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Quantum critical transport in the unitary Fermi gas
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The thermodynamic and transport properties of the unitary Fermi gas at finite temperature T are governed by
a quantum critical point at T = 0 and zero density. We compute the universal shear viscosity to entropy ratio
η/s in the high-temperature quantum critical regime T � |μ| and find that this strongly coupled quantum fluid
comes close to perfect fluidity η/s = h̄/(4πkB ). Using a controlled large-N expansion, we show that already
at the first nontrivial order the equation of state and the Tan contact density C agree well with the most recent
experimental measurements and theoretical Luttinger-Ward and bold diagrammatic Monte Carlo calculations.
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I. INTRODUCTION

The unitary Fermi gas is a basic many-body problem which
describes strongly interacting fermions ranging from ultracold
atoms near a Feshbach resonance [1–3] to dilute neutron
matter. The properties in the dilute limit are independent of
the microscopic details of the interaction potential and share
a common universal phase diagram. A quantum critical point
(QCP) at zero temperature governs the critical behavior in the
whole phase diagram as a function of temperature T , chemical
potential μ, detuning from the Feshbach resonance ν, and
magnetic field h [4–6]. Whereas conventional QCPs separate
two phases of finite density, in our case the density itself is the
order parameter which vanishes for μ < 0 and assumes a finite
value for μ > 0 [6]. In the spin-balanced case h = 0 and at
resonance ν = 0 the Fermi gas is unitary and scale invariant. In
terms of the thermal length λT = h̄(2π/mkBT )1/2 the density
equation of state nλ3

T = fn(μ/kBT ) is a universal function
which has been measured experimentally [7,8]. The unitary
Fermi gas becomes superfluid at a universal Tc(μ) ≈ 0.4 μ [8];
see Fig. 1. In this work we focus on the quantum critical
regime T > 0 above the QCP at h = 0, ν = 0, and μ = 0,
where nλ3

T = fn(0) ≈ 2.9 is a universal constant. Since the
thermal length λT is comparable to the mean particle spacing
n−1/3, quantum and thermal effects are equally important.
There is no small parameter, and it is a theoretical challenge to
compute the critical properties. Recent measurements [8] and
computations [9,10] of the equation of state now agree to the
percent level. However, a precise determination of transport
properties is much more demanding.

In order to reliably estimate transport coefficients we
perform controlled calculations in a large-N expansion [5,11].
Due to the lack of an intrinsic small parameter we introduce
an artificial small parameter, 1/N , which organizes the
different diagrammatic contributions, or scattering processes,
into orders of 1/N . The original theory is recovered in
the limit N = 1. One can perform controlled calculations
by including all diagrams up to a certain order in 1/N ,
and these approximations can be systematically improved
by going to higher order. This approach is similar to the ε

expansion in the dimension of space. The advantage over
perturbation theory is that it is controlled even at strong
interaction, while in contrast to quantum Monte Carlo it works
directly in the thermodynamic limit and needs no finite-size
scaling.

We thus obtain results for the Tan contact density [12–14]
and the transport properties in the quantum critical region.
The shear viscosity η = h̄λ−3

T fη(μ/kBT ) assumes a universal
value at μ = 0. In kinetic theory η = Pτ is given by the pres-
sure P times the viscous scattering time τ , which is related to
the incoherent relaxation time of the gapless critical excitations
above the QCP. The entropy density s = kBλ−3

T fs(μ/kBT ) at
μ = 0 is exactly proportional to the pressure, s = 5P/2T , and
the viscosity to entropy ratio (at N = 1),

η

s
= 2

5
T τ ≈ 0.74

h̄

kB

, (1)

is a universal number independent of temperature. A
temperature-independent ratio η/s = h̄/(4πkB) has been
found in certain string theories [15] and is conjectured to hold
as a lower bound in other models [16]. Strongly interacting
quantum fluids which saturate this bound are called perfect
fluids [17]. Among real nonrelativistic fluids the unitary Fermi
gas comes closest to the bound and is almost perfect [18–20],
while for graphene the viscosity decreases logarithmically with
temperature in the quantum critical regime [21].

