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Slow variations (quenches) of the magnetic field across the paramagnetic-ferromagnetic phase
transition of spin systems produce heat. In short-ranged systems the heat exhibits a universal
power-law scaling as a function of the quench rate, known as Kibble-Zurek (KZ) scaling. Attempts
to extend this hypothesis to long-range interacting systems have lead to seemingly contradicting
results. In this work we analyse slow quenches of the magnetic field in the Lipkin-Meshkov-Glick
model, which describes fully-connected quantum spins. We determine the quantum contribution
to the residual heat as a function of the quench rate by means of a Bogoliubov expansion about
the mean-field value and calculate the exact solution. For a quench which ends at the quantum
critical point we identify two regimes: the adiabatic limit for finite-size chains, where the scaling
is dominated by the Landau-Zener tunneling, and the KZ scaling. For a quench symmetric about
the critical point, instead, there is no KZ scaling. Here we identify three regimes depending on
the velocity of the ramp and on the size of the system: (i) the adiabatic limit for finite-size chains;
(ii) the opposite regime, namely, the thermodynamic limit, where the residual heat is independent
of the quench rate; and finally (iii) the intermediate regime, which is a crossover between the two
solutions. We argue that this behaviour is a property of all-connected spin systems. Our findings
agree with previous studies and identify the respective limits in which they hold.

The development of a comprehensive statistical me-
chanics description of out-of-equilibrium systems is a
quest of relevance across disciplines, including biology,
physics, computer science and financial markets [1]. A
specific, yet relevant question regards the connection be-
tween dynamical and equilibrium properties of quantum
critical systems [2]. This would contribute to a system-
atic understanding of the subtle interplay between time
evolution, interactions, quantum, and thermal fluctua-
tions. Moreover, it is important for the development of
quantum devices based on quantum annealing, where one
aims at preparing many-body quantum states with adi-
abatic transformations [3]. Theoretical and experimen-
tal studies of many-body critical dynamics after sudden
variations of control fields have identified features which
are reminiscent of the behavior of thermodynamic func-
tions at transition points [4, 5]. Yet, the relation between
dynamical scaling and equilibrium critical phenomena is
elusive and often only conjectured.

In this framework, it is believed that the thermody-
namics of slow quenches across quantum critical points
could be cast in terms of the so-called Kibble-Zurek (KZ)
scaling [6–9]. The KZ scaling predicts that the heat
produced by slow variations (quenches) of control fields
across critical points scales with the quench rate through
a power law determined by the equilibrium critical expo-
nents [10–12]. This theory has a strong predictive power
and has been experimentally verified for a large variety
of physical systems [13–27]. Its validity, though, seems to
be limited to systems where the coherence length diverges
with a power law at the critical point but is well defined
in the critical region. This hypothesis can be explained
in a nutshell as follows. Assume a system of interacting
spins in presence of a magnetic field h, as illustrated in
Fig. 1(a). Let the magnitude of the magnetic field h be
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FIG. 1. (color online) (a) The dynamics of a chain of spins
1/2 is analysed when the amplitude of the magnetic field h
is slowly varied across the paramagnetic-ferromagnetic tran-
sition. The lines connecting the sites illustrate that each spin
interacts with equal strength J with the rest of the chain. (b)
The energy gap ∆(h) between the ground and the first excited
state of the chain is displayed as a function of h = 1+δt (solid

line). The dashed line shows the rate γh = |ḣ|/h with which
the magnetic field is varied in time, such that at t = ±tf
γh = ∆(h). We determine the scaling of the heat generated
by the quench on γh and compare our predictions with the KZ
hypothesis, which relates this scaling to the universal critical
exponents at equilibrium.

slowly varied from the paramagnetic to the ferromagnetic
phase across the critical point hc. The transformation is
adiabatic when the rate of change γh = |ḣ|/h is larger
than the energy gap ∆(h), while in the other regime non-
adiabatic effects are expected. Figure 1(b) displays the
energy gap ∆(h) as a function of h: The gap vanishes
as ∆(h) ∼ |h − hc|zν at the critical point, with ν and z
the equilibrium critical exponents. At the times t = ±tf
the equality ∆(h) = γh holds. The KZ theory assumes
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that in the time window −tf < t < tf the dynamics are
frozen and estimates the heat produced by the quench by
the scaling Q ∼ 1/ξzf , where ξf ∼ 1/|h(tf ) − hc|ν is the
average size of the domains formed at the time t = −tf
in the adiabatic approximation. This yields the scaling
Q ∼ |h(tf )−hc|zν . For a quench where the magnetic field
varies with time as h = hc + δt (δ > 0), then [9–11, 28]

