the 
magnitude and ~ the direction. Then Vm = ~Vm + mV~. The first term drives 
a "longitudinal" spin current, which in spin space is parallel to m. The 
magnetization gradient is in the magnitude of the magnetization, giving an 
uneven picket fence as shown in Fig. I a. In the case of a polarized degenerate 
system, the Fermi spheres, shown in momentum space in Fig. lb, corre- 
sponding to two positions at x and x + dx, are not quite the same size. The 
one at x has an up-spin sphere that is a little larger than that at x + dx, and 
the down-spin sphere at x is a little smaller than that at x + dx. Consider the 
diffusion of  an up spin from x to x + dx. If that spin is in the narrow annular 

(a) 

x+dx @ 
M - dM 

x 

M (b) 

superimposed fermi spheres 

Fig. 1. Longitudinal spin diffusion. The gradient is in the length of the 
magnetization vector as shown in (a). Thus the fermi spheres of up and 
down spins are of different sizes at different positions as shown in (b). To 
restore equilibrium scattering need occur only right at the Fermi surfaces. 
The spin current is parallel to the local magnetization. 

436 W . J .  Mullin and J. W. Jeon 

region of up signs that constitutes the difference between the two up-spin 
Fermi spheres, it is out of equilibrium when it reaches x +dx and must 
scatter to become equilibrated. Up spins that are farther down in the Fermi 
sphere may not be able to move from x because their momentum states at 
x + dx are already occupied; or perhaps such a spin has a large wave packet 
so that it is really the same spin as in the momentum state at x + dx. Thus 
the scattering occurs just in a little layer around the Fermi sphere and the 
spin diffusion coefficient will have the characteristic 1 /T  2 factor that arises 
from scattering limited to the Fermi surface. 

On the other hand in a spin-echo experiment the spins are tipped at an 
angle from the field direction. A gradient field then causes them to precess 
at differing rates so that the tips of the spins form a spiral as shown in Fig. 
2a. The gradient in magnetization then corresponds to the term mV6. There 
is then a "transverse" spin current along V6, which is perpendicular to m. 
As shown in Fig. 2b below, the Fermi spheres are the same size at x and 
x + dx; but they have slightly different directions of magnetization. (The 
different directions of magnetization are greatly exaggerated in the Figure.) 
Thus a spin migrating from x to x + dx in any momentum state between the 
up and down Fermi spheres is out of equilibrium and must scatter to return 

/ (a) 

x x+dx  

(b) 

M(x) M(x+dx) 
Fig. 2. Transverse spin diffusion. In a spin echo experiment the spins are 
tipped away from the external field and a gradient field causes a spiral 
to form as shown in (a). The spin current, which is now driven by a 
gradient in the direction of  the magnetization and not its magnitude, is 
transverse to the local magnetization. To restore equilibrium all spins 
between the two Fermi surfaces must scatter. 
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the weak-coupling limit the scattering cross section is
4πa2 and the term in parentheses in Eqn. (60) approaches
4πa2/λ2

T .
In two dimensions we find

1

τ⊥
=

nλ2
T

πβ
λ4
T

∫

dk k3
exp(−k2λ2

T /2π)

ln2(k2a22D) + π2
(63)

=
2πnλ2

T

βQ
=

4πkBTF

Q

with

Q = ln2(2βεB/3) + π2 (64)

evaluated at the saddle point of the k integral [32]. The
scattering time and diffusivity

τ⊥ =
!Q

4πkBTF
, D0

⊥ =
!Q

4πm∗

T

TF
(2D) (65)

again agree with the longitudinal scattering time and dif-
fusivity in the Boltzmann limit [18, 19].

The second limit where τ⊥ simplifies is the unpolarized
limit βh → 0 at arbitrary temperature in the normal
phase T > Tc. The prefactor sinh(βh)/(P+ − P−) →
β/n, and the angular average becomes [I−0 + I+0 ]I0 →
2I20 (a, b, c = 0):

1

τ⊥
=

8S3
dβ

d(2π)2dm∗2n

∫

dq qd−1

∫

dk kd+2 dσ

dΩ
I20 . (66)

We shall see below in section III B that this coincides
with the longitudinal scattering rate in the unpolarized
limit.