We compare our large-N results at N = 1 [22] with exper-
imental measurements [8,19,23,24] and other theoretical ap-
proaches, including self-consistent Luttinger-Ward [18,25,26]
and bold diagrammatic Monte Carlo (BDMC) [9] calculations;
see Table I. The excellent agreement between experiment and
BDMC provides a reliable reference to assess the accuracy of
other methods. We find very good agreement of the pressure
P with large-N (3% above BDMC) and Luttinger-Ward (4%
below) calculations, just slightly outside the error bars, and
we find similarly good agreement for the entropy density s.
From the BDMC equation-of-state simulations of [9], one can

FIG. 1. (Color online) Universal phase diagram of the unitary
Fermi gas.
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extract (via the pair propagator) a preliminary value for the
contact density [27] C/k4

F = 0.080(5). Our large-N value
is just 1.4% below the BDMC value, which is remarkable
given how simple the calculation is, while the Luttinger-Ward
value lies about 5% above the BDMC value, just inside the
error bars. Experimental measurements of the contact [24]
yield C = 0.030(6) k4

F for the trapped gas at μ = 0 (T/TF =
0.64), which agrees well with trap-averaged calculations [24].
However, knowledge of the trap-averaged contact does not
allow us to reconstruct the corresponding value for the
homogeneous system, so we refrain from a direct comparison.
Dynamical and transport properties such as η/s are harder
to compute than thermodynamic properties, which makes
simple approximations all the more valuable: we find that
η/s agrees to 5% between large-N and Luttinger-Ward theory,
giving a narrow estimate. The viscosity of a trapped gas has
been measured experimentally and agrees with trap-averaged
calculations [19,23,28] but differs from the viscosity of the
homogeneous system.

The body of this paper explains how these values are
obtained: in Sec. II we review the renormalization group
(RG) analysis of the unitary Fermi gas and its universal
phase diagram, in Sec. III we perform thermodynamic and
transport calculations using the controlled large-N expansion,
and in Sec. IV we extract the μ = 0 data from the self-
consistent Luttinger-Ward calculation, before concluding in
Sec. V. In particular, in Appendix A we give a derivation
of the Tan adiabatic and energy relations and show that
they are satisfied exactly in self-consistent Luttinger-Ward
approximations, while Appendix A provides technical details
on the quantum kinetic equation.

II. PHASE DIAGRAM OF THE UNITARY FERMI GAS

The interacting two-component Fermi gas is described by
the action

SF =
∫

ddx dτ

{∑
σ

ψ∗
σ

(
∂τ − ∇2

2m
− μσ

)
ψσ

+ g0ψ
∗
↑ψ∗

↓ψ↓ψ↑

}
, (2)

where ψσ are Grassmann variables representing fermion
species σ = ↑ , ↓ of equal mass m and the imaginary time
τ = 0, . . . ,β runs up to the inverse temperature β = 1/T (we
use units where h̄ = 1 = kB). μσ is the chemical potential of

species σ , but we will only consider the spin-balanced case
μ = μ↑ = μ↓.

In d = 3 dimensions the scattering amplitude for small
relative momenta k can be written in the form [2]

f (k) = 1

−1/a − ik + rek2/2
, (3)

where the scattering length a can be varied experimentally by
an applied magnetic field and the effective range re depends
on the details of the interatomic potential. By fine-tuning to
a Feshbach resonance 1/a → 0 the two-particle scattering
remains strong at low energy k → 0 and reaches the unitarity
limit f (k) = i/k independent of re. The low-energy properties
remain universal at finite density n > 0 if re is much shorter
than the mean particle spacing n−1/3. This condition kF re → 0
is realized physically for a dilute gas and near a broad Feshbach
resonance as in 6Li [2].

A finite re regularizes the contact interaction at short
distances (UV), and for a sharp momentum cutoff � ∼ 1/|re|
the detuning ν is related to the bare coupling g0 in (2) by

ν ≡ −1

a
= −4π

m

(
1

g0
+ m�

2π2

)
. (4)

Note that the resonance ν = 0 can only be reached for attractive
interactions g0 < 0, when a bound state of the interatomic
potential is at the continuum threshold.

More generally, this can be understood from an RG analysis
of the model (2): at zero temperature and density the running
coupling g obeys the exact flow equation [4–6]

dg

d

= (2 − d)g − g2

2
, (5)

which in 2 < d < 4 has an unstable fixed point at g∗ =
−2(d − 2) < 0 corresponding to the Feshbach resonance.
For smaller g < g∗ the fermions will form a Bose-Einstein
condensate (BEC) of fermion pairs; for larger g > g∗ the flow
runs toward the attractive fixed point g = 0 of the free Fermi
gas (BCS limit). At the Feshbach resonance fixed point the
detuning ν is a relevant perturbation with scaling dimension
dim[ν] = d − 2.

The zero-temperature phase diagram exhibits a quantum
critical point at the Feshbach resonance ν = 0, zero chemical
potential μ = 0, and zero-spin imbalance h = 0, where the
“magnetic field” h couples to the difference in chemical
potential μ↑ − μ↓. This critical point determines a universal
phase diagram for finite T , ν, μ, and h [5,6]. In this work we
concentrate on the spin-balanced gas h = 0 at unitarity ν = 0:
the phase diagram for finite T and μ is depicted in Fig. 1.