Q ∼ δzν/(1+zν) . (1)

Although this separation between adiabatic and “im-
pulse regime” may seem oversimplified, it describes the
behaviour found in microcanonical systems, where the
relaxation time is determined by the instantaneous gap
between the ground and the first excited state [29]. The
validity of the KZ scaling (1) has been extensively verified
in integrable fermionic systems [28, 30–33]. Even at finite
temperatures, where one has relevant corrections due to
scattering of defects, the KZ scaling is a good working hy-
pothesis [34, 35]. A conceptual problem arises, instead,
when one applies the KZ scaling to critical systems where
the coherence length is ill-defined [3, 36]. This is the case
of systems with strong-long-range interactions, where the
two-body interaction potential decays as a power law of
the distance r between its microscopic components such
as V (r) ∝ r−α, with 0 ≤ α < d and d the spatial dimen-
sion. In this case the energy is non-additive [36–38] and
the scaling Q ∼ 1/ξzf becomes meaningless.

In this work we consider a linear quench of the
magnetic field across the paramagnetic–to–ferromagnetic
transition in the Lipkin-Meshkov-Glick (LMG) model
[39]. The LMG describes a one dimensional chain of N
spins 1/2 and constant all-to-all ferromagnetic interac-
tions in a transverse magnetic field h. The system is
illustrated in Fig. 1(a) and it can be simulated by chains
of trapped ions [40, 41]. Its Hamiltonian reads

H = −J

 1

N

∑
ij

σxi σ
x
j + h(t)

∑
i

σzi

 , (2)

where σµi are the Pauli matrices of spin i and the pre-
factor 1/N in front of the interaction term warrants that
the energy is extensive [36]. The parameter J > 0 scales
the energy in units of the interaction strength. From
now on energy and time are in units of J and J−1, re-
spectively.

When the magnetic field h is constant in time, in the
thermodynamic limit the LMG model displays a quan-
tum phase transition (QPT) between a symmetric state
fully polarized along x and a symmetry–broken phase
with two degenerate ground states of opposite macro-
scopic polarization along the z direction. The quantum
critical point (QCP) is at hc = 1, the universal behavior
is the same as the Dicke model [42, 43] and is given by
a mean-field theory with critical exponents z = 1/3 and
νz = 1/2 [44–46].

The dynamical protocol we consider is a continuous
ramp of the control field h(t) = 1+ δt, where δ > 0 is the

quench rate and t ∈ [−t0, t0], such that δt0 = 1, namely,
the quench starts deep in the paramagnetic phase, crosses
the QCP at t = 0 and finally ends far into the symme-
try broken phase. Using the critical exponents ν and z
in Eq. (1) one would expect the scaling Q ∼ δ1/3 after
the quench. This scaling was found using an heuristic
application of adiabatic perturbation theory to the Rabi
model for a quench to the critical point (t ∈ [−t0, 0]),
after showing that the Rabi model can be mapped to the
Dicke model [47]. Nevertheless it does seem not agree
with the numerical studies reported in Ref. [48, 49] for
symmetric quenches (t ∈ [−t0, t0]). Moreover, it is in-
consistent with the calculation performed in Ref. [50] for
a system which is equivalent to the quantum dynamics
of the LMG in the strict thermodynamic limit N → ∞.
The works we have just mentioned seem to find mutually
contradicting results.

We now provide the solution of the Schrödinger equa-
tion governed by Hamiltonian (2) for h(t) = 1+δt, which
is valid for slow quenches and allows us to determine
the spins’ wave function during and after the quench.
Our model allows us to show that the predictions of
Refs. [47–50] are consistent with our solution in different
regimes. These regimes are identified by analysing the
scaling properties at the critical point and are due to the
long-range nature of the interactions.

In order to solve the Schrödinger equation we first
rewrite the Hamiltonian (2) introducing a single col-
lective spin of length N , namely Sµ =

∑
i σ

µ
i /2 and

S± = Sx ± i Sy [51]:

H = − 1

2N
(S2 − S2

z −N/2)− 2h(t)Sz −
1

2N
(S2

+ + S2
−) .

