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We propose to observe many-body localization in cold atomic gases by realizing a Bose-Hubbard chain
with binary disorder and studying its nonequilibrium dynamics. In particular, we show that measuring the
difference in occupation between even and odd sites, starting from a prepared density-wave state, provides
clear signatures of localization. Furthermore, we confirm as hallmarks of the many-body localized phase a
logarithmic increase of the entanglement entropy in time and Poissonian level statistics. Our numerical
density-matrix renormalization group calculations for infinite system size are based on a purification
approach; this allows us to perform the disorder average exactly, thus producing data without any statistical
noise and with maximal simulation times of up to a factor 10 longer than in the clean case.

DOI: 10.1103/PhysRevLett.113.217201

Cold atomic gases with or without optical lattices are an
ideal platform to realize model Hamiltonians of strongly
correlated quantum systems by offering an unprecedented
control over the microscopic parameters [1]. Among the
many achievements are the observation of the superfluid-
to-Mott-insulator transition for a Bose gas held in a three-
dimensional optical lattice [2], the realization of the
Tonks-Girardeau regime in a quasi-one-dimensional (1D)
Bose gas [3], and the simulation of the nonequilibrium
dynamics in an almost-integrable one-dimensional quantum
system [4].

While these experiments have all been performed on very
clean systems, there is also a tremendous interest in building
quantum simulators for models with disorder. This interest is
sparked by the unavoidable presence of disorder and impu-
rities in real materials that can lead to completely new
physics, such as the Kondo effect and Anderson localization
[5]. For cold atomic gases there have been several different
approaches to realize disorder. The first experiments have
employed quasiperiodic lattices or laser speckles to study
Anderson localization in effectively noninteracting Bose
condensates in one and three dimensions [6]. As an alter-
native it has been suggested to use the repulsive interactions
between two different species of atoms—with one being
effectively immobile—to obtain a binary disorder potential
for the mobile species on the scale of the lattice constant
[7,8]. Experimentally, the localization of bosonic atoms by
fermionic impurities has been demonstrated [9].

Theoretically, it has been suggested by Anderson [5] thata
localized phase might be stable against small interactions, a
result which has been supported by a recent study [10]
leading to a renewed interest in many-body localization
(MBL). In interacting spin chains with a random magnetic
field drawn from a box distribution, in particular, a transition
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is found between a delocalized, ergodic phase at weak
disorder and a many-body localized phase at strong disorder
[11-13]. In a MBL phase, where all many-body eigenstates
are localized, a simple picture emerges: In this case one can
separate a chain [14] into segments of length £ > £, where &
is the localization length. The many-body eigenstates of the
whole chain are then, to a good approximation, product states
of the eigenstates in each segment. Importantly, projectors
onto the eigenstates of a segment are local conserved charges
with finite support and have to be included in a generalized
Gibbs ensemble [15]. This constrains the dynamics and
prevents thermalization in any subsystem [16,17]. Residual
interactions between segments make these charges quasilo-
cal; i.e., contributions to the conserved charge with spatial
support on any length scale r exist, but are suppressed as
exp(—r). The conserved charges thus remain relevant for
transport and nonequilibrium dynamics [18]. The residual
long-range interactions are also responsible for the observed
growth of the entanglement entropy, S ~ In ¢, with time ¢ if the
system is prepared in a product state and evolves in time
[16,19,20]. This is one of the hallmarks of a MBL phase, in
contrast to the linear growth in systems without disorder [21]
and the extremely slow increase, S ~ In In ¢, found for a non-
interacting model with bond disorder [22]. Experimentally,
however, this new state of matter has not yet been detected,
and the question of which kind of system and which local
observables are appropriate for this purpose is considered as
one of the main open problems in this field [23].