TABLE I. Thermodynamic properties and transport coefficients of the unitary Fermi gas in the quantum critical region μ = 0, T > 0:
density n, pressure P , entropy density s, Tan contact density C, and shear viscosity η, with Fermi momentum kF = (3π 2n)1/3. Large-N results
are extrapolated to N = 1. LuttWard, Luttinger-Ward; BoldDiagMC, bold diagrammatic Monte Carlo.

Experiment Large N LuttWard BoldDiagMC

nλ3
T 2.966(35) [8] 2.674 3.108 [26] 2.90(5) [9]

P (units of nkBT ) 0.891(19) [8] 0.928 0.863 [26] 0.90(2) [9]
s (units of nkB ) 2.227(38) [8] 2.320 2.177 [26] 2.25(5) [9]
C (units of k4

F ) 0.0789 0.084 [18] 0.080(5) [27]
η/s (units of h̄/kB ) 1.0(2) [19,28] 0.741 0.708 [18]
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On the lower right for μ/T > (μ/T )c there is a superfluid
phase of fermion pairs, while the left part is a normal
Fermi-liquid phase at finite density. The phase-transition line
Tc(μ) ≈ 0.4μ [8] is universal and strictly linear, in contrast
to the corresponding phase diagram for a dilute Bose gas [4].
On the left for μ/T → −∞ the Fermi liquid crosses over to
a dilute classical gas. The line T = 0, μ < 0 has zero density
(vacuum). Here we focus on the high-temperature quantum
critical regime T � |μ|, and in the following we compute the
thermodynamic and transport properties specifically for the
representative value μ = 0.

It is useful to perform a Hubbard-Stratonovich transfor-
mation to decouple the fermion interaction. We introduce a
complex field φ(x,τ ) representing a fermion pair and write the
Bose-Fermi action

SBF =
∫

ddx dτ

{ ∑
σ

ψ∗
σ

(
∂τ − ∇2

2m
− μσ

)
ψσ

− 1

g0
|φ|2 − φψ∗

↑ψ∗
↓ − φ∗ψ↓ψ↑

}
. (6)

Note that the pairing field φ has a positive gap because g0 < 0
near the Feshbach resonance. The action (6) has the same
critical behavior as the two-channel atom-molecule model at
its zero-range fixed point [2,5].

One can now proceed by integrating out the fermions to
obtain an effective bosonic action for the pairing field φ.
This action has bosonic vertices with any even number 2n of
fields which are given by a bare fermion loop with 2n vertex
insertions. In contrast to the repulsive Fermi gas, where these
vertices are irrelevant in the RG sense, for the unitary Fermi gas
these vertices all have marginal scaling. Already the particle-
particle loop (n = 1), which contributes to the self-energy of
the φ field, changes the bare scaling dimension dim[φ] = d/2
of the φ field by an anomalous contribution ηφ = 4 − d to
the true scaling dimension dim[φ] = (d + ηφ)/2 = 2, which is
independent of d (for 2 < d < 4). Similarly, all higher bosonic

vertices n > 1 are singular for small external frequencies and
momenta and scale marginally in the RG sense. There is no
small parameter to suppress these higher-loop diagrams, and
they are a priori equally important in the infrared (IR). At zero
density the 2n > 2 particle β functions are decoupled from the
2n = 2 particle β function in Eq. (5), which is therefore exact.
Nevertheless, there may also be a three-particle resonance
(Efimov effect) in the three-particle β function depending
on the mass ratio and whether the particles are fermions or
bosons [29]. This changes the ground state from a two-particle
to a three-particle bound state and leads to limit cycles in the
RG flow [30].

At finite density all higher bosonic vertices couple back into
the self-energy of the φ field. In order to assess the quantitative
importance of these higher vertices, one can introduce an
artificial expansion parameter, such as the dimension ε =
4 − d for 2 < d < 4 [31] or 1/N for a large number of
fermion flavors N [5,11]. Alternatively, one can use a Monte
Carlo sampling of diagrams [9]. In this work we perform a
large-N expansion and compare it with the results from other
approaches.

III. LARGE-N EXPANSION

We modify the Bose-Fermi action (6) by introducing N

identical copies, or flavors, of ↑ and ↓ fermions, denoted by
ψσa with σ = ↑ , ↓ and the flavor index a = 1, . . . ,N . The
pairing field φ is chosen to create an ↑↓ pair of any flavor, and
we obtain the action [6,11]

SBF =
∫

ddx dτ

{∑
σa

ψ∗
σa

(
∂τ − ∇2

2m
− μσ

)
ψσa

−N

g0
|φ|2 − φ

∑
a

ψ∗
↑aψ

∗
↓a − φ∗ ∑

a

ψ↓aψ↑a

}
. (7)

This action is O(N ) invariant under rotations in flavor space.
The Gaussian integral over the fermion field yields the effective
bosonic action,