(3)

We then perform a 1/N expansion around the ground-
state of the mean-field model [52, 53], which is assumed
to adiabatically follow the quench. The expansion is
obtained by rotating the spin operators to align them
with the semiclassical magnetization and then by apply-
ing an Holstein-Primakoff transformation up to order 1

[52]: Sz = N/2− a†a, S+ = S†− =
√
Na, where the oper-

ators a and a† satisfy the bosonic commutation relation
[a, a†] = 1. The resulting Hamiltonian is quadratic and
in diagonal form reads

H0 = N e0(h) + δe(h) + ∆(h) a†a , (4)

where e0 is the thermodynamic mean field energy den-
sity, δe is a constant mean field shift, while the quantum
fluctuations are described by the quadratic harmonic os-
cillator term whose frequency is the gap ∆ [51]. We fo-
cus on the evolution of the quadratic term and observe
that the quantum part of Hamiltonian (4) is obtained at
leading order in 1/N expansion and is thus strictly valid
in the thermodynamic limit. Nevertheless, by means of
the continuous unitary transformation approach [54] the
LMG Hamiltonian can be recast into the form (4) even
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for finite N [51, 55]. Then, the gap reads [51, 55]

∆ =

{
2
√
h(h− 1) + F(N,h) h > 1 ,

2
√

(1− h2) + F(N,h) h < 1 ,
(5)

where for large N the function F(N,h) ∝ 1/N for h 6= 1
while at the critical point the gap scales as ∆ ∝ 1/N1/3

[51, 55]. The dynamics governed by Hamiltonian (4) cor-
responds now to the one of a single harmonic oscillator
with the time-dependent frequency Ω(t) = ∆(h(t)). It is
exactly solved in terms of the dynamical basis

ψn(x, t) =

(
e−i4φ(t)

2πξ2(t)

) 1
4 e−Ω̃(t) x2

2√
2nn!

Hn

(
x√

2ξ(t)

)
. (6)

Here, Hn is the Hermite polynomial of degree n, φ(t)

is a phase factor, Ω̃(t) = 1/2ξ2 + iξ̇/ξ is the effective
frequency and ξ(t) is a time dependent scale factor which
obeys the Ermakov-Milne equation [56–58]

ξ̈(t) + Ω(t)2ξ(t) =
1

4ξ(t)3
. (7)

By integrating Eq. (7) we exactly solve the quantum dy-
namics.

We consider the time interval [−t0, t0] with t0 = 1/δ.
The time evolution of the initial state ψ0(x,−t0), which
coincides with the ground state of the instantaneous
Hamiltonian H(−t0) at h = 0, is to good approxima-
tion the wave function ψ0(x, t), Eq. (6). The evolution
is adiabatic when ψ0(x, t) coincides with the instanta-
neous ground state of Hamiltonian H(t). This corre-
sponds to the fidelity f(t) = 1, where f(t) = |c0(t)|2
and cn(t) =

∫
ψad∗
n (x, t)ψ0(x, t)dx is the overlap inte-

gral between ψ0(x, t) and the eigenfunctions ψad
n (x, t) of

the adiabatic basis of the oscillator with frequency Ω(t).
Specifically, ψad

n (x, t) are the solutions of Eq. (6) after

setting ξ̇ = ξ̈ = 0 in Eq. (7) and thus ξ(t)2 = 1/(
√

2Ω(t))
in Eq. (6). The explicit expression for the overlap inte-
gral is derived in the Supplementary Material (S.M.) and
Ref. [59] 1. The residual energy (heat) at time t > −t0 is
proportional to the number of the oscillator’s excitations
nexc(t), namely, Q(t) = ~Ω(t)nexc(t), with

nexc(t) =

∞∑
n=1

n|cn(t)|2 . (8)

The results we present in Fig. 2 are obtained by numer-
ically solving Eq. (7).

In order to verify that our model delivers a reliable de-
scription of the LMG model, we compare the predictions
of Eqs. (6)-(7) with the results obtained in Ref. [49] by
numerically integrating the dynamics of 29 − 211 spins
with Hamiltonian (2). Figure 2(a) displays the time

1 See the supplementary materials

evolution of the fidelity f(t) and of the heat Q(t) =
~Ω(t)nexc(t) obtained from Eqs. (6)-(7) and for the pa-
rameters of Ref. [49]. The curves in Fig. 2(a) reproduce
the ones numerically found in Ref. [49] confirming that
our approach, based on integrating the Schrödinger equa-
tion of a single time-dependent harmonic oscillator, re-
liably describes the behaviour of slow quenches in the
LMG model. As in that work, we observe the collapse of
the fidelity at and after the critical point. For the choice
of the parameters the dynamics are close to adiabatic
with fidelity f > 80%. In Ref. [49], though, no numerical
evidence of KZ scaling was found. It was there conjec-
tured that this may be due to the finite-size universal
functions at the critical point. In particular, they intro-
duced the parameter

