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The scattering properties of spin-polarized Fermi gases are dominated by p-wave interactions.
Besides their inherent angular dependence, these interactions differ from their s-wave counterparts
as they also require the presence of a finite effective range in order to understand the low-energy
properties of the system. In this article we examine how the shear viscosity and thermal conductivity
of a three-dimensional spin-polarized Fermi gas in the normal phase depend on the effective range and
the scattering volume in both the weakly and strongly interacting limits. We show that although
the shear viscosity and thermal conductivity both explicitly depend on the effective range near
resonance, the Prandtl number which parametrizes the ratio of momentum to thermal diffusivity
does not have an explicit interaction dependence both at resonance and for weak interactions in the
low-energy limit. In contrast to s-wave systems, p-wave scattering exhibits an additional resonance
at weak attraction from a quasi-bound state at positive energies, which leads to a pronounced dip

in the shear viscosity at specific temperatures.
I. INTRODUCTION

Spin-polarized Fermi gases have become an excel-
lent platform for studying quantum systems with higher
partial-wave interactions. Due to the Pauli exclusion
principle, the leading short-ranged interactions are p-
wave in nature (/ = 1, where ¢ is the angular mo-
mentum quantum number). For this reason, there have
been numerous theoretical investigations into the physics
of p-wave Fermi gases, such as p-wave superconductiv-
ity and topological physics in two-dimensions [TH6], the
three-body loss rate [THI0], and its application to one-
dimensional physics [ITHI7]. Such physics is not purely
theoretical, but has become the focus of recent experi-
mental investigations both in °K and in SLi, as there is
a p-wave Feshbach resonance [I8H29].

The main difference between p-wave (¢ = 1) and s-wave
(¢ = 0) scattering in 3D is the presence of the centrifugal
barrier. The centrifugal barrier limits the overlap be-
tween two-body bound states and scattering states to a
region at short inter-particle distances, making the res-
onance inherently narrow. As a corollary, the two-body
bound state is quite long-lived near resonance, even for
positive energies when the two-body bound state is inside
the scattering continuum, i.e., the bound state becomes
a long lived quasi-bound state. In other words, the wave-
function for the two-body bound state remains localized
even near resonance, in contrast to s-wave systems where
the two-body bound state size approaches infinity as one
approaches resonance.

Quantitatively, the presence of the centrifugal barrier
and the narrowness of the resonance are related to the
relevancy of the effective range. Consider the effective
range expansion for the inverse p-wave scattering ampli-

tude:

1 R
fih=—i~ o ot O(p) (1)

where p is the magnitude of the relative momentum, re-
lated to the relative scattering energy, E = p?/m with
m the single-particle mass. We also define v as the 3D
p-wave scattering volume with units of volume, and R as
the p-wave effective range parameter with units of mo-
mentum. The first term represents the unitary scatter-
ing, while the second and third terms define the scat-
tering parameters. As one can see from the effective
range expansion, both the scattering volume and effec-
tive range terms in the scattering amplitude are para-
metrically more important than the unitary term at low
energies. Furthermore, one can show that the low-energy
limit, £ < R?/m, and the zero-range limit R — 0,
can not be taken simultaneously, in contradistinction
to s-wave interactions. Thus the low-energy scattering
physics depends on both the scattering volume and the
effective range.

Since the effective range is a relevant quantity to under-
stand the low-energy scattering, the energetics and dy-
namics will also crucially depend on the effective range.
Previous studies have examined this in the context of the
necessity of two thermodynamic contacts in describing
the energetics in the normal phase [30] B1], the Landau
liquid parameters [32], and the three-body recombina-
tion rate [8, [10]. In these studies, the effective range was
found to be important describing the leading behaviour.
This ought to be compared to s-wave physics where the
effective range merely adds a perturbative correction [33-
[36].
In terms of transport, a previous study examined the
bulk viscosity [37] for the p-wave Fermi gas. There it



was shown that the effective range produces a finite bulk
viscosity at resonance (i.e., when v=! = 0) proportional
to ¢ oc T°/2/R?. In the weakly interacting limit, the
bulk viscosity is proportional to v27T/2. If one tries to
take the zero-range limit, the bulk viscosity at resonance
diverges, which is a hallmark of the relevancy of the effec-
tive range. This is in contrast to the s-wave case where
the bulk viscosity only depends on the s-wave scattering
length, a, in the strongly interacting limit, and vanishes
at resonance, a~! = 0 [38H43].