SB = N

∫
ddx dτ

{
− trσ ln

[
∂τ − ∇2

2m
− μ↑ −φ

−φ∗ ∂τ + ∇2

2m
+ μ↓

]
− 1

g0
|φ|2

}

= NT
∑
ωm

∑
k

{∑
σ

ln G0σ (k,ωm) − T −1(k,ωm)|φ(k,ωm)|2 + O(|φ|�4)

}
, (8)

with the trace running over the spin index σ . The bare Fermi
propagator G0σ (k,ωm) is given by

G−1
0σ (k,ωm) = −iωm + εk − μσ , (9)

with dispersion εk = k2/(2m), and the bosonic propagator
−T (k,ωm) is given by the regularized T matrix in medium,

T −1(k,ωm) = 1

g0
+ T

∑
εn

∫
ddp

(2π )d
G0↑(p,εn)

×G0↓(k − p,ωm − εn) . (10)

The number of flavors N appears only as a global prefactor
in the action (8); hence a controlled loop expansion is
possible [5]. Each closed fermion loop contributes a factor
of N , while each φ propagator is suppressed by 1/N . Even
though the higher bosonic vertices still have marginal scaling,
their contributions to the grand potential are now suppressed
quantitatively by powers of 1/N . For T � μ the system is
in the normal phase, and the action (8) has a saddle point
at〈φ〉 = 0. To order O(1/N ) the grand potential reads

�

N
= T

∑
ωm

∑
k

{
2 ln G0(k,ωm) − 1

N
ln T (k,ωm)

}
. (11)
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Note that this order of the 1/N expansion extrapolated to
N = 1 is exactly the Nozières–Schmitt-Rink (NSR) theory
[22]. The Matsubara frequency summation can be continued
analytically to real frequency,

�

N
=

∑
k

{
− 2T ln[1 + e−β(εk−μ)]

− 1

N

∫ ∞

−∞

dω

π
b(ω) δ(k,ω,μ,ν)

}
, (12)

with the scattering phase shift δ(k,ω,μ,ν) =
Im ln T (k,ω,μ,ν) and the Bose function b(ω) =
[exp(βω) − 1]−1. Specifically in d = 3 the T matrix
reads (in the spin-balanced case h = 0)

T −1(k,ω) = −mν

4π
− m3/2

4π

√
εk

2
− ω − i0 − 2μ

+ m

2π2k

∫ ∞

0
dp

p

1 + eβ(εp−μ)

× ln

[
ω + i0 + 2μ − εp − εk−p

ω + i0 + 2μ − εp − εk+p

]
. (13)

The integral is convergent and readily evaluated numerically.

A. Thermodynamics

Using (13), we obtain for the pressure P = −�/Ld

(equation of state) at μ = 0, ν = 0, h = 0, and T > 0

P

N
= − �

NLd
= P (0) + 1

N
P (1) + · · ·

=
(

1.734 400 + 1

N
0.747 561

)
T λ−3

T , (14)

where

P (0) = 2(1 − 2−3/2)ζ (5/2) T λ−3
T ,

P (1) =
∫

d3k

(2π )3

dω

π
b(ω)δ(k,ω) .

Since the unitary Fermi gas is scale invariant, the internal
energy density ε is proportional to the pressure [32],

ε

N
= 3P

2N
=

(
2.601 600 + 1

N
1.121 341

)
T λ−3

T . (15)

Also the entropy density s = ∂P/∂T = (ε + P − μn)/T at
unitarity and μ = 0 is proportional to the pressure,

s

N
= 5P

2T N
=

(
4.335 999 + 1

N
1.868 902

)
λ−3

T . (16)

The density at μ = 0 to order O(1/N ) is

n

N
= d(P/N)

dμ
= n(0) + 1

N
n(1) + · · ·

=
(

1.530 294 + 1

N
1.143 936

)
λ−3

T , (17)

where

n(0) = 2(1 − 2−1/2)ζ (3/2) λ−3
T ,

n(1) =
∫

d3k

(2π )3

dω

π
b(ω)

dδ(k,ω)

dμ
.

If this order of the 1/N expansion is evaluated at N = 1 (NSR),
we obtain for the density

n = 2.674 230 λ−3
T (N = 1). (18)

The ratio of thermal length to mean particle spacing, λT n1/3 ≈
1.388, is of order unity; hence quantum and thermal fluctua-
tions are equally important in the high-temperature quantum
critical region. The density determines the Fermi temperature,

kBTF = k2
F

2m
= (3π2n)2/3

2m
, (19)

which is useful to compare with data given in terms of the
reduced temperature,

θ ≡ T

TF

=
(

3
√

π

8
nλ3

T

)−2/3

= 0.681 496 (N = 1). (20)

Finally, the Tan contact density is defined as the total
spectral weight (density) of the pairing field [12–14],

C = m2〈φ∗φ〉 = −m2

N

∫
d3k

(2π )3

dω

π
b(ω) Im T (k,ω)

= 26.840 128
λ−4

T

N
. (21)

At N = 1 the contact can be expressed in terms of kF using
Eq. (19) which yields C = 0.0789 k4

F . This is equivalent to
the non-self-consistent T matrix result [33] and agrees with
the BDMC calculation within 1.4% (see Table I), but it differs
from the result in [6] by a factor of 2.