In this Letter we discuss the possible realization and
observation of many-body localization in a system of cold
atoms. Consider two interacting species of bosons in an
optical lattice, with one of them frozen to form a binary
disorder potential for the other, mobile species [7,8].
The effective Hamiltonian for the mobile bosons is
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where J is the hopping amplitude, n; = ajfa ; the local
density, U the onsite interaction, and V the nearest-neighbor
interaction. The effective binary disorder potential D; is
drawn randomly according to D; = +D, and we have
neglected the trapping potential. We consider in the follow-
ing the case where the mobile species is prepared in the
initial density-wave state |¥() = 010101 - --). During the
ensuing time evolution under the Hamiltonian (1) we
propose to measure the difference in occupation between
the even and odd sites, An = N~'Y"(=1)/((n;) — 1/2),
where N is the number of lattice sites. Exactly this setup has
already been realized in the clean case, i.e., for a single
species of bosons [24]. By freezing the immobile bosons into
a quantum state which is close to an equal superposition of
Fock states |n;,n,, - --) with n; € {0, 1}, the time-evolved
state is automatically averaged over all binary disorder
configurations [8,25]. This purification method can also
be used for numerical computations and is explained in
detail below. Our proposal thus combines realizing disorder
in optical lattices using two species of atoms [9] with
techniques to prepare initial states and to measure their
nonequilibrium dynamics [24]. Experimentally, this can be
realized, for instance, with two hyperfine states of 3’Rb
atoms loaded into a state-dependent optical lattice: The
wavelength controls the relative hopping amplitude of both
states, while the intraspecies interaction is tuned by a
Feshbach resonance, and the interspecies interaction depends
on the intensity of the laser beam. In this way, both the ratio
of onsite interaction U to hopping amplitude J and the
coupling between mobile and disorder atoms can be tuned
independently, and bimodal disorder with very short-range
correlations is realized [8].

Let us first discuss the cases V =0 with U =0 or
U = o with strong disorder D > 1. In this case, each
disorder configuration splits the chain into segments of
equal potential D;, which communicate very little with their
neighboring segments due to the mismatch of the local
potential energy and the kinetic energy, JD > J: For a
given segment, An has contributions from neighboring
segments of the order of 1/D?. Thus, the segments become
isolated in the limit D — co. The time evolution of the
whole chain is then given by summing up the independent
time evolution of open segments An(?) (1) of varying length
¢, weighted by their probability of occurrence, p,=7¢/27*!
with 3°,p,=1, leading to AnP=®(1)=3"%, p,An)(t)
both for U = 0 and U = oo [26]. It is easy to see that only
segments of odd chain length contribute to the long-time

average with An)\ =1/(2¢), so that An =", p,An') =
32 roadPe/C =5

02F—— T T T "~ T "~ T * T " T 5

(a) clean case |
=
<

-0.2 P T E R S N R R

0 20 40 60 80 100 120 140
T T T T T T T T T T T T T T ]
0.4 (b) infiite disorder |
So2
0¥

0 20 40 60 80 100 120 140

FIG. 1 (color online). An(t) for model (1) with V =0 and
U=0 or U= co: (a) AnP=0 vs (b) AnP=* (solid red) with
average An = 1/6 (dashed red); symbols are light-cone renorm-
alization group (LCRG) results.

Figure 1(a) shows the time evolution in the clean case,
where for both U=0 and U =o0 one finds
AnP=0(t) = Jy(2Jt)/2, with the Bessel function J,(x)
[27,28]. In comparison, the time evolution in the strongly
disordered case, Fig. 1(b), appears very complicated. Yet,
including only segments up to a maximum length L already
gives an approximation with an exponentially small error
~L /2" at all times, because p, decays exponentially.

Model (1) is difficult to treat numerically because of the
unrestricted local Hilbert-space dimension for finite inter-
action strength U. We will therefore first concentrate on the
limit U — oo, where numerical methods are very efficient.
We will firmly establish that a MBL phase exists in this
limit before returning to the case of finite U at the end of
this Letter. For U — oo, the above model maps onto the
spin-1/2 XXZ chain

H= —JZ(S?CS?CH +8isiy —Asisiy — Disp). (2)
i

with anisotropy JA = V [29]. |¥,) is then the Néel state
and An = N7'y7,(=1)/(s5) is the staggered magnetiza-
tion. For A = 0, the dynamics is again given by Fig. 1(a) in
the clean case and by Fig. 1(b) in the strongly disordered
case. For alkali atoms, V < J, so that a realization of the
XXZ model with substantial A is not easily achievable. We
note, though, that the isotropic Heisenberg chain, A = 1,
has recently been realized using two boson species, and that
the nonequilibrium dynamics has been studied with single-
site addressability [30]. Furthermore, longer-range inter-
actions are also present if dipolar gases or polar molecules
are used [31].

To simulate the nonequilibrium dynamics of the
Bose-Hubbard model (1) and the XXZ model (2) for all
interaction and disorder strengths, and to perform an exact
disorder average, we use the light-cone renormalization
group (LCRG) [28]. The LCRG algorithm is a variant
of the density-matrix renormalization group (DMRG)
technique [32] based on the Lieb-Robinson bounds [33]:
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A local measurement at time ¢ is affected only by the
degrees of freedom within its light cone. The opening angle
of the light cone, or spreading velocity, is determined by
model parameters. For lattice models with short-range
interactions, the time evolution operator U = exp(—iH?t)
has a Trotter-Suzuki decomposition with a checkerboard
structure: Within the LCRG, a light cone out of the infinite
checkerboard is sufficient to compute the time evolution of
local observables in an infinite system [28,34].