Λ = Nδ , (9)

which was identified on the basis of scaling properties
of transition amplitudes in adiabatic perturbation the-
ory. The parameter Λ plays indeed an important role in
the dynamics of our model and has a specific physical
meaning, as we argue in the following using scaling argu-
ments. For this purpose, we approximate the oscillator
frequency with Ω(t)2 = −4δt + 1/N2zeff for t < 0 and
Ω(t)2 = 8δt + 1/N2zeff for t ≥ 0, where the expression
is reported apart from scalars which are intensive and
not universal. We numerically verified that the remain-
ing terms are irrelevant, since they become sub-leading
in the critical t ' 0 stage of the dynamics. The over-
all effect of finite-size fluctuations is now summarized in
an effective finite-size scaling exponent zeff , such that
1/3 < zeff < 1. The full numerical solution of Eq. (7)
indicates that finite-size corrections only become impor-
tant at t ' 0, therefore in this discussion we assume
zeff = 1/3. We identify the scaling relations by perform-

ing the transformation ξ = δ−1/6ξ̃ and t = δ−1/3s (note
that s is the same rescaled time variable as in Fig. 2(c)
of Ref. [49] apart from the factor Λ2/3). This transfor-
mation leads to the Schrödinger equation governed by
the Hamiltonian of a quantum harmonic oscillator with
effective frequency Ω(s), such that

Ω(s)2 =

{
−4s+ Λ−2/3 s < 0 ,

8s+ Λ−2/3 s > 0 .
(10)

Remarkably, Λ is now the sole physical parameter that
depends on the quench rate δ and is the sole scale which
determines the dynamical behaviour at the critical point.
We can now identify three regimes: (i) the limit Λ � 1,
where the quench rate is much smaller than the gap and
thus the dynamics are expected to be adiabatic except
for small corrections. This regime is expected to provide
the Landau-Zener scaling, where nexc ∼ δ2 and the cor-
rections to adiabaticity scale with Λ2 [10, 28, 31, 33]. (ii)
In the limit Λ � 1, on the other hand, the system ap-
proaches the thermodynamic limit where the dynamics
are independent of Λ to leading order in an expansion
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FIG. 2. (color online) (a) Heat generated by the quench, Q(t) = ~Ω(t)nexc(t), in units of J , as a function of t, in units
of 1/(Jδ). The heat is determined from Eq. (8) using Eq. (6)-(7) and for different values of Λ (see legend), which are the
same as in Ref. [49]. The solid (dashed) lines correspond to N = 29 (N = 212). The inset reports the corresponding fidelity
f(t). Larger values of Λ are reported in panel (b), where the average number of excitation nexc(t) and the fidelity f(t) are

reported as a function of the rescaled time s = δ1/3t for N = 212 and quench rate δ = 4 × 10−5, 10−3, 1.2, corresponding to
Λ = 2×10−1, 6, 6×103, respectively. (c) The number of excitations at the end of the quench, nexc(t0), is reported as a function
of δ for N = 500; the horizontal dashed line indicates the constant value nexc(t0) = 0.35 of the thermodynamic limit. The inset
displays nexc(t0) in logarithmic scale: the dashed line indicates the region of the LZ scaling δ2, the dotted line the region of

the KZ scaling δ1/3. The behaviour for a different system size N ′ is obtained by rescaling the δ-axis by the factor N ′/N .

in 1/Λ. In this limit, thus, the dynamics, and in partic-
ular the excitations and the fidelity, are expected to be
independent of δ. This result is consistent with the pre-
diction of Ref. [50], which considered a slow quench of
the frequency of a single harmonic oscillator, albeit with
a different power law in time. The non-analytic regime
is expected for intermediate values of Λ.

Figure 2(b) displays the time evolution of f(t) and
nexc(t) by integrating Eqs. (6)-(7) for values of Λ in
the three different regimes. The value of nexc(t0) that we
extract from these calculations is reported in Fig. 2(c)
as a function of δ for N constant. Here we observe
the Landau-Zener scaling nexc ∼ δ2 for δ � 1/N , in
agreement with our conjecture based on scaling argu-
ments. For δ � 1/N the excitation number tends to the
constant value predicted by the thermodynamic limit,
nex,∞ ≈ 0.35 for the linear quench in the LMG model.
Even though in the thermodynamic limit there is no
power law scaling, the final number of defects nexc(t0)
still depends on the scaling of the gap at s → 0. It is
therefore a universal value, and hints towards a close re-
lation between the out-of-equilibrium dynamics and the
equilibrium universal properties. Since the slope of the
curve nexc as a function of δ varies continuously, it con-
tains also an interval of values δ with scaling δ1/3. This
scaling, which would agree with the KZ prediction, is
clearly in a crossover regime and is not found in the ther-
modynamic limit. We find it instead for a semi-ramp
which ends (starts) at the QCP. As we show in the S.M.