Note that the Tan adiabatic theorem [13],

d(−P/N )

dν
= C

4πm
, (22)

is fulfilled exactly in the 1/N expansion: the change of the
pressure with detuning is

d(−P/N )

dν
= − 1

N

∫
d3k

(2π )3

dω

π
b(ω)

dδ(k,ω)

dν

= − m

4πN

∫
d3k

(2π )3

dω

π
b(ω) Im T (k,ω) (23)

because the change of scattering phase shift with detuning
is dδ(k,ω)/dν = (m/4π ) Im T (k,ω), and using Eq. (21), we
obtain (22).

B. Transport

At N = ∞ the fermions are free: once a shear flow is
excited in the infinite system, it will continue forever, and the
dynamic shear viscosity is

η(ω) = πPδ(ω) . (24)

The Drude weight is proportional to the pressure, in accordance
with the viscosity sum rule [18,34,35]. At order 1/N the
fermions acquire a self-energy correction by scattering off
pairing fluctuations, so for large N the fermions are almost
free quasiparticles with lifetime O(N ) and an energy shift of
the quasiparticle dispersion Re� ∼ 1/N . In kinetic theory the
dynamic viscosity becomes

η(ω) = Pτ

1 + (ωτ )2
, (25)
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with the viscous scattering time τ = O(N ): the δ(ω) function
in (24) is broadened to a peak of width 1/N and height N .
Note that the high-frequency tail η ∼ C/15π

√
mω [18] is not

seen in kinetic theory [35].
In order to compute transport properties for large N it is

justified to use the quantum Boltzmann equation [4,36]: (i) the
fermions propagate as free particles between collisions, up to
subleading corrections, (ii) the collision integral Im � ∼ 1/N

contains only particle-particle scattering described by the
medium T matrix T (k,ω) [Eq. (10)] because particle-hole
scattering appears at higher orders, and (iii) in addition to
the collision (dynamic) term there is a shift of the dispersion
(kinetic) term Re� ∼ 1/N of the same order. However, it
is only a subleading correction to the leading real term
�xy/N ∼ N0 (see below) and can be neglected. Based on these
considerations we arrive at the Boltzmann equation [36,37]

∂f

∂t
+ ṙ · ∂f

∂r
+ ṗ · ∂f

∂p
= − 1

N
I [f ] (26)

for the distribution function f (p,r,t), where I [f ] is the
collision integral. For the shear viscosity we consider a velocity
field u = ux(y)x̂ with a small shear gradient ∂ux/∂y, and
the local equilibrium distribution f (p) = f 0(ε − u · p) with
ε = p2/2m. In the stationary limit the Boltzmann equation
(26) becomes [37]

−∂ux

∂y
vypx

∂f 0

∂ε
= − 1

N
I [f ] . (27)

The velocity gradient induces a momentum current density,

�xy = 2N

∫
d3p

(2π )3
vypxf (p) = −η

∂ux

∂y
, (28)

proportional to ∂ux/∂y, with the coefficient given by the
shear viscosity η. We choose a deviation from the equilibrium
distribution, f = f 0 + δf with δf = f 0(1 − f 0)ϕ(p) and
ϕ(p) = vypx/T , such that the momentum current density is

�xy = 2N

T

∫
d3p

(2π )3
v2

yp
2
xf

0
p

(
1 − f 0

p

) = P . (29)

This is equal to the pressure for free fermions (N = ∞)
at arbitrary temperature, as can be seen by integrating by
parts. We can now replace −∂ux/∂y = P/η in (27) and take
moments of the Boltzmann equation by integrating both sides
with 2N

∫
d3p/(2π )3 vypx . The left-hand side becomes

2NP

ηT

∫
d3p

(2π )3
v2

yp
2
xf

0
p

(
1 − f 0

p

) = P 2

η
, (30)

while the right-hand side yields the collision integral
[35,37,38]

Cxy = 2
∫

d3p

(2π )3
vypxI [δf ]