An interesting open question is how the remaining
transport coefficients, the shear viscosity and thermal
conductivity, depend on the scattering parameters in
both the weakly and strongly interacting limit. For s-
wave interactions, it is known that these two quantities
become divergent near the non-interacting point (a = 0)
as a~2, while near resonance the shear viscosity and ther-
mal conductivity depend only on the equation of state,
i.e., the density and the temperature [41, 44H52]. Tt is un-
clear how this picture is modified for p-wave Fermi gases
in 3D, even in the experimentally applicable limit of a
small but finite effective range.

In this work we consider this issue and evaluate the
shear viscosity, 77, and thermal conductivity, «, using the
kinetic theory approach [563]. We find that the shear vis-
cosity and thermal conductivity scattering times explic-
itly depend on the scattering parameters, even at reso-
nance. Although the shear viscosity and thermal conduc-
tivity explicitly depend on the interaction parameters, we
show that the Prandtl number, which describes the ratio
of momentum and thermal diffusion, approaches a uni-
versal constant in these two limits that does not explicitly
depend on the interaction, similar to the case of s-wave
physics.

The remainder of this article is organized as follows.
In Sec. [l we present the two-body scattering properties
for spin-polarized Fermi gases and obtain the two-body
T-matrix. From there we give a brief overview of the
kinetic theory approach and how it applies to the shear
viscosity and thermal conductivity in Sec. [[TIl We then
present the results for the shear and thermal scattering
times in Sec. [[V] for the entire BEC-BCS crossover. On
the BCS side we find non-monotonic behaviour for the
transport properties which is further discussed in Sec. [V}
From there we discuss the Prandtl number in Sec. [V
and finally conclude our discussions in Sec. [VII}

II. TWO-BODY P-WAVE SCATTERING

In this article we consider a single-channel model for a
spin-polarized Fermi gas with p-wave interactions:

1
H = /d3x§Vx1/)T(x)Vx¢(x)
+ [ Exul 0Vl 00 Vvt ()

where 9()(x) is the annihilation (creation) operator
for spin-polarized Fermions, the bidirectional gradient is
Vx = (%x — Vx)/2, g is the p-wave coupling constant,
and we have set i and the atomic mass, m, to unity.

As is custom, we renormalize this theory by exam-
ining the two-body scattering. Consider the two-body
T-matrix between states with center-of-mass momentum
Q, relative momenta p and q, |Q/2+p (q)), and a total
complex frequency E. In the presence of the many-body
background the T-matrix has the form [311 [37):
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where p is the chemical potential, and A,,,(Q, F) is the
contribution due to the many-body background which is
reported in Appendix [A]

The T-matrix in Eq. (3]) splits into two pieces [54]. The
first piece is the form factor of the p-wave interaction po-
tential, p - q, see also Eq. . The second piece, T(Q, E),
describes the dependence of the scattering on the center-
of-mass momentum, Q, and total energy, E. Due to the
presence of the many-body background, the scattering is
no longer Galilean invariant, which is described by the
nontrivial dependence on the center-of-mass momentum
in Amb(Q, E)

Equation is renormalized, and both the scattering
volume, v, and effective range, R, are defined in terms of
the coupling constant g and the ultraviolet cutoff in the
theory, A:
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This renormalization ensures that the p-wave scattering
amplitude in the absence of the many-body background
has the form shown in Eq. since:
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where now F, ; = %2 +p? —2u+1i6 is the on-shell energy
for two-particle scattering.

In this theory there are two two-body bound states at
energies defined as the poles of Eq. (3). The first is a
shallow dimer with E, = —1/(vR), the second a deep
dimer with E, = —R2. These bound states are three-
fold degenerate for £ = 1. The state with energy —R? is
actually unphysical as it possesses a negative norm [55]
56]. To avoid this issue, we will work in the low-energy
limit where all energy scales E satisfy: E < R?, so that
the presence of such an unphysical state is unimportant.

We note that often a single-channel model is inade-
quate for describing p-wave scattering. For our purposes



the single-channel model suffices after the proper renor-
malization of the T-matrix is taken into account. How-
ever, for more in-depth knowledge of p-wave scattering,
a two-channel model is required [31], 37].