2, away from the adiabatic regime our model delivers the
KZ scaling δ1/3 in the thermodynamic limit. This is in
agreement with the predictions of Refs. [28, 47].

In conclusion, we have shown that the slow quench dy-
namics presents different qualitative behaviours depend-
ing on whether the protocol ends at the critical point
(half ramp) or deep in the other phase (full ramp). While
the half ramp exhibits KZ scaling in the thermodynamic
limit, for the full ramp the residual heat is constant and
independent of δ. These predictions apply also to the
Dicke model, which belongs to the same universality class
as the LMG model and whose finite-size corrections to
the gap have the same scaling properties with N [60]. We
remark that our predictions concern the quantum contri-
bution to the heat when the mean-field spin follows adia-
batically the magnetic field and thus hold when the non-
adiabatic corrections of the mean-field energy are smaller
than the quantum heat. Assuming that the semiclassical
evolution is analytical in δ and no work is done on the
system in a cyclic process in the adiabatic limit δ → 0,
the semiclassical contribution to the specific heat would
scale as Nδ2 [61]. The KZ scaling could then already be
observed for δ . N−2/5, while the Landau-Zener scal-
ing just depends on model-specific, non-universal param-
eters. These observations also suggest that the scaling
Nδ2 found in Ref. [48] for the slower quenches is dom-
inated by the mean-field dynamics, where the quantum
contribution to the heat is not yet visible.

2 See the supplementary materials
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Our predictions could be experimentally verified in
chains of hundred ions with tailored all-to-all interactions
[5]. The regime corresponding to Λ� 1, where the quan-
tum residual energy tends to a constant, is going to be
a very small correction to the mean-field scaling, yet it
could be observed in simple systems such as the Rabi
model [47]. Our study, moreover, provides insight into
the behavior observed for quenches in systems of ultra-
cold atoms in cavity quantum electrodynamics [62, 63],
where similar results as the ones shown in Fig. 2(a) were
reported for the order parameter of the Dicke phase tran-
sition. A systematic comparison with these works re-
quires the development of a model including noise and
dissipation [64, 65]. These are essential features of cav-
ity quantum electrodynamics setups [66] and will be the

subject of future work.
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Appendix A: Exact solution and Defect density

Before outlining the solution strategy for our problem a comment is in order here. The dynamics of each oscillator
can be solved exactly [67–69] and any dynamical state ψ(x, t) in the representation of the coordinate x can be expressed
as

ψ(x, t) =
∑

αnψn(x, t) , (A1)

where αn are time independent constants and the dynamical eigenstates are given by

ψn(x, t) =
1√

2nn!

(
1

2πξ2(t)

) 1
4

e−Ω̃(t) x2

2

Hn

(
x√

2ξ(t)

)
e−i(n+ 1

2 )λ(t) . (A2)

The effective frequency Ω̃(t) can be expressed in terms of the effective width ξ(t) as

Ω̃(t) = −i ξ̇(t)
ξ(t)

+
1

2ξ2(t)
, (A3)

while λ(t) is the total phase accumulated at time t and reads

λ(t) =

∫ t dt′

2ξ2(t′)
. (A4)

The exact time evolution of each harmonic oscillator can be then fully described by a single complex parameter, i.e.
the effective width ξ(t), which satisfies the Ermakov–Milne equation:

ξ̈(t) + Ω(t)2ξ(t) =
1

4ξ3(t)
. (A5)

If the initial state is a pure state of the basis (A2), say, the ground state, then all the coefficients αn of Eq. (A1) vanish
except for the coefficient α0. This holds also at all later times, and thus in the exact dynamical basis (A2) no excited
states will be generated. However at each time t > t0 the dynamical pure state ψ0(x, t) will, in general, be different
from the instantaneous equilibrium ground state since the effective width will not coincide with the equilibrium basis
ψad
n (x, t), whose wave functions read

ψnad(x, t) =
1√

2nn!