= 2

T

∫
d3p

(2π )3
vypx

∫
d3p1

(2π )3

∫
d�

dσ

d�
|v − v1|

× f 0
pf 0

p1

(
1 − f 0

p′
)(

1 − f 0
p′

1

)
× [ϕ(p) + ϕ(p1) − ϕ(p′) − ϕ(p′

1)], (31)

where fermions with incoming momenta p, p1 scatter into
outgoing momenta p′, p′

1. It will be convenient to express
these momenta in terms of the total momentum q = p + p1

and the relative momenta k = (p − p1)/2 [k′ = (p′ − p′
1)/2]

of the incoming (outgoing) particles, with |k′| = |k| by energy
conservation. The occupation numbers give the probability that
the incoming states are occupied and the outgoing states are
not. The differential cross section is given by the medium T

matrix,

dσ

d�
=

∣∣∣∣ m

4π
T (p + p1,ω = εp + εp1 − 2μ)

∣∣∣∣
2

. (32)

In the vacuum limit the center-of-mass scattering depends only
on the relative momentum k,

dσ

d�
= a2

1 + a2k2
(vacuum), (33)

but at finite density there is an additional dependence on
the total momentum q in the medium T matrix T (q,k) =
T (q,ω = 2εq/2 + 2εk − 2μ). In relative coordinates the shear
term in Eq. (31) is [39]

ϕ(p) + ϕ(p1) − ϕ(p′) − ϕ(p′
1) = kxky − k′

xk
′
y

mT/2
. (34)

The collision integral then reads

Cxy = 2

πmT

∫
d3q

(2π )3

∫
d3k

(2π )3
kkxky |T (q,k)|2f 0

q/2+kf
0
q/2−k

×
∫

d�k′

4π
(kxky − k′

xk
′
y)

(
1 − f 0

q/2+k′
)(

1 − f 0
q/2−k′

)
= 1

30π5mT

∫
dq q2

∫
dk k7|T (q,k)|2

×[
I 2

=0(q,k) − I 2


=2(q,k)
]
, (35)

with the 
-wave angular average I
(q,k) over the Fermi
distribution functions derived analytically in Appendix B [the
d-wave average I 2


=2(q,k) contributes only 0.2% to the integral
(35)]. Finally, only two integrals over the radial momenta q

and k have to be performed. In the dilute classical regime the
collision integral can be computed analytically,

Ccl
xy = 32

√
2z2T 2λ−3

T

15π
, (36)

with fugacity z = exp(βμ), and in the same limit the pressure
is Pcl = 2zT λ−3

T N . The viscosity is then given by [37]

ηcl = P 2
cl

Ccl
xy

= 15πλ−3
T N2

8
√

2
= 4.165 203 λ−3

T N2 . (37)

In the high-temperature quantum critical regime T > 0, μ = 0
the collision integral has to be computed with the full medium
T matrix T (q,ω) from Eq. (10), which is done numerically
and yields

Cxy = 0.935 683 T 2λ−3
T , (38)

and together with the pressure at leading order in 1/N , P =
NP (0) = 1.734 400 T λ−3

T N , we obtain in the quantum critical
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regime

η = P 2

Cxy

= 3.214 917 λ−3
T N2 . (39)

This value is about 20% lower than in the dilute classical limit
(37), which is mostly due to the reduced pressure, while the
effects of reduced density and increased medium scattering
almost cancel each other in Cxy . With the viscous relaxation
time τ = P/Cxy and the entropy density s = 5P/(2T ) we
obtain the universal viscosity to entropy ratio independent of
temperature,

η

s
= 2

5
T τ = 0.741 448

h̄N

kB

. (40)

A related computation of the viscosity using the medium
T matrix has been performed for large attractive interaction
kF a = −11.8, which found η = 2.3h̄n for μ = 0 at T/TF =
0.7 [38], slightly larger than our value (39) at N = 1. Note
that we have evaluated η using only a single moment of
the Boltzmann equation (27), but it has been shown that
corrections to η from higher moments are less than 2% [40].
A similar transport calculation using the medium T matrix in
two dimensions has been performed recently [41].

IV. LUTTINGER-WARD THEORY

The Luttinger-Ward theory provides a systematic way to
obtain self-consistent and conserving approximations, such
that the Green’s functions satisfy all symmetries and con-
servation laws of the model [42,43]. The Luttinger-Ward
functional �[Gσ ,GB] can be defined in terms of full fermionic
propagators Gσ and full bosonic propagators GB = −T .
The exact theory is given by an infinite set of irreducible
contributions to the � functional which cannot be evaluated in
practice, so typically, one chooses a subclass of diagrams. For
the unitary Fermi gas a very successful approximation is to use
ladder diagrams with full fermionic Green’s functions [25,26].
Then the full T matrix is given by an expression similar to (10)
but with full Green’s functions,

T −1(k,ωm) = 1

g0
+ T

∑
εn

∫
d3p

(2π )3
G↑(p,εn)

×G↓(k − p,ωm − εn) . (41)