III. KINETIC THEORY

In order to calculate the shear viscosity and thermal
conductivity we employ the standard kinetic theory ap-
proach using the Boltzmann equation [53]
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where np, = np(x,t) is the local quasiparticle distribution
function. The collision integral, I [np], is defined as
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Equation (7) depends on the transition rate
W(p,q,p’,q’) between particles with incoming mo-
menta p,q and outgoing momenta p’,q’, defined in
terms of the on-shell T-matrix, T(Q,p) = T(Q, E,.s.):
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Following kinetic theory we linearize the Boltzmann
equation by writing n, = nop + 0np, where ng is the
local equilibrium distribution function,

nf = [eﬂ((pfv)i’/?—u) +1 1’ (9)
that depends on the local inverse temperature, 8(x,t),
velocity, v(x,t) and chemical potential, y(x,t). We have
muted the spatial and temporal coordinates of the ther-
modynamic variables for simplicity. The correction to the
distribution function in response to an external pertur-
bation is denoted by dnp. It is subject to the constraints
of conserved number, momentum and energy,
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Due to rotational invariance, we only need to con-
sider perturbations of the form ¢, (p) (shear) and ¢, (p)
(heat current). Following the kinetic theory approach
[42, 53] the linearized Boltzmann equation leads to equa-
tions that determine ¢, (p) and ¢, (p):
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In Eq. (13), w is the enthalpy per particle, w = (¢+p)/n,
with € as the energy density, p the pressure, and n the
density. The functions ¢, (p) and ¢,(p) which solve
Eqgs. are then related to the shear viscosity, 7,
and thermal conductivity, , respectively:
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To solve Egs. (12}{15)), we expand the functions ¢, (p)

and ¢, (p) in terms of a set of orthogonal basis functions:
buy(P) = B Z UM (p (16)
(p) =BZc§“Uf (p), (17)
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where ¢; are expansion coefficients, and the first basis

functlons are U] = pyp, and UF = p,(p?*/2 — w). In
terms of these modes, Egs. (12{15]) are more conveniently

expressed as
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In Eq. we have introduced the inner product
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as well as the linearized collision integral operator
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In this notation the shear viscosity and thermal conduc-
tivity have a simple form:

=B (A7),
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The quantity S (A"’”);& has units of time and defines
the shear scattering time, 7,,, and the thermal scattering
time, 7, respectively:

T = B (A™)] 1. (22)

In principle, as the number of basis modes increases, the
accuracy of the calculation improves. The case of a single
mode is special, and is known as the relaxation time ap-
proximation (RTA). For our purposes we will work with
two basis modes as that provides a drastic improvement
in the calculation. This is discussed further below. This
is known as beyond the relaxation time approximation
(BRTA).

IV. SHEAR AND THERMAL SCATTERING
TIMES

The linearized Boltzmann equation is amenable to
numerical calculation of the shear and thermal scattering
times, 7, and 7, via Eq. (22). For our purposes we will
consider two basis modes both on the BCS and on the
BEC side. The details of the calculation are shown in
Appendix |B] while we only discuss the results here.

The shear and thermal scattering times are presented
in Fig. []] as functions of fugacity z for various values
of the binding energy SE, = —pf/(vR). The dashed
straight lines correspond to the high-temperature limit
where /7, .  z. As the temperature is lowered (larger
z), the deviations from the high-temperature limit be-
come more pronounced, and we find that the shear and
thermal scattering rates become smaller than the predic-
tions from the high-temperature theory. This reduction
of scattering is a consequence of Fermi blocking.

At resonance, SFE, = 0, the shear and thermal scat-
tering times are proportional to SR2 in the low-energy
limit, up to a correction of order O(1), as can be seen
from Appendix [B] This is a consequence of defining the
low-energy physics as: {T,E,u,...} < R?. This leads
us to an important result: the presence of the effective
range is necessary for understanding the shear viscosity
and the thermal conductivity in the strongly interacting
limit. Such a conclusion is not necessarily obvious, as one
might expect that for a small effective range the transport
would predominantly depend on the equation of state
since scale symmetry is only broken slightly. However,
this is not the case as the low-energy constraint renders
the effective range a relevant quantity. This should be
contrasted to the spin-1/2 s-wave Fermi gas, where the
resonant scattering times are only functions of the tem-
perature and density because of the scale symmetry.
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Figure 1: Shear and thermal scattering rates as
functions of fugacity, z. In all calculations we set the
effective range 3'/2R = 100. The solid lines are the full
numerical solution to the Boltzmann equation, while
the dashed lines represent the corresponding
high-temperature approximation which is linear in z.