B. Longitudinal diffusion

For longitudinal spin diffusion one may linearize the
distribution matrix with a variation (41) that remains
diagonal in the spin indices. Then also the linearized
collision integral (16) is diagonal, and following the stan-
dard derivation one obtains the longitudinal scattering
rate [8, 17–19]

1

τ∥
=

2βn

(2π)2dm∗2n+n−

∫

ddq ddk dΩ k
dσ

dΩ

× n1+n2−ñ3+ñ4−kj(kj − k′j). (67)

The angular average yields
∫

dΩq dΩk dΩn1+n2−ñ3+ñ4−kj(kj − k′j)

=
S3
d

d
k2[I2ℓ=0(a, b, c)− I2ℓ=1(a, b, c)] (68)

in terms of the functions Iℓ(a, b, c) defined in Eqns. (55),
(56), and

1

τ∥
=

2S3
dβn

d(2π)2dm∗2n+n−

∫ ∞

0

dq qd−1

∫ ∞

0

dk kd+2

×
dσ

dΩ
[I20 − I21 ]. (69)
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FIG. 1: Transverse and longitudinal spin diffusivities D⊥ and
D∥ vs reduced temperature T/TF for different polarizations
M for the unitary Fermi gas in three dimensions. The collision
integral is computed using the vacuum T -matrix.

In the Boltzmann limit T ≫ TF one finds I2ℓ=0 →
z+z− exp(−βεq/2) exp(−2βεk) and Iℓ=1 → 0, hence (69)
converges toward the transverse scattering rate (59) in-
dependent of polarization. Likewise, in the unpolarized
case n/n+n− → 4/n and I1 → 0, and the longitudinal
scattering time converges toward the transverse scatter-
ing time (66) for all temperatures.

IV. RESULTS

A. Three dimensions

Fig. 1 shows the transverse and longitudinal spin diffu-
sivity D⊥ and D∥ vs reduced temperature T/TF in three
dimensions. Within kinetic theory the transverse and
longitudinal diffusivities are equal in two limits: for un-
polarized gases (M = 0) at arbitrary temperature, and in
the Boltzmann limit T ≫ TF for arbitrary polarization.
We therefore focus our study on the polarized gas in the
quantum degenerate regime where D⊥ and D∥ differ: as
the polarization increases the transverse diffusivity D⊥

decreases at low temperatures and reaches a finite value
as T → 0. This is in marked contrast to the longitu-
dinal diffusivity which due to Pauli blocking diverges as
D∥ ∼ T−2 for a normal Fermi liquid within Born approx-
imation or using the vacuum T -matrix.

In Fig. 1 the diffusivities have been computed with the
vacuum scattering cross section, and the behavior agrees
qualitatively with that in Born approximation [10]. How-
ever, as explained in section IIA, in a systematic 1/N
expansion to leading order one has to use the medium
scattering cross section in combination with the ther-
modynamic functions of the free Fermi gas [28]. The
many-body T -matrix (4) has to be computed numeri-
cally, and the solution of the Boltzmann equation re-
quires a three-dimensional integral. The resulting diffu-
sivity D⊥ is shown in Fig. 2: in the nondegenerate regime

Enss PRA 2013



Spin diffusion in kinetic theory

• local magnetization vector and gradient

• Boltzmann equation for spin distribution function

• many-body T-matrix in collision integral and spin rotation  Enss PRA 2013
derived as leading order in large-N expansion  Enss PRA 2012
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M(r, t) = M(r, t) ê(r, t)

4

One may parametrize the occupation matrix np in
terms of particle fp and spin σp variables

np =
1

2
(fpI + σp · σ) , (17)

and the kinetic equation (14) may be written in compo-
nents
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(19)

The local magnetization is M(r, t) =
∫

ddpσp/(2π)d =
M(r, t)ê(r, t) and we choose the local magnetization di-
rection ê(r, t) as the spin quantization axis, such that
the local equilibrium distribution matrix n0

p is diagonal
with entries np+ and np−. Note that M need not be
parallel to an external magnetic field B. According to
Eqn. (17), f0

p = np+ +np− and σ0
p = (np+ −np−)ê. The

gradient of the magnetization has two contributions, the
longitudinal and transverse parts

∂M

∂ri
=

∂M
∂ri

ê+M
∂ê

∂ri
. (20)

We linearize the kinetic equations (18) and (19) around
the local equilibrium distribution, np = n0

p + δnp, and
write the drift terms as

Dfp
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)

coll

(22)

up to corrections of order O(δnp). The second (longitu-
dinal) and third (transverse) terms in Eqn. (22) result
from the gradient of the local magnetization (20). The
derivative ∂npσ/∂εp in the longitudinal term restricts the
momentum integrals in the degenerate regime to a neigh-
borhood of the Fermi surface. In contrast, in the trans-
verse term np+−np− is nonzero everywhere between the

majority and minority Fermi surfaces, hence the phase
space for scattering at low temperature and the trans-
verse scattering rate τ−1

⊥ are larger than in the longitu-
dinal case [7].