To treat disorder, one straightforward possibility for a
finite system is to compute the time evolution for one
particular disorder configuration, and then repeat the
calculation for many different configurations to obtain
the disorder average. Here, we instead use purification
for an infinite system in order to perform the full disorder
average in a single run [25], at the expense of enlarging the
Hilbert space. Specifically, for the XXZ chain, an ancilla
spin-1/2, §; ane, is added to each lattice site with an Ising
coupling, D;sj+>2Dsjs5 ... The state of 57, . = £1/2 now
determines the local Zeeman field D; = £D. There is no
coupling between different ancilla spins; hence, they
have no dynamics and represent static disorder. The
time evolution of the disorder average is given by the
evolution from a prepared product state |yq) ® |dis) in
the enlarged Hilbert space of spins and ancillas, where

|dis) = ®(|1); + |¢>1)/\/§ is the fully mixed state for the
j

ancillas. The disorder-averaged expectation value of an
operator O is then obtained by measuring the expectation
value of the operator O ® 1,,. in the enlarged Hilbert
space. Although the local Hilbert-space dimension is
doubled, the LCRG algorithm works even more efficiently
for strongly disordered systems than for clean systems, and
real times up to Jt ~ 100 are reached in our simulations,
where we keep the truncation error in each renormalization
group step smaller than 10~® by dynamically increasing the
number of kept states up to 20 000. Responsible for these
long simulation times is the slow logarithmic growth of the
entanglement entropy, S.,., for A # 0, see Fig. 2. Here,
Sent = —T1pp In pp, where pp is the reduced density matrix
obtained by cutting the infinite chain, A ® B, of spins and
ancillas in half. Since entanglement in the static ancillas
is mediated by the spins, S, has the same functional
dependence on time as the disorder-averaged entanglement
entropy of a spin-only system [26]. The logarithmic
increase for A # 0 is the same behavior as seen for the
XXZ model with the magnetic fields D; drawn from a box
distribution [20], and is a hallmark of a MBL phase. On the
other hand, S, saturates for A =0 and infinite binary
disorder, see the inset of Fig. 2. The latter behavior can be
easily understood by noting that S, for a block of size
n < ¢ of a finite chain segment of spins and ancillas with
length # is bounded, S., <nln4. Since p, decreases
exponentially, a strict bound for S, at all times exists
[26]. This is different from the case of strong bond disorder,
where S, ~Inln¢ [22].

FIG. 2 (color online). S, for the XXZ chain (2) in the strongly
disordered case D = 4000. For small A we find asymptotically
Sent(f) ~Inz (dashed lines are fits for 7 > 20). Inset: S, (7)
saturates for A = 0 and infinite disorder.

In Figs. 3(a) and 3(b) we show An(t) for strong and
intermediate disorder. In all cases shown, An(t) does not
decay to zero, indicating that the system does not thermal-
ize. The strong reduction of the variance of An(z) with
increasing A [see Fig. 3(c)] is a clear experimental
indication that localization in an interacting system is
observed.

To further support our findings of a MBL phase for the
XXZ model with binary disorder, we have also calculated
the level statistics for finite chains of up to N = 14 sites in
the S* = 0 sector by exact diagonalization of all 2" possible
disorder realizations. In the integrable XXZ chain without
disorder, a full set of local integrals of motion exists, which
allows us to completely classify the eigenvalues by the
corresponding quantum numbers. The spectrum is there-
fore uncorrelated and the corresponding level statistics
Poissonian, P(s) = exp(—s), in terms of the level spacing
s. Disorder breaks integrability, so that the level-spacing
distribution, if the many-body states are extended, will
follow a Wigner distribution, P(s)=(xs/2)exp(—zs>/4).
This can also be understood as a crossover from integrability
to quantum chaos [35]. However, once localization sets in,
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FIG. 3 (color online). XXZ chain: (a) An(¢) for D = 4000 with
averages (dashed lines). D = 1.5: (b) An(r), (c) variance of An(r)
fort > 5, and (d) P(r) for chains of length N = 14 (symbols) and
P(r) =2/(1 4+ r)? (solid lines).
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FIG. 4 (color online). (a) An(t) for the Heisenberg point,
A =1, and disorder strengths D = 0.9, 0.5, 0.3, 0.2, 0.1, 0.0
(in arrow direction). (b) An obtained by averaging over intervals
[fmin» 20] with 7., > 5 variable (see error bars).