In the weakly interacting limit, a similar analysis shows
that the shear and thermal scattering times are propor-
tional to v=2. This is the standard result for weakly
interacting systems; the scattering times become infinite

as one approaches the non-interacting limit.

Although the shear and thermal scattering times have
explicit interaction dependencies in the strongly and
weakly interacting limits, the two scattering times ac-
tually have the same interaction dependencies to lead-
ing order. This is readily seen in Appendix [B] where we
provide explicit formulas in the high-temperature limit.
This leads us to our second main result: since both scat-
tering times have the same leading-order dependence on
the scattering parameters both in the strongly and the
weakly interacting limits, the ratio of the two scatter-
ing times in the strongly and weakly interacting limits
is only a function of the equation of state: /7, =
F (Bu)+0(1/(BR?)) with a dimensionless function F(z).
Such behaviour also occurs for spin-1/2 Fermi gases with
s-wave interactions, but this is because the scattering
times themselves are only functions of the equation of
state due to scale symmetry. In the p-wave case, scale
symmetry is still broken and thus the individual scatter-
ing times depend on the interactions, but their ratio will
not depend on the scattering volume or effective range at
leading order.

Let us first consider the results for the ratio of the
shear to thermal scattering times in the high-temperature
limit shown in Fig.[2] as a function of the bound state en-
ergy, Fy. In the RTA, the ratio of the scattering times
is independent of the fugacity and the scattering param-
eters for arbitrary interaction strength, 7, /7., = 2/3, see
Appendix [B] In the BRTA, the ratio of the scattering
times becomes interaction dependent. In the strongly
and weakly interacting limits, the ratios can be evalu-
ated analytically to give:
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Figure 2: BEC-BCS Crossover for the ratio of
scattering times, 7,/7, in the high-temperature limit
with /2R = 100. In this limit the ratio of scattering
times coincides with the Prandtl number. The left hand
side corresponds to the BCS side, while the right hand
side is the BEC side. The solid, dashed, and
dashed-dotted lines correspond to the RTA prediction,
the BRTA prediction at resonance, and the BRTA
prediction for weak interactions, respectively. The
vertical dashed lines correspond to the points where the
Prandtl number saturates the RTA value, SE}, ~ 0,7/2.
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In these limits the ratio of the scattering times does not
explicitly depend on the interaction parameters, v and
R, the fugacity, z, and the inverse temperature, 5. The
individual values of 7;, and 7,; are shown in Appendix E

On the BEC side (right) the behaviour of the ratio
of scattering times is monotonic, while on the BCS side
(left) there are two point where it saturates the RTA
value. This can be understood as a consequence of the
quasi-long-lived bound state, see Appendix Specifi-
cally these resonances occur when the off-diagonal matrix
elements of A("%) vanish. To leading order this occurs
when the two-body bound state energy is approximately:
BEy, ~ 0,7/2. Since this resonance requires the two-body
bound state energy to be positive, this secondary reso-
nance where the ratio of scattering time saturates the
RTA value can not occur for s-wave interacting systems.

As one lowers the temperature however, we do expect
deviations to occur from the Fig. In particular, we
expect that the ratio of the scattering times to leading
order in 1/(8R?) will be a dimensionless function of the
equation of state, but not of the interaction strength, in
the strongly and weakly interacting limit. In Fig. [3] we
examine the ratio of the two scattering times both a)
as a function of fugacity and b) as a function of bind-
ing energy Ej on the BEC side. The universal limits in
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Figure 3: Ratio of shear to thermal scattering times as a
function of the fugacity z (top), and the binding energy
Ey (bottom). The black solid line, dashed line, and
dashed-dotted line correspond to the high-temperature
results in the RTA, the resonant limit in the BRTA, and
the weakly interacting limit in the BRTA, respectively.