(
Ω(t)

π

) 1
4

e−Ω(t) x2

2 Hn

(
x
√

Ω(t)
)
. (A6)
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Therefore, if we decompose any pure state ψn(x, t) of the dynamical basis using the instantaneous equilibrium basis,
it will generally contain a number of equilibrium excitations. Then, assuming to start the evolution in the equilibrium
ground state at t = −t0, the number of excitations in the instantaneous equilibrium basis at time t is given by [59]

nexc(t) =
∑
n∈2N

n|cn(t)|2 (A7)

where the coefficients cn(t) are the transition amplitudes between the dynamical state and the instantaneous equilib-
rium basis

cn(t) =

∫ +∞

−∞
dxψ∗n(x, t)ψ0(x, t) . (A8)

The definition (A7) can be calculated by choosing different basis sets for the evaluation of transition amplitudes rather
than the eigenstates given in (A6) [59]. However the basis of the eigenstates in (A6) is the most natural choice in the
context of the Kibble-Zurek mechanism.

Using definition (A7) together with Eq. (A8) one can derive an explicit expression for the excitation number nexc(t).
For this purpose we evaluate the transition amplitudes

cn(t) =

∫ +∞

−∞
dxψad∗

n (x, t)ψ0(x, t) =
1√

2nn!π

(
Ω(t)

2ξ2(t)

) 1
4
∫ +∞

−∞
dxe−(Ω(t)+Ω̃(t)) x2

2 Hn

(√
Ω(t)x

)
. (A9)

We perform a change of variable and cast the integral as follows:∫ +∞

−∞
dxe−(Ω(t)+Ω̃(t))x2

Hn

(√
˜ω(t)x

)
= (Ω(t))−

1
2

∫ +∞

−∞
e
−
(

Ω̃(t)
Ω(t)

+1
)

s2

2 Hn (s) ds .

We then employ the generating function for Hermite polynomials in the integral:∫ +∞

−∞
e
−
(

Ω̃(t)
Ω(t)

+1
)

s2

2 Hn (s) ds = lim
t→0

dn

dtn

∫ +∞

−∞
e
−
(

Ω̃(t)
Ω(t)

+1
)

s2

2 e2st−t2ds =

√√√√ 2π(
Ω̃(t)
Ω(t) + 1

) lim
t→0

dn

dtn
e
−t2 (Ω̃(t)−Ω(t))

(Ω(t)+Ω̃(t))

=


√

2π(
Ω̃(t)
Ω(t)

+1
) n!

n
2 !

(
Ω̃(t)−Ω(t)

Ω̃(t)+Ω(t)

)n/2
n ∈ 2Z

0 n ∈ 2Z + 1

(A10)

Thus the probability of having n excitations in the evolved state at the time t is given by

|cn0(t)|2 =
(n− 1)!!

n!!

√
2Ω(t)

ξ(t)
∣∣∣Ω̃(t) + Ω(t)

∣∣∣
∣∣∣∣∣ Ω̃(t)− Ω(t)

Ω̃(t) + Ω(t)

∣∣∣∣∣
n

. (A11)

We insert this expression in Eq. (A7) and obtain the number of excitations at time t:

nexc(t) =
ξ2

2Ω(t)

( 1

2ξ2
− Ω(t)

)2

+

(
ξ̇

ξ

)2
 . (A12)

From this expression we can also determine the ground state fidelity f(t) = |c0(t)|2, which reads:

f(t) = |c00(t)|2 =
2Ω(t)

ξ(t)

( 1

2ξ2
− Ω(t)

)2

+

(
ξ̇

ξ

)2
−1/2

. (A13)

Appendix B: Slow quench dynamics starting at the critical point

We here consider the semi ramp case, when the magnetic field is continuously quenched from the critical point far
into the symmetry broken phase. The dynamical protocol is still a linear ramp of the magnetic field h = 1 + δt and
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the evolution begins at criticality (t = 0) with the system lying in its instantaneous ground state. For t > 0 the
harmonic oscillator frequency varies as

Ω(t)2 = δt+ 1/N2/3 (B1)

where, once again, we discarded time dependent finite size corrections and sub-leading terms which do not modify
the universal behavior as well as unimportant numerical factors.