In the derivation we have used the Gibbs-Duhem rela-
tion

∑

σ nσ(∂µσ/∂ri) = 0 and

∂nσ

∂ri
= χσ

∂µσ

∂ri
, χσ =

∂nσ

∂µσ
, (23)

∂µσ
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= σtσ

∂M
∂ri

, tσ =
1/nσ

χ+/n+ + χ−/n−
. (24)

It then follows that
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=
pi
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∂ê
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and we have assumed a constant hp.
The particle and spin currents are defined as the ve-

locity weighted by the distribution functions,

Jj =

∫

ddp

(2π)d
vpjfp (28)

Jj =

∫

ddp

(2π)d
vpjσp (29)

for a magnetization gradient in direction j = x, y, z. We
shall not consider the particle current further and instead
concentrate on the spin current. The continuity equation
for the spin density (magnetization) is

∂M

∂t
+
∑

j

∂Jj

∂rj
+Ω0 ×M = 0. (30)

The momentum integral over the Boltzmann equation
(22) weighted by the velocity vpj yields the time evolution
of the spin current,
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(31)

with coefficients
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mM
(33)
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The local magnetization is M(r, t) =
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ddpσp/(2π)d =
M(r, t)ê(r, t) and we choose the local magnetization di-
rection ê(r, t) as the spin quantization axis, such that
the local equilibrium distribution matrix n0
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up to corrections of order O(δnp). The second (longitu-
dinal) and third (transverse) terms in Eqn. (22) result
from the gradient of the local magnetization (20). The
derivative ∂npσ/∂εp in the longitudinal term restricts the
momentum integrals in the degenerate regime to a neigh-
borhood of the Fermi surface. In contrast, in the trans-
verse term np+−np− is nonzero everywhere between the

majority and minority Fermi surfaces, hence the phase
space for scattering at low temperature and the trans-
verse scattering rate τ−1
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Figure 1 |Quench of a 2D Fermi gas in which all atoms were initially prepared in the | #i state. a, A ⇡/2-pulse prepares the Fermi gas polarized in the
S

y

-direction. b, A magnetic field gradient @B

z

/@x causes the spins to acquire different phase angles �(x) in the equatorial plane. c, Collisions tilt the spins
out of the equatorial plane owing to the identical spin-rotation effect. The acquired projection along S
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, together with the motion of the atoms in the
harmonic trap, impedes rephasing of the spins when the magnetic field gradient is reversed. The spin states are shown in the rotating frame.
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Figure 2 | Spin-echo signals in the strongly interacting regime. a, Transverse spin diffusion constant D? as a function of interaction strength deduced
from the decay constant 0 of the spin-echo signal. The error bars denote the 1� uncertainty of the fit. Inset: spin-echo signal at ln(kFa2D) = �0.2. The blue
line is a fit / exp[�(20⌧ )3]. b,c, Illustration of the different spatial variation of Fermi surfaces of a polarized Fermi gas for the case of longitudinal (b) and
transverse (c) spin diffusion.
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• transverse spin current precesses around local magnetization

Observation of the Leggett-Rice Effect in a Unitary Fermi Gas
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We observe that the diffusive spin current in a strongly interacting degenerate Fermi gas of 40K precesses
about the local magnetization. As predicted by Leggett and Rice, precession is observed both in the Ramsey
phase of a spin-echo sequence, and in the nonlinearity of the magnetization decay. At unitarity, we measure
a Leggett-Rice parameter γ ¼ 1.08ð9Þ and a bare transverse spin diffusivityD⊥

0 ¼ 2.3ð4Þℏ=m for a normal-
state gas initialized with full polarization and at one-fifth of the Fermi temperature, where m is the atomic
mass. One might expect γ ¼ 0 at unitarity, where two-body scattering is purely dissipative. We observe
γ → 0 as temperature is increased towards the Fermi temperature, consistent with calculations that show the
degenerate Fermi sea restores a nonzero γ. Tuning the scattering length a, we find that a sign change in γ
occurs in the range 0 < ðkFaÞ−1 ≲ 1.3, where kF is the Fermi momentum. We discuss how γ reveals the
effective interaction strength of the gas, such that the sign change in γ indicates a switching of branch
between a repulsive and an attractive Fermi gas.

DOI: 10.1103/PhysRevLett.114.015301 PACS numbers: 67.85.Lm, 67.10.Jn, 75.76.+j

Transport properties of unitary Fermi gases have been
studied extensively in the past few years. Because of strong
interparticle interactions at unitarity, various transport coef-
ficients like viscosity and spin diffusivity are bounded [1–3]
by a conjectured quantum minimum [4–6], in three dimen-
sions. On the other hand, transport in two-dimensional
unitary Fermi gases shows anomalous behavior, apparently
violating a quantum limit [7]. This remains to be understood.
In the case of spin diffusion, experiments so far [2,3,7]

have been interpreted with a spin current proportional to
the magnetization gradient, Jj ¼ −D∇jM, where D is the
diffusion constant [8], and M ¼ hMx;My;Mzi is the local
magnetization. Bold letters indicate vectors in Bloch space
and the subscript j ∈ f1; 2; 3g denotes spatial direction.
In general, Jj has both a longitudinal component J ∥

j ∥M
and a transverse component J⊥j ⊥M. Longitudinal spin
currents are purely dissipative, and the standard diffusion
equation applies [5,6,9,10]. However, as Leggett and Rice
pointed out [11], the transverse spin current follows