Eq. are shown as the dashed and dash-dotted lines,
respectively. The black solid line corresponds to the RTA
result of 2/3. The two major trends are an increase of the
ratio of scattering times as the temperature is lowered,
and a decrease in the ratio as one goes to the weakly
interacting limit. On the BCS side, v < 0, we find that
the many-body corrections are not as important as the
scattering physics is highly dominated by the quasi-long-
lived bound state. Hence the physics is accurately cap-
tured by the high-temperature physics. Thus even in the
presence of many-body interactions, there will still be a
non-monotonic behaviour of the ratio of the scattering
times, with the BRTA saturating to the RTA value at
around SE, =~ 7/2.

V. MINIMUM IN THE SHEAR VISCOSITY
AND THERMAL CONDUCTIVITY ON THE BCS
SIDE

The presence of the quasi-bound state and the non-
monotonic behaviour of the ratio of the scattering times
on the BCS side have important consequences for the
shear viscosity and thermal conductivity. In particular,
if the average energy of the atoms, which is proportional
to T, is of the order of the quasi-bound state energy,
the scattering will become maximal and equivalently the
transport coefficient will exhibit a minimum. Thus it is
instructive to look at the shear viscosity at fixed density
and variable temperature, as we expect a dip to occur on
the BCS side when the temperature is comparable to the
quasi-bound state energy.

We investigated this issue by calculating the shear
viscosity at fixed density as a function of temperature
within the RTA, while including the finite temperature
and many-body effects. Corrections from the BRTA do
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Figure 4: Shear viscosity as a function of temperature
for fixed density and various values of the binding
energy, Ey, on the BCS side (Ep > 0). In this figure, Tr
and Er are the Fermi temperature and energy, while
the solid and dashed lines correspond to the full RTA
approximation and the high-temperature limit,
respectively. The dip in the shear viscosity is associated
with an increase scattering at the quasi-bound state
energy. This dip in the shear viscosity does not appear
at resonance, Ej, = 0, as zero-energy scattering is
strongly suppressed for p-wave interactions. Similar
physics will occur for the thermal conductivity.

not produce qualitative differences. In order to address
the thermodynamics, we have assumed a non-interacting
equation of state of spin-polarized Fermions. Such an ap-
proximation is reasonably valid in the BCS limit where
no molecules exist, in contrast to the BEC limit discussed
below where a Bose-Fermi model is used [31]. The results
of this calculation are shown in Fig. [ for E, = 20Ep,
E, = 10EFr and E, = 0 (resonance).

As one can see from Fig. [4] there is a dip in the shear
viscosity due to the resonant scattering at the quasi-
bound state energy. The minimum in the shear viscosity
occurs roughly for T/Tr ~ 0.2E,/Ep. At resonance,
there is no quasi-bound state and hence there is no min-
imum of the shear viscosity in the normal state. It is
interesting to note that for p-wave scattering this mini-
mum in the shear viscosity appears for T' > T, while for
s-wave Fermi gases it occurs at lower temperatures [48].
Similarly, when the shear viscosity is expressed in units
of entropy density s, it will also have a minimum. For
example when E,/Er = 5, /s reaches a minimum value
of approximately 0.5h/kp at a temperature of T ~ T,
comparable to the value found for the s-wave unitary
Fermi gas [48] and slightly larger than the Kovtun-Son-
Starinets bound [57].
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Figure 5: Prandtl number on the BEC side as a
function of fugacity, z, and density 3°/2n for various
values of the binding energy, SEy. In general,
decreasing the interaction decreases the Prandtl
number, while lowering the temperature (increasing the
fugacity or increasing the density) tends to an ultimate
decrease of the Prandtl number by about 25%.

VI. PRANDTL NUMBER

Given the ratio of the shear to thermal scattering
times, it is straightforward to calculate the Prandtl num-
ber. The Prandtl number is the ratio of the shear to
thermal diffusivity, defined as

Pr=—-—, (24)

where C), is the specific heat at constant pressure per unit
volume, and n is the density. In this work we calculate
the shear viscosity and thermal conductivity according to
Eq. , while we calculate the specific heat at constant
pressure and density using the Bose-Fermi model, see
below.