It is convenient to employ the rescaling

ξ = δ−1/6ξ̃ t = δ−1/3s (B2)

already introduced in the main text. The Ermakov-Milne equation now reads

ξ̈(s) + Ω(s)2ξ(t) =
1

4ξ3(s)
. (B3)

with the rescaled frequency given by

Ω̃(s)2 = s+ Λ−2/3 (B4)

where Λ = (δ N). From now one we will discard the s̃uperscript over rescaled quantities, since they are the only ones
appearing in the following calculations. The solution of latter equation can be constructed from the motion of the
associated classical Harmonic oscillator

ẍ(s) + Ω(s)2x(s) = 0. (B5)

This equation admits the two independent solutions

x1(s) = Ai
(
−Ω2

)
(B6)

x2(s) = Bi
(
−Ω2

)
(B7)

where we omitted the s dependence on Ω. The functions Ai(x) and Bi(x) are Airy functions. The two functions x1(s)
and x2(s) have the constant and finite Wronskian

Wr(x1, x2) =
1

π
. (B8)

It is convenient to rewrite the solutions of equation (B3) as a pair of complex conjugate solutions w and w∗ with

w = ax1(s) + bx2(s) (B9)

where a ∈ C and b ∈ R are constants. Since Eq. (B5) is homogeneous one can rescale the two solution by a constant
factor, then, without loss of generality, one can impose b = 1. The function

ξ(s) =
√
ww∗ (B10)

is solution of the Ermakov-Milne equation (A5) if

Wr(w,w∗) = 2iIm(a)Wr(x1, x2) = i, (B11)

which univocally fixes the imaginary part of a. In order to completely define the solution solution one should find the
appropriate value of Re(b) which satisfy the boundary condition

1

2ξ(0)2
= Λ−1/3 (B12)

By inverting this expression one readily obtains

2ξ(0)2 = Λ1/3 . (B13)

When the thermodynamic limit is taken first then the right-hand side (r.h.s.) of this expression diverges. We then
consider the limit when Λ−2/3 can be neglected in the argument of the Airy functions but the r.h.s. of Eq. (B13)
remains finite. We obtain the expression

Re(a) =
x2(0)

x1(0)
±
√

Λ1/3

2x1(0)
+ Im(a) . (B14)
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Therefore the quantity Re(a) diverges in the thermodynamic limit for finite values of the ramp velocity δ. Employing
the asymptotic expression for the Airy functions and neglecting oscillatory terms as it was done in [70], the asymptotic
time limit of the scale parameter ξ is

lim
s→∞

ξ(s)2 =
1 + |a|2 + 2Re(a)

πΩ(s)
(B15)

which, once inserted into Eq. (A12), leads to the relation:

nexc(t) ∝ Re(a)2 , (B16)

which scales as Λ1/3. This expression is equivalent to the one obtained in [70] for a gapless system and suggests a KZ
scaling for large sizes.

Appendix C: Slow quench dynamics ending at the critical point

Let us now consider the case of a slow quench starting in the paramagnetic phase and ending at the critical point.
The magnetic field is given by the expression h = hc + δ t, the dynamics starts at t = −t0 in the paramagnetic phase.
The magnetic field slowly approaches the critical point at t = 0. The solution to Eq. (B3) is still given by Eqs. (B9)
and (B10) but with the boundary conditions

lim
s→−∞

1

2ξ(s)2
= Ω(s), (C1)

lim
s→−∞

ξ̇(s) = 0. (C2)

These conditions are consistent with the system being in the adiabatic ground state at large |t|. In the s→∞ limit
Ω2 diverges and one must use the asymptotic expansion for the Airy functions

lim
s→−∞

x1(s) ≈ cos
(

2
3Ω3 − π

4

)
√
πΩ1/4

, (C3)

lim
s→−∞

x2(s) ≈ sin
(

2
3Ω3 − π

4

)
√
πΩ1/4

. (C4)

In order to fulfill conditions (C1), the oscillatory terms in the expression for ξ must cancel for large s, leading to

Re(a) = 0, (C5)

Im(a) = b. (C6)

Moreover one has to impose the condition

Wr(w,w∗) = 2iIm(a)bWr(x1, x2) = i, (C7)

which fully determines the coefficients in Eq. (B9)

Im(a) = b =

√
π

2
. (C8)

The resulting expression for the scale factor is

ξ(s)2 =
π

2
Ai
(
−Ω(s)2

)2
+
π

2
Bi
(
−Ω(s)2

)2
(C9)

the number of defects is given by the formula

nexc(s) =
ξ(s)2

2Ω(s)

( 1

2ξ(s)2
− Ω(s)

)2

+

(
˙ξ(s)

ξ(s)

)2
 (C10)
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which is identical to Eq. (A12), since this quantity is invariant under the rescaling in Eq. (B2). The number of defects
at the final point of the ramp (which is the critical point) is obtained by evaluating Eq. (C10) at s = 0. At this
instant the rescaled frequency is given by its finite size correction Ω(0) = Λ−1/3, while the scale factor ξ reads,