J⊥j ¼ −D⊥
eff∇jM − γM ×D⊥

eff∇jM; ð1Þ

where D⊥
eff ¼ D⊥

0 =ð1þ γ2M2Þ is the effective transverse
diffusivity and γ is the Leggett-Rice (LR) parameter [12] [see
Fig. 1(a)]. Physically, the second term describes a reactive
component of the spin current that precesses around the local
magnetization. This precession has been observed in weakly
interacting Fermi gases [7,13,14] and is a manifestation of
the so-called identical spin-rotation effect [15], which is
intimately related to the LR effect [16]. In a unitary Fermi
gas, however, neither the existence of the LR effect nor the

value of γ has been measured. In this Letter, we provide the
first evidence for LR effects in a unitary Fermi gas, and
measure γ using a spin-echo technique.
Our experiments are carried out in a trapped cloud of 40K

atoms using the two lowest-energy Zeeman states j% zi of
the electronic ground-state manifold [17]. Interactions
between these states are tuned by the Feshbach resonance
[21] at 202.1 G. We start with a completely spin-polarized
sample in the lowest-energy state j − zi. This large initial
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FIG. 1 (color online). The Leggett-Rice effect. (a) In a trans-
verse spin spiral along xj, the gradient ∇jM⊥M drives a spin
current Jj⊥M, as described by Eq. (1). For γ ≠ 0, Jj is rotated
around M by arctanðγÞ compared to ðJjÞγ¼0. In a spin-echo
experiment, this causes both a slower decay of amplitude, A ¼
jMx þ iMyj shown in (b), as well as an accumulated phase, ϕ ¼
− argðiMx −MyÞ shown in (c). The case of θ ¼ 5π=6 and full
initial polarization is plotted. Dashed lines in (b) and (c) show
γ ¼ 0, and gray lines show steps of 0.2 up to γ ¼ %1.
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diffusive reactive (Leggett-Rice)

• imprint local perturbation on fluid:

Leggett & Rice 1968, 1970
(illustration: Trotzky 2015)
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Demagnetization dynamics: Leggett-Rice
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Demagnetization dynamics (Thywissen experiment)

Luciuk, Smale, Böttcher, Sharum, Olsen, Trotzky, 
Enss & Thywissen, PRL 118, 130405 (2017)
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Transverse diffusion

interaction dependence: minimum near unitarity, 
confirm quantum limited spin diffusion

cf. Enss PRA 2015

transport calculation: 
1. compute spin transport coefficient
    from microscopic quantum theory
2. solve Boltzmann equation for spin
    helix in trapping potential
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Spin-rotation parameter ɣ

• precession of spin current around local magnetization m:

Ramsey phase ϕ ∝                                                               W: effective interaction�M = �Wm
⌧?
~

molecular field

interaction dependence:
zero crossing near ln(kFa)=-1 

3

ka

2D

= 1. Even though our Fermi gas has a distribution
of relative momenta k, the average cross-section at low
temperature can be estimated by replacement of k with
k

F

, due to the logarithmic dependence of f on the energy
of collision.

The lines on Fig. 2(a) show a kinetic theory both with
and without medium scattering (solid and dashed lines,
respectively) calculated in the |M | ! 1 limit [14, 31].
The model also accounts for inhomogeneities in the fol-
lowing way: first, the collision integral is solved to com-
pute the transverse spin di↵usion time and LR parameter
for a 2D homogeneous system with the same spin density
and temperature as the trap center [14, 35]. Next, these
parameters are used to solve the Boltzmann equation for
the position-dependent spin density in the full trapping
potential for each 2D gas in the ensemble [31]. Finally,
the average magnetization dynamics is analyzed using
Eq. (1). This procedure predicts a minimal D?

0

slightly
shifted from the observed minimum; but its results agree
well with the increase of D?

0

in the weakly interacting
regime. This gives us confidence that inhomogeneity ef-
fects are well understood.

The lowest observed di↵usivity is D?
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= 1.7(6)~/m, at
(T/T
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)
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= 0.19(3) and ln(k
Fi
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) = �0.1(2). The e↵ect
of temperature is shown in Fig. 2(b) and by data sets
in Fig. 2(a) taken at two temperatures. In all cases, our
data supports the conjectured bound D

?
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& ~/m.
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velocity v

T

⇠ p
k

B

T/m, one can estimate the local re-
laxation time ⌧

r

with D

?
0

/v

2

T

. Figure 2(c) compares this
time to the bound ~/k

B

T . Another estimate of the re-
laxation time might be taken from Fermi liquid theory,
which gives ⌧

D

= 2(1 + F

a

0

)�1

D

0

/v

2

F

, where v

F

is the
Fermi velocity, and F

a

0

parameterizes magnetic suscepti-
bility [27, 28]. Assuming (1 + F

a

0

) is of order unity, and
⌧

r

⇠ ⌧

D

, this would give ⌧

r

⇠ 20µs at the minimum ob-
served di↵usivity, again on the order of ~/k

B

T . In sum,
a 2D Fermi gas with a

2D

k

F

⇠ 1 seems to saturate, but
not violate, the Planckian bound ⌧

�1

r

. k

B

T/~ at the
lowest temperatures probed here.