the spectrum will again become uncorrelated, because
localization creates new quasi-local conserved charges,
leading to a Poissonian level statistics. In this case chaos
is incomplete and the system keeps a memory of the initial
state [35]. If a critical D, # 0 for localization exists, we
therefore expect to go from a Poissonian (D = 0, integrable)
to a Wigner distribution (0 < D < D,, nonintegrable and
delocalized), and then again back to a Poissonian (D > D,
localized) [26]. Here, we concentrate on the regime far from
the clean integrable limit. In order to avoid the ambiguous
definition of an average gap based on a construction of
a continuous density of states from finite-size data, we
consider the ratio r between two consecutive gaps of
adjacent energy levels as defined in Refs. [11,12]. If the
level statistics is Poissonian, the distribution function of
gap ratios 0 <r <1 is given by P(r)=2/(1+r)
As shown in Fig. 3(d), this is in good agreement with the
numerical results [26].

Of particular interest is the isotropic Heisenberg chain,
A =1, which has recently been realized in cold atomic
gases [30] and approximately describes materials such as
Sr,Cu0O5 and SrCuQO, [36]. In the latter case, a doping with
nonmagnetic impurities, such as Pd, is possible, which
randomly replace the magnetic Cu®* ions [37]. As in model
(2), for strong disorder, the chain then separates into
segments; however, the coupling between the segment
ends is now not an Ising, but a Heisenberg coupling caused
by next-nearest-neighbor interactions [38]. In such sys-
tems, many-body localization should also occur, preventing
local excitations from spreading. However, phonons com-
plicate the observation of MBL, leaving cold atomic gases
as a particularly clean and promising realization. In Fig. 4,
results for the Heisenberg model with binary disorder are
shown. Here, clear signatures for MBL are already seen for
small disorder, with An(¢) quickly approaching a nonzero
constant value, see Fig. 4(a), while An(r) decays com-
pletely in the clean case [27]. By averaging over different
time intervals, we can extract an estimate for the long-time
average An with error bounds, see Fig. 4(b). The results are
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FIG. 5 (color online). Bose-Hubbard model with V =0.
(a) An(r) for D = 0o and U =2 with average (dashed line).
Disorder strength D = 6: (b) An(t), (¢) Se(2), and (d) P(r) for
N = 14 (symbols) and P(r) = 2/(1 4 r)? (solid lines).

consistent with a critical value D, for the localization
transition which is either zero or finite, but with D, < 0.2.
A detailed analysis of the phase diagram, including the
crossover from integrable to (incomplete) chaotic behavior,
will be presented elsewhere [39].

Let us finally return to the full Bose-Hubbard model (1),
which we have proposed to realize experimentally. We
concentrate on the case of vanishing nearest-neighbor
interaction, V = 0, realized in alkali atoms. For infinite
disorder strength, the system still separates into decoupled
chain segments for any interaction strength U. In this case,
we can simulate the dynamics for arbitrary times by exactly
diagonalizing the segments, see Fig. 5(a). Note that in the
limit D — o0, S (#) is bounded: There is no many-body
localization in this case. At finite disorder, we again use the
LCRG algorithm to simulate the system. Results for An(r)
and S, (¢) are shown in Figs. 5(b) and 5(c), respectively.
Although the simulation time is more limited than in the
XXZ case, An(t) seems to remain nonzero, while the data
for S, are consistent with a logarithmic increase, as
expected in a MBL phase. This is corroborated further
by the distribution function of gap ratios P(r), see Fig. 5,
consistent with a Poissonian level statistics.

To conclude, we have proposed to study many-body
localization in cold atomic gases by realizing a Bose-
Hubbard model with binary disorder provided by a second
species, and studying its quench dynamics. Both exper-
imentally as well as in numerical calculations, one can
make use of purification to achieve an automatic disorder
average. By implementing the purification scheme into a
DMRG algorithm, we have shown that the nonequilibrium
dynamics can be simulated in a single run without any
stochastic noise, and with simulation times for strong
disorder that are significantly longer than in the clean
case, making DMRG-type algorithms an ideal tool to
investigate infinite, disordered systems. Both in the
Bose-Hubbard model as well as in the XXZ chain limit,
we have shown that a MBL phase exists and can be
detected by measuring the one-point function An(r).
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