At high temperatures, C,/n = 5/2 while n/k =
27, /57, so that Pr = 7, /7,.. This was presented in Fig.
for the whole BEC-BCS crossover. As one can see, the
Prandtl number is a nonmonotonic function of £} on the
BCS side, while it is monotonic on the BEC side.

To best capture the thermodynamics at lower temper-
atures, we use the Bose-Fermi model which describes a
noninteracting gas of spin-polarized fermions and dimers
(see App. E[) The Bose-Fermi model is an accurate de-
scription of the thermodynamics of a normal state p-wave
Fermi gas in 3D for the entire BEC-BCS crossover [31].
Here we restrict ourselves to the high-temperature limit
which is defined as: E, < T <« R?. The results of our
calculations are shown in Fig. [5] As one can see for the
BEC side, the Prandtl number is non-monotonic, but ul-
timately decreases as temperature decreases or density
increases to about 25% of the resonant value. At fixed
fugacity, the Prandtl number also decreases slightly as
the interaction parameters are decreased.



VII. CONCLUSIONS

In this article we have examined the shear viscosity and
thermal conductivity of a 3D p-wave spin-polarized Fermi
gas. We found that the scattering times are proportional
to R? near resonance and v~2 for weakly interacting sys-
tems. This means that the transport properties explicitly
depend on the scattering parameters for arbitrary inter-
action strengths. However, the Prandtl number in the
weakly and strongly interacting limits is indeed a func-
tion of only the equation of state, like the Prandtl number
for spin-1/2 s-wave Fermi gases. Unlike the spin-1/2 s-
wave Fermi gas, there is no scale symmetry restricting
the Prandtl number to be this way.

Our analysis is valid at high temperatures in the nor-
mal phase. It quantifies the role of two-body correla-
tions in the transport properties of spin-polarized Fermi
gases in 3D. As one goes to lower temperatures, it is im-
portant to also account for three-body correlations and
losses. Such losses have been previously examined [7-
10), 18, 19, 2TH24], and were found to become quite strong
at the p-wave Feshbach resonance. These three-body
losses are suppressed in the high-temperature limit as
they are of order z3. Obviously these losses will have an
important contribution to the transport at lower temper-
atures, but for temperatures T' 2 Tr the transport prop-
erties are determined by the two-body scattering pro-
cesses discussed in this work. We predict a pronounced
dip in the viscosity at temperatures above T that could
be observed in experiment.
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Appendix A: Many-Body Contribution to the
Two-Body T-matrix

The many-body contribution to the two-body T-
matrix has the form:

Anp(Q,E) = 247

d®k ,1—u nr (&)
X/(27r)3k 2 E—1Q2— k2 - Qku+2u
(A.1)

where u = Q- k, & = k2/2 — p, and np(z) =
is the Fermi-Dirac distribution function.

(ef 1)1
In writing

Eq. , we have neglected terms that produce a contri-
bution to the T-matrix of the form: (p- Q) (Q-q)T(E)
as these vanish when the ultraviolet cutoff is taken to
infinity.

The angular integration in Eq. can be performed
analytically to give:
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E+2pu— k2 — 1(Q — k)2

_ Q2k2

For our purposes we evaluate Eq. (A.2) numerically.

Appendix B: Derivation of the Shear and Thermal
Matrices in Eq. (18)

In this appendix we derive the relevant expressions for
the matrices A™*) in Eq. , using two basis modes.
For both the shear viscosity and thermal conductivity the
matrices A*) have the form

B / Oodp/dQQ/
(UL o 2m2 fy 22

9 (5.0 IT(Qup)P

1 1 1 1
) Cosh( ) + cosh(bQ - p) 2 cosh(a) 4 cosh(bQ - q)
U@

( +p)+ ( -p)
<G }
Q

Q Q
[ i(5 +P)+Ui(5 —p) = Ui(5 +a) ~Us(5 —a)
(B.1)
where we have used the identity
ngpng p(l—ng, . )(l-ng_g)=
1 1 1
4 cosh (a) + cosh (bQ . f)) cosh (a) + cosh (bQ . 61)
(B.2)

as well as a = B(Q?/8 +p?/2 — u) and b = BQp/2. We
have also explicitly suppressed the n and x indices in
Eq. as it is valid for both the shear viscosity and
thermal conductivity.