Figures 3(b) and 3(c) summarize measurements of �
across a wide range of interaction strengths and temper-
atures. There are two implications of these data. First,
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the interaction between the spin current and the local
magnetization [27, 36, 37]. When � < 0, as we ob-

FIG. 3. Change in the sign of interaction. (a) Fraction of
atoms remaining at t
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= 3.5ms. (b) � versus interaction
strength, with markers as in Fig. 2(a). (c) � versus initial
reduced temperature (T/TF)i, at ln(kFia2D) = �0.1(2). The
change in sign of �, at ln(kFia2D) ⇡ �1, is associated with
the onset of a pairing instability.
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shows that above the sign change, some atom loss occurs.
These observations indicate that the system is in the up-
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tion, distinct from the lower branch in which fermions are
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instability itself seems weaker than in 3D: at least 80%
of the atoms remain after 3.5ms. This is su�cient to
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demagnetization dynamics. The experimental protocol is

repulsive interaction 
for ln(kFa) < -1

attractive interaction 
for ln(kFa) > -1

Ref = � 2⇡ ln(ka)

⇡2/4 + ln2(ka)



Local correlations build up over time

local correlations
build up during 
demagnetization

Luciuk+ PRL 2017



Local correlations build up over time

contact 15x smaller than in ground state:
Fröhlich+ PRL 2012: C~5 N kF2

demagnetization into excited state
which is almost scale invariant

upper branch stable ≫ Fermi time

-4 -2 0 2 4

-4

-2

0

2

4

ln(kFa2 D)

E/
E
0

Luciuk+ PRL 2017

upper branch



Small reheating during demagnetization
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lower branch T/TF=2.5 @ ln(kFa)=0
(application of EoS)
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Conclusion
• 2D equation of state at T=0 and T>0:

EoS strongly scale dependent
density driven crossover from Bose to Fermi
substantial density renormalization

• spin transport in strongly interacting gas:
quantum bound        relaxation rate

scale invariance for transport almost recovered 
Luciuk, Smale, Böttcher, Sharum, Olsen, Trotzky, 
Enss & Thywissen PRL 2017; Enss PRA 2015 & 2013 

• upper branch physics:
demagnetization into metastable upper branch

4

βε
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FIG. 3: EOS in the crossover regime shown as the density normalized by the ideal gas result n0(µ, T ) = 2��2
T log(1+ e�µ). The

experimental data points (filled shapes) are compared to the second order virial expansion at low values of �µ (coloured dashed
lines). The displayed errors are purely statistical, with systematic uncertainties estimated at 13-15%. We compare our results
to theoretical predictions for the EOS in the 2D BCS-BEC crossover from LW theory ([22], solid black lines) and fermionic
QMC simulations ([23], dotted black lines), with the corresponding value of �"B being attached to the curves. Note that the
vertical scale di↵ers by a factor of 10 in each panel.

We further analyze density profiles obtained from Quan-
tum MC (QMC) computations for the trapped Bose gas
with similar trapping parameters as used in the experi-
ment. We refer to Refs. [32, 57, 58] for details on the
simulations. The QMC profiles allow us to determine T

and µ̃0 from the Boltzmann regime, and thus, applying
the LDA, we can extract an EOS. The latter need not
necessarily coincide with the one of a classical homoge-
neous gas.

We find excellent agreement of our results with the
EOS extracted from the QMC profiles with the LDA. For
g̃ = 0.60 our data is slightly below the bosonic simulation
for large �µ̃, whereas this trend changes for larger cou-
plings. We attribute this behavior to systematic errors
in the determination of T and µ̃0. Both our results and
QMC are, however, well below the classical predictions
for large �µ̃ from classical MC and mean field theory.
There are two e↵ects which could explain this behavior:
On the one hand, quantum fluctuations become impor-
tant for large g̃ and high densities. On the other hand,
both experiment and QMC are performed in a quasi-2D
setting with nonzero extent in the z-direction. We do
not expect e↵ects beyond LDA to play a role at the high
central densities found on the Bose side.