Since we are interested in the high-temperature critical region,
we consider only the expressions valid in the normal phase.
The Luttinger-Ward theory then prescribes that the ↑ fermionic
self-energy is given by scattering a ↓ fermion off pair
fluctuations described by the full T matrix,

�↑(k,ωm) = T
∑
εn

∫
d3p

(2π )3
G↓(p,εn) T (k + p,ωm + εn)

(42)

and analogously for �↓. The Dyson equation determines the
full fermionic Green’s functions,

G−1
σ (k,ωm) = −iωm + εk − μσ − �σ (k,ωm) . (43)

This set of equations, (41)–(43), is solved self-consistently by
iteration [25,26]. The resulting Green’s functions in Matsubara

frequency can be continued analytically to obtain the spectral
functions in real frequency, which show substantial broadening
near Tc and additional excitations beyond a single quasiparticle
peak [44–46]. Similar features are observed in the spin-
polarized case [47–50].

The pressure P = −�/Ld is obtained from the grand
potential [26],

� = T
∑
ωm

∑
k

{∑
σ

ln Gσ (k,ωm) +
∑

σ

[
1 − G−1

0σ (k,ωm)

× Gσ (k,ωm)
] − ln T (k,ωm)

}
, (44)

evaluated using the self-consistent fermion propagator and the
full T matrix. We extract the high-temperature quantum critical
behavior from the existing thermodynamic data [26] interpo-
lated at μ = 0. Specifically, we make a cubic spline interpola-
tion of μ(T ) and find the solution of μ(T ) = 0 at θ = T/TF =
0.6165, which implies nλ3

T = 8/(3
√

π )θ−3/2 = 3.108. Fur-
thermore, we find P = 0.8630 nkBT , s = 2.177 nkB , and
C = 0.084 353 k4

F , which can be recast in terms of λT . These
values are summarized in Table I and are remarkably close to
the experimental values.

The shear viscosity η(T ,ω) has been computed in Luttinger-
Ward theory as a function of temperature and frequency [18]:
it has a Lorentzian peak at low frequency, followed by a
universal tail η(T ,ω) ∼ C(T )/15π

√
mω proportional to the

contact density. We make a cubic spline interpolation of
μ(η) = 0 and find the root at η(T ,ω = 0) = 1.5409 h̄n, which
yields η/s = 0.7077 h̄/kB . This result is slightly lower than the
large-N value in Eq. (40). We note that in this self-consistent
calculation the minimum of η/s ≈ 0.6h̄/kB is found at a
somewhat lower temperature T/TF ≈ 0.4 [18].

V. CONCLUSIONS

The unitary Fermi gas in the high-temperature quantum
critical region is a challenging many-body problem. It is
strongly interacting, with the density almost twice the non-
interacting value at μ = 0 [8], and has no small expansion
parameter. Still, our large-N results at the first nontrivial order
beyond the free Fermi gas are already remarkably close to
reliable experimental and theoretical results [8,9]. A main
result of the present paper is that this is true also for the
transport properties η/s once medium effects are included in
the quantum kinetic equation. A possible reason for this good
agreement is that large-N and Luttinger-Ward approximations
satisfy the Tan adiabatic and energy relations exactly, as
we show in Appendix A. In addition, Luttinger-Ward theory
exactly fulfills the scale invariance of the unitary Fermi gas
[18]. For a better comparison between calculations for the
homogeneous system and experiments it would be desirable
to have local measurements in the spirit of Ref. [8] also for
the contact and transport properties since the comparison of
trap averaged quantities is less sensitive to the details of the
temperature dependence. A promising step in this direction is
to selectively probe atoms near the center of the trap in order
to extract the contact density from the tail of the momentum
distribution [51].
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APPENDIX A: EXACT TAN RELATIONS IN
LUTTINGER-WARD THEORY

Consider the fermionic action (2): a small variation of
the quadratic term δG−1

0 will lead to a change in the grand
potential,

δ� = − tr
(
GδG−1

0

)
, (A1)

with the trace running over space, time, and possibly spin
indices. However, this equation is often violated if approxi-
mations are made for the full Green’s function G. A unique
feature of conserving approximations, which are derived from
a Luttinger-Ward functional �[G], is that Eq. (A1) holds
exactly even for approximate � and G [52].

For the strongly interacting Fermi gas it is convenient to
start from the Bose-Fermi action (6) and define a Luttinger-
Ward functional �[Gσ ,GB ] in terms of both fermionic and
bosonic Green’s functions [18,25,26]. Then a variation of the
microscopic parameters δG−1

0σ and/or δG−1
0B induces a change

of the grand potential [18],

δ� = − tr
(
GσδG−1

0σ

) + tr
(
GBδG−1

0B

)
. (A2)

Again, this exact equation continues to hold within conserving
approximations with full self-consistent propagators Gσ and
GB .