Let us begin by considering the shear viscosity. The
two basis modes we will consider are:
(B.3)

U{? = PzDy> U2n = p:cpyﬂ (p2 - wn) .



The constant w, can be determined from the Gram-
Schmidt method, and is such that the two modes are
orthogonal with inner product (19). Given these two
modes one can then evaluate Eq. (B.1)

However, special care is needed in performing the an-
gular integrations. As an example consider the case i = 1
and j = 1. In this case Eq. becomes

AT :L/mﬁ T dp [dQq
L,y )y 2w ), 2w 47

Q*p"! 2
3 T(Q.p)* [Fy3 g — By By

7r
M V=Y,
(B.4)
The functions F/';” are the angular averages
= (3 1 5,0 (B:y)"
™\ 2 cosh(a) + cosh(bcos f),) PPy PPy o
(B.5)

where a = 3(Q?/8+p?/2—p) and b = SQp/2, while (),
denotes angular averages over p. As shown in Appendix
[C] the angular averages can be decomposed into a sum
of terms depending on different components of the center
of mass unit vector, Q, and the integrals:

In(@:p) = /71 4 cosh(a) + cosh(bz)

(B.6)

where P, (z) is the Legendre polynomial.

The dominant contribution to Eq. comes from
the term proportional to Iy(Q, p), which is equivalent to
making the substitution:

Frl;?nu ~ IO(Qap) <IA)MIA)V (f):vf’u)n>gp . (B~7)
This approximation becomes exact in the high-

temperature limit where Eq. is angular indepen-
dent and can be pulled out of the angular average, such
that only the term proportional to Iy survives. To test
the accuracy of this approximation at lower temperatures
we plotted the full angular average contained in Eq.
(solid black line) versus the result after the approxima-
tion in Eq. (B.7)) (red-dashed line) for both fixed a and
b in Fig. [6] In the non-degenerate regime, the dominant
contribution to F!¥ comes from a,b < 1. The approx-
imation of retaining only the terms proportional to Iy
is exceptionally good and simplifies the calculation enor-
mously especially in the required parameter regime, cf.
also Ref. [49].
With these approximations the A7 ; becomes

= o [0 [ @
Yooy ) o2n? ) 2n? Thr

(B.8)

One can then repeat the following analysis for the other

T(Q,p)]” I3(Q,p).

a=0.1 a=2.3
0.001 0.0005
0.000 0.0000
0 2 4 0 2 4
b b
b=0.1 b=2.3
0.0002
0.001
0.0001
0.000 T T -
0 5 10 0 5 10
a a

Figure 6: Comparison of the full angular average of

Eq. (B.4) (black line) and the solution from Eq. (B.7)

(red-dashed line) for various values of
a=B(Q*/8+p?/2 — u) and b = BQp/2. The
approximation is quite successful at capturing the full
structure of the angular average for the desired
parameter regime, a,b < 1.

elements of the matrix A”7. The final result is:

B
n_
A= oo
> dQ > dp Q°p'! 2 0
— — T 1
X/O 2712 272 T5n | (va)| O(Qap)
2
1 /8<71QQ +p2_wn)
2 2 2 4
6(%""1’2_%}) B2 ((71622""172_“)77) +7%)

(B.9)

An identical analysis can be done for the thermal con-
ductivity. The two basis modes are given by

2 2 2
sen(Gos). o (55w

where w is the enthalpy per particle and wy is a constant
that ensures that the two basis modes are orthogonal,
similar to the case for shear viscosity.

We again assume that the angular averages can be ap-
proximated in the manner of Eq. . The final result
for the matrix A" is:

A = b
(U7, Ut)
y /°° dQ > dp Q'p"
o 27m% Jo

2
272 9707 |T(Qap)‘ IO(Qap)2

2
. 1 5(2%4'1?2—10—11}&) \
BUZE +9° —w—wi) B((F5 +p° —w—we)* + 55)
(B.11)



In the high-temperature limit, one can analytically
perform the integration over @) to obtain:

23/2, [ (e
n_— —e 5 T(0 2
A= 5 /0 amzt 1T Ve

(B.13)