In Fig. 3 we show the EOS in the strongly correlated
crossover regime between the bosonic and the fermionic
limits. We obtain the EOS from sampling h(x, y) over
approximately 150 shots for each of the magnetic fields
B[G] = 812, 832, 852, 892. The central chemical potential
µ̃0 is determined from the TF fit of the central region,
and the binding energy "B again refers to the central
value. The temperature is estimated by T = (TV+TB)/2,
where TV and TB are obtained from second order virial
and Boltzmann fits to the outer region, respectively. This
choice is motivated by the fact that TV and TB are ex-
pected to give upper and lower bounds on the true tem-
perature of the sample for the interaction strengths con-

sidered here [42]. On the Fermi side, both temperatures
approach each other. The quality of the virial and Boltz-
mann fits is reflected in the overall good agreement of
the corresponding central chemical potentials with the
TF values.
We compare our results for the EOS in the crossover

regime to theoretical predictions for the homogeneous 2D
BCS-BEC crossover from Luttinger–Ward (LW) theory
[22] and fermionic QMC simulations [23]. We find an
overall good agreement between theory and experiment
for n/n0 varying over two orders of magnitude and con-
firm that n/n0 has a maximum of height 2e�"B/2 around
µ ⇡ �"B/2 for large �"B. The origin of this scaling
can be understood from the virial expansion of the PSD
in the Bose limit: n

�

�

2
T

⇡ 2 exp(2�µ̃) = 2 at �µ̃ = 0.
This implies n/n0 ⇡ 2/ log(1 + e

��"B/2) ⇡ 2e�"B/2 at
µ = �"B/2. The di↵erence of the EOS obtained from
LW and QMC methods lies within our systematic errors
from the T - and µ0-determination and thus cannot be
resolved with the present analysis.

On the Fermi side of the crossover, the filling-
dependent interaction strength "B varies substantially
inside the trap, and the EOS obtained from a individ-
ual density profile cannot be fully attributed to a single
value of �"B. In order to avoid this e↵ect, the number of
trapped particles should be kept low. In a recent work
by Fenech et al. [41] the EOS on the Fermi side for
�"B < 0.5 has been determined using 6Li-atoms, which
supplements our data from the Bose and crossover regime
to yield a complete picture of the EOS in the 2D BCS-
BEC crossover.

In this work we have measured the EOS of ultracold
fermions in the 2D BCS-BEC crossover. Our results con-
nect the perturbative Bose gas, the strongly interacting
Bose gas, the strongly interacting fermionic superfluid in
the crossover regime, and the perturbative Fermi liquid as
we tune interactions by means of a Feshbach resonance.

Bauer, Parish & Enss PRL 2014
Boettcher et al. PRL 2016
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FIG. 4: Phase diagram of pairing in the 2D BEC-BCS crossover. We plot the ratio �E/EB as a function of T/TFF and
ln(kFa2D). Di↵erent pairing regimes can be identified. On the BEC side for ln (kF a2D) . 0.5 we observe �E/EB ⇡ 1 confirming
the picture of a gas of dimers. In the strongly interacting crossover regime we observe an island of many-body pairing with
�E/EB being significantly larger than unity. The dark red squares represent the line of vanishing fermion chemical potential µ
obtained from the equation of state. It marks the qualitative crossover between Bose and Fermi regimes and the appearance of
a Fermi surface (cite Boettcher Eos, Parish Review). The black circles are the measured critical temperatures for superfluidity.
The white line constitutes the mean field BCS prediction for Tc and the grey stars are the pairing temperature T ⇤ computed
in n Ref. [Strinati] using a T-matrix approach.

most probably consists of unpaired atoms and therefore
constitutes a Fermi liquid.

To quantify how the character of pairing changes across
the crossover, we extract �E as a function of ln(k

F

a

2D

)
and T/T

F

. For this purpose, we fit the homogeneous
RF spectra with a threshold function convolved with a
Gaussian envelope. The fitting procedure is described in
[SOM]. In particular, by considering the ratio �E/E

B

,
we can distinguish a paired state of dimers (�E/E

B

= 1)
from a genuinely many-body paired state (�E/E

B

> 1).
The resulting phase diagram of pairing is shown in Fig.
4.

The phase diagram of pairing shows an island of many-
body pairing where the ratio �E/E

B

significantly ex-
ceeds unity. This region centered around ln (kFa2D) ⇠
1.5 extends up to T/T

F

⇠ 0.4. Its boundary with the
BEC side is given by the line of vanishing fermion chemi-
cal potential (µ ⇡ 0), which is obtained from the equation
of state (cite Boettcher). This supports the interpreta-
tion that pairing in the crossover regime is a fermionic
many-body e↵ect linked to the presence of a Fermi sur-
face. On the BCS side, the boundary is consistent with
the appearance of a pseudogap at pairing temperature T ⇤

obtained with the T-matrix approach of Ref. [Strinati].

Discussion. In this work we have experimentally inves-
tigated the normal phase of an attractive 2D Fermi gas
in the 2D BEC-BCS crossover region. We found that,
although in 2D there exists a dimer bound state for all
values of the interaction strength, the nature of pairs just
above the critical temperature changes qualitatively as
we move from the BEC to the BCS side of the crossover.
Most importantly, the crossover region is not captured
by dimer physics.