We will now show that the Tan adiabatic theorem [13],

d�/Ld

d(−1/a)
= C

4πm
, (A3)

and the Tan energy formula [12],

ε =
∑

σ

∫
d3k

(2π )3
εk

(
nkσ − C

k4

)
+ C

4πma
, (A4)

are consequences of (A2) and therefore hold not only in the
exact theory but in any conserving approximation, including
the self-consistent T -matrix approximation introduced in
Sec. IV. A variation of detuning changes only the bosonic
quadratic term

G−1
0B (k,ωm) = − 1

g0
= m

4π

(
− 1

a
+ 2�

π

)
(A5)

in the action (6),

∂G−1
0σ (k,ωm)

∂(−1/a)
= 0,

∂G−1
0B (k,ωm)

∂(−1/a)
= m

4π
. (A6)

The variation of the grand potential is then

d�

d(−1/a)
= − tr

(
Gσ

∂G−1
0σ

∂(−1/a)

)
+ tr

(
GB

∂G−1
0B

∂(−1/a)

)

= m

4π
tr(GB), (A7)

with the density of bosons expressed by the Tan contact density,

L−3 tr(GB) = T
∑
ωm

∫
d3k

(2π )3
GB(k,ωm)e+i0ωm

= GB(x = 0,τ = −0) = 〈φ∗φ〉 = C

m2
. (A8)

Inserting (A8) into (A7) directly yields the adiabatic theorem
(A3). In order to derive the energy formula we consider a
variation of mass,

ε = m−1 d�/L3

d(m−1)
. (A9)

Usually, this yields only the kinetic energy [cf. Eq. (61) in
[52]], but in our case the interaction term 4πa/m also depends
on mass, so (A9) is the full internal energy ε = 〈H 〉 including
the potential term. Specifically,

m−1 ∂G−1
0σ (k,ωm)

∂m−1
= εk, (A10)

m−1 ∂G−1
0B (k,ωm)

∂m−1
= m

4π

(
1

a
− 2�

π

)
, (A11)

and with the momentum distribution function
−T

∑
ωm

Gσ (k,ωm) = nkσ we obtain the internal energy
density,

ε = −m−1

L3
tr

(
Gσ

∂G−1
0σ

∂m−1

)
+ m−1

L3
tr

(
GB

∂G−1
0B

∂m−1

)

=
∑

σ

∫ � d3k

(2π )3
εknkσ + m

4π

(
1

a
− 2�

π

)
C

m2
, (A12)

where the k integral extends to the momentum cutoff �.
The regularization term �C/(2π2m) can be written as∑

σ

∫
d3k/(2π )3εkC/k4, and we arrive at the energy formula

(A4). In a similar way the Tan pressure relation has been
derived in the Luttinger-Ward theory by an infinitesimal scale
transformation on the grand potential [18]. This concludes
our proof that the Tan relations are fulfilled exactly in the
self-consistent T -matrix approximation.

APPENDIX B: QUANTUM KINETIC EQUATION

A useful feature of d = 3 dimensions is that the angular
averages of the distribution functions can be performed
analytically. One can write the product of Fermi functions
in (35) with |k′| = |k| as

f (εq/2+k)f (εq/2−k)[1 − f (εq/2+k′ )][1 − f (εq/2−k′ )]

= 1

4(cosh a + cosh bx)(cosh a + cosh bx ′)
, (B1)

with x = k̂ · q̂, x ′ = k̂′ · q̂, and a = (εq/2 + εk − μ)/T , b =
kq/(2mT ). The angular average over the solid angles of the
vectors q, k and k′ is then∫

d�q

4π

∫
d�k

4π

∫
d�k′

4π
kxky(kxky − k′

xk
′
y)ff [1 − f ]

×[1 − f ] = k4

15

[
I 2

=0(q,k) − I 2


=2(q,k)
]
, (B2)
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where we have defined the 
-wave angular average of the
distribution functions,

I
(q,k) = 1

4

∫ 1

−1
dx

P
(x)

cosh a + cosh bx
, (B3)

with Legendre polynomials P
(x). The s-wave average is given

by

I
=0(q,k) = 1

2b sinh a
ln

cosh[(a + b)/2]

cosh[(a − b)/2]
, (B4)

while the d-wave average can be expressed in terms of
polylogarithms Lis(z),

I
=2(q,k) = I
=0(q,k) − 1

4b3 sinh a
[6 Li3(−ea+b)

− 6 Li3(−eb−a) − 6b Li2(−ea+b)

+ 6b Li2(−eb−a) + a(a2 − 3ab + π2)]. (B5)

Thus, all angular integrations can be done analytically, and
only the two radial integrations over q and k in Eq. (35) need
to be performed numerically.
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