ξ(0)2 =
π

2
Ai
(
−Λ−2/3

)2

+
π

2
Bi
(
−Λ−2/3

)2

. (C11)

Let us consider the thermodynamic limit first Λ → ∞. In this case the argument of the Airy functions goes to zero
and the terms in the square brackets of Eq. (C10) read

1

4ξ(0)4
=

38/3Γ(2/3)4

16π2
(C12)(

ξ̇(0)

ξ(0)

)
=

32/3Γ(2/3)2

Γ(1/3)2
(C13)

which inserted into the defect density in Eq. (C10) lead to the result

nexc(0) =
πΛ1/3

32/3Γ(1/3)2
(C14)

where we restricted to the leading term in the Λ → ∞ limit. Therefore the result for the number of excitations
diverges in the thermodynamic limit with a power N1/3. However the residual heat is finite since it is obtained by
multiplying the divergent defect density by the vanishing oscillator frequency Q(0) = ∆(0)nexc(0) leading to

Q =
π δ1/3

32/3Γ(1/3)2
(C15)

which agrees with the KZ scaling of Ref. [47]. For a finite size system N < ∞ the slow ramp limit δ → 0 coincides
with the Λ → 0 limit of Eq. (C10) evaluated at s = 0. The leading term in this case is generated by the velocity
correction to the effective frequency

lim
Λ→0

ξ̇(0)

ξ(0)
= − 5

24
Λ2/3, (C16)

which substituted into Eq. (C10) evaluated at s = 0 gives

nexc(0) =
25

2304
Λ2 ∝ δ2 (C17)

which leads to the expected adiabatic correction for the residual heat Q ∝ δ2 in a finite size system [61, 70].
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Arecchi, Phys. Rev. Lett. 83, 5210 (1999).

[28] A. Polkovnikov, Phys. Rev. B 72, 161201(R) (2005).
[29] P. Silvi, G. Morigi, T. Calarco, and S. Montangero, Phys.

Rev. Lett. 116, 225701 (2016).
[30] J. Dziarmaga, Phys. Rev. Lett. 95, 245701 (2005).
[31] B. Damski, Phys. Rev. Lett. 95, 035701 (2005).
[32] A. Dutta and A. Dutta, Phys. Rev. B 96, 125113 (2017).
[33] C. De Grandi and A. Polkovnikov, Springer Lect. Notes

Phys. 802, 75 (2010).
[34] G. Biroli, L. F. Cugliandolo, and A. Sicilia, Phys. Rev.

E 81, 050101 (2010).
[35] M. Tomka, L. Campos Venuti, and P. Zanardi, Phys.

Rev. A 97, 032121 (2018).
[36] A. Campa, T. Dauxois, D. Fanelli, and S. Ruffo, Physics

of Long-Range Interacting Systems (Oxford University
Press, 2014).

[37] M. Kastner, Phys. Rev. Lett. 104, 240403 (2010).
[38] M. Kastner, Phys. Rev. Lett. 106, 130601 (2011).
[39] H. J. Lipkin, N. Meshkov, and A. J. Glick, Nucl. Phys.

62, 188 (1965).
[40] P. Richerme, Z.-X. Gong, A. Lee, C. Senko, J. Smith,

M. Foss-Feig, S. Michalakis, A. V. Gorshkov, and
C. Monroe, Nature 511, 198 (2014).

[41] P. Jurcevic, B. P. Lanyon, P. Hauke, C. Hempel, P. Zoller,
R. Blatt, and C. F. Roos, Nature 511, 202 (2014).

[42] R. H. Dicke, Phys. Rev. 93, 99 (1954).
[43] K. Hepp and E. H. Lieb, Ann. Phys. 76, 360 (1973).
[44] R. Botet, R. Jullien, and P. Pfeuty, Phys. Rev. Lett. 49,

478 (1982).
[45] R. Botet and R. Jullien, Phys. Rev. B 28, 3955 (1983).
[46] A. Das, K. Sengupta, D. Sen, and B. K. Chakrabarti,

Phys. Rev. B 74, 144423 (2006).
[47] M. J. Hwang, R. Puebla, and M. B. Plenio, Phys. Rev.

Lett. 115, 180404 (2015).
[48] T. Caneva, R. Fazio, and G. E. Santoro, Phys. Rev. B

78, 104426 (2008).
[49] O. L. Acevedo, L. Quiroga, F. J. Rodŕıguez, and N. F.
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