We can further draw some conclusions on whether the
normal state is a Fermi liquid (FL). Here we take the
view that in a FL only the free-free peak should appear in
the spectrum and its density-dependent shift is fully cap-
tured by MF theory. With this definition we can exclude
large regions of the crossover where the gas is not a FL –
essentially the entire phase diagram of pairing shown in
Fig. 4. At high temperatures and low densities, though,
where dimers are dissociated, a FL description should be
appropriate, for example the outer regions in Fig. 2a)
corresponding to T/T

F

> 2. Also on the far BCS side for
weak interactions we expect FL theory to be valid.
This brings us to the qualitative picture of pairing

in the system shown in Fig. XXX: For all interactions
strengths the system becomes superfluid for su�ciently
low temperatures. This superfluid is born out of a gas of
dimers on the BEC side of the crossover for ln(kFa2D) .
0.5. In contrast, for larger value of ln(kFa2D) a many-
body paired state precedes the phase transition. This
bears some resemblance with high-temperature super-
conductivity in the cuprates arising from an exotic non-
Fermi liquid state and a normal phase with signatures of
a pseudogap.
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FIG. 3. From two-body dimers to many-body pairing. The spatially resolved response function I(r,!RF) shows qualita-
tively di↵erent behavior for two di↵erent scattering lengths. A, B: I(r,!RF) for central ln (kFa2D) ⇠ �0.5 and 1.0, respectively.
The 3D visualization is obtained using a linear interpolation between 3000 data points each of which is an average of 30 realiza-
tions. The black solid line is the peak position of the free branch, the orange line is the threshold position of the bound branch
and the black dashed line is displaced from the free peak by the two-body binding energy EB. The energy di↵erence between
free and bound branches is the pairing energy �E, which is seen to agree with EB in A (BEC regime), but signigicantly exceeds
EB in B (crossover regime). In addition,�E is strongly density dependent in B, implying that it originates from many-body
correlations. C, D: Local spectra at a fixed radius corresponding to a homogeneous system with T/TF ⇠ 0.7 and 1 respectively
(gray region). The solid blue curves are the fits to the data; the black and red curves are gaussian and threshold fits to the two
branches.

surement on the BEC side of the crossover. In contrast,
for the spectrum displayed in Fig 3 B, corresponding to
the crossover regime, we observe �E ⇠ E

B

only in the
outer regions of the cloud where the density is low enough
that only the two-body bound state plays a role. To-
wards the center of the cloud, �E begins to significantly
exceed E

B

and shows a strong dependence on the local
density (E

F

), indicating that pairing in this regime is a
many-body phenomenon. At very low temperatures, the
measurement of �E is di�cult since the occupation of
the free branch is too low, as seen in Fig. 1 D. However,
we qualitatively observe that the threshold position of
the bound branch increases continuously with decreasing
temperature, even as we cross the superfluid transition.
This indicates that in the crossover regime, a many-body
gap opens up far in the normal phase rather than at T

c

as expected from BCS theory. This observation is the
first main result of this work.

To quantitatively study the change in the nature of
pairing from the BEC to the BCS side, we measure the
spectra at di↵erent magnetic fields and extract �E in
units of the two-body binding energy E

B

. In Fig. 4
A, we plot the temperature dependence of �E/E

B

for
di↵erent interaction strengths, and Fig. 4 B shows the
variation of �E/E

B

as a function of ln (k
F

a
2D

) for a

fixed ratio T/T
F

⇡ 0.5. This constitutes an extremely
high temperature regime even in the context of ultracold
fermion superfluidity, where the largest observed critical
temperatures are T

c

/T
F

⇡ 0.17 [8, 9]. We perform our
measurements with both |1i|2i and |1i|3i mixtures (blue
and red points in Fig. 4 B) in an overlapping interac-
tion regime. The two mixtures di↵er vastly in their final
state interaction strengths and the fact that we observe
consistent behavior with both mixtures demonstrates the
robustness of the quantity �E against these final state
e↵ects. Details of the experimental parameters used for
the two mixtures are tabulated in [19].

In Fig. 4, we observe that for ln (k
F

a
2D

) . 0.5
the spectra are well-described by two-body physics. In
contrast, the pronounced density-dependent gap signif-
icantly exceeding E

B

for ln (k
F

a
2D

) � 0.5 signals the
crossover to a many-body pairing regime. In particular,
we observe that �E/E

B

peaks at ln (k
F

a
2D

) ⇠ 1, where
�E ⇡ 2.6E

B

and is a significant fraction of E
F

(0.6E
F

).
The identification of this strongly correlated many-body
pairing regime and the observation of many-body induced
pairing at temperatures several times the critical temper-
ature is the second main result of this work. For larger
ln (k

F

a
2D

), we see a downward trend in �E/E
B

, and for
ln (k

F

a
2D

) � 1.5, we observe only a single branch in the
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Scaling of density maximum n/n0

• maximum where            :

at density

(�µ)
max

' ��"B
2

+ ln 2

(n/n
0

)
max

' 2e�"B/2

7

B [G] a(0)
2D [µm] a2D[µm] "(0)B [nK] "B[nK] "CB[nK] µ̃0[nK] "F[nK] ln(kFa2D) µ̃0/"F 1/c

692 0.000137 0.000128 4.31 ⇥109 4.96 ⇥109 13600. 33(4) 1180(123) -7.27(5)
�
+8
�6

�
0.028(4)

�
+4
�4

�
0.024(2)

�
+4
�4

�

732 0.00703 0.00624 1.63 ⇥106 2.07 ⇥106 4330. 50(6) 951(132) -3.49(7)
�
+8
�6

�
0.052(10)

�
+8
�8

�
0.046(4)

�
+7
�7

�

782 0.147 0.12 3730. 5610. 766. 78(7) 590(44) -0.76(3)
�
+8
�6

�
0.13(2)

�
+2
�2

�
0.12(1)

�
+2
�2

�

812 0.517 0.376 302. 569. 191. 113(9) 469(36) 0.29(3)
�
+6
�5

�
0.24(3)

�
+3
�3

�
0.21(2)

�
+3
�3

�

832 1.02 0.699 77.3 165. 65.5 130(10) 417(45) 0.86(5)
�
+6
�5

�
0.31(4)

�
+4
�4

�
0.28(3)

�
+4
�3

�

852 1.83 1.15 24. 61.5 22.6 154(13) 371(41) 1.31(5)
�
+6
�5

�
0.41(6)

�
+6
�5

�
0.38(4)

�
+5
�5

�

892 4.73 2.45 3.61 13.5 3.58 193(16) 366(35) 2.10(8)
�
+6
�5

�
0.53(7)

�
+7
�7

�
0.48(5)

�
+7
�6

�

922 8.29 4.01 1.17 5.00 1.17 204(18) 341(40) 2.58(8)
�
+6
�5

�
0.60(9)

�
+8
�7

�
0.54(6)

�
+7
�7

�

952 13.2 6.96 0.46 1.66 0.459 191(19) 295(37) 3.02(7)
�
+6
�5

�
0.65(10)

�
+9
�8

�
0.59(6)

�
+8
�7

�

982 19.6 9.48 0.209 0.897 0.209 205(14) 319(25) 3.40(8)
�
+6
�5

�
0.64(7)

�
+9
�8

�
0.59(6)

�
+8
�7

�

1042 36.5 18.4 0.0605 0.237 0.0605 197(21) 268(33) 3.96(10)
�
+6
�5

�
0.74(12)

�
+10
�9

�
0.67(8)

�
+9
�8

�

TABLE IV: Scattering parameters and low temperature EOS as shown in Fig. 1. We show the result of averaging the
observables over approximately 30 shots for each magnetic field. The error is shown as (stat.)

�
+sys.
�sys.

�
, where the statistical error

is given by the standard deviation and the systematic error results from the systematic uncertainties discussed in this section.
Note that the 2D binding energy "B is generally larger than the quasi-2D universal dimer energy "CB.

sumption µ(~r) = µ0�V (~r) and hence inherits the system-
atic uncertainties in V (~r). Those result from the uncer-
tainty in the trapping frequencies and the magnification
of the imaging system, giving µ

+6%
�6%. The temperature is

fitted in the low-density region with a reference EOS of
the form n

�

= �

�2
T

⌫(�µ0 � �V (~r)), where ⌫(x) is a di-
mensionless function of x = �µ. The uncertainties of the
density influence both �

�2
T

and µ0. For instance, in the

Boltzmann case we have n

�

= e

�µ
0

�

2

T
e

��V (~r) = Ce

��V (~r),

such that density uncertainties are absorbed in the ir-
relevant prefactor C. We conclude that the systematic
uncertainty in T is the same as the one for µ, i.e. ±6%.

MAXIMUM OF THE EQUATION OF STATE

The EOS at nonzero temperature expressed by the
function n/n0 = h(�µ,�"B) exhibits a maximum as a
function of �µ for fixed �"B. Here we quantify the loca-
tion and height of this maximum from our experimental
data and compare to theoretical predictions from QMC
and LW calculations.

Our data is consistent with a maximum of height
(n/n0)max ' 2e�"B/2 at (�µ)max ' ��"

B

2 +ln(2). Writing
x = �µ and y = (n/n0), the maxima thus all approxi-
mately lie on the curve y = 4e�x. We demonstrate this
behavior in Fig. 3, where we also compare to theory.
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