There are several important properties of the matri-
ces AT*. Consider the relaxation time approximation
(RTA). In the RTA we only retain the first mode in A",
This approximation gives the following expression for the
scattering times:

s _ B R

—_ . B.14
v AL (B4
Beyond the relaxation time approximation (BRTA), we
keep both basis modes, and evaluate the whole matrix,
AN in order to determine the scattering times. In gen-
eral one can write the scattering times in the BRTA ap-
proximation in terms of the RTA approximation:

T,(,2) 1 T,£2) 1

0 1-B

KL (B.15)
AT 1A

where T7(72,3 are the scattering times in the BRTA approx-

imation, and the constants, A and B, are defined as:

2 2
e (AT,) B (Af )

— 7, = ﬁ. (B.].G)
"4;},1"4;],2 A1,1-’42,2

In general the constants A and B are positive because
the eigenvalues of A™* express the (positive) decay rates
of different perturbations. Hence the BRTA prediction
for the scattering times will be larger than the RTA pre-
diction; this is in line with the variational formulation
that each truncated basis provides a lower bound on the
true transport time 7 [45, [5I]. In Fig. m we show the
scattering rates calculated in both the RTA and BRTA
including finite-temperature effects. At high tempera-
tures the results for the BRTA are very close to the RTA,
making the RTA a good approximation for the scatter-
ing times. As one lowers the temperature, i.e., increases
z, the difference between the RTA and BRTA becomes
more pronounced.

In the high-temperature limit we find B > A from the
specific structure of the A™" matrices in Egs. 7
, which implies that T,ﬁz)/#) > 77(72)/7'751). This
translates into the following inequality for the Prandtl
number calculated in the BRTA, pr®:

@ 7P wmi-p O

Pr = @ = I‘m S Pr, (B].?)

9

where Pr(!) is the Prandtl number calculated in the RTA.

The BRTA matches the RTA, Pr® = PrY when
A = B = 0. In general this occurs when the off-
diagonal matrix elements vanish, A}y = 0. In the high-

temperature limit, A5 = 0 when

Oz/ood 65(67%)676
0

EﬂRQ(E — BEp)2 + €3

(B.18)

Given SR? > 1, the approximate solutions for Eq. (B.18
are SE, =~ 0,7/2. Numerical evaluation of Eq. (B.18
gives SE, = 0.186,3.447, which is consistent with the
red dashed lines in Fig.

Besides these points where pPr® = Pr(l), it is impor-
tant to note the behaviour of the Prandtl number in the
strongly interacting (“res.”) limit 3/2v=! = 0 and in
the weakly interacting (“w.i.”) limit 8%/2v=! > 1, re-
spectively. A direct evaluation of the scattering times in
these two limits yields

2
Lol T 25 R Lol Z3 o
n res. \/iTz 576 mT’ r res. 2 n res.
(1)‘ __m 5 1 <1)‘ 3 <1>‘
i T VBT 230402 (mT)3 F lwi 2

within the RTA, while in the BRTA

3 3 3
=14+ 2@ — (2L 2) 0
<+202) K <2+88> K
75 3 75
(2)‘ — (1 <1>‘ <2>‘ —(2 <1>) ,
N <+226) s e T2 10 T L

This yields the scattering ratios in the strongly and
weakly interacting limits that are quoted in the main

text in Eq. (23).

e

res. res.

Appendix C: Angular Averages

We report some general formulas for angular averages
of functions f(z = Q- P) over a variable number of unit
vectors, p. The calculations are straight forward, but
become rather tedious. We restrict ourselves to an even
number of unit vectors:

1
e = [ GRi@ = [ Fia. (€

:/_1 & i) [1_”326i,j+QinPz(x) :
(C.2)
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0.00021
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Figure 7: Comparison between the relaxation time
approximation (RTA) to beyond the relaxation time
approximation (BRTA) calculations for the scattering
rates 3/, ... For this simulation, SE, = 0 and

BY2R = 100. The scattering times in the BRTA are
larger than the RTA values consistent with the basic
structure of the BRTA.

10

In these equations P, () is the Legendre polynomial. We
note that the only term proportional to Py(z) is the term
that is independent of the center-of-mass momentum, Q.
Thus if f(z) does not depend on z, only the first lines
of Egs. (C.1HC.4)) are nonzero, reducing to the standard
formulae for averages of unit vectors.

Appendix D: The Bose-Fermi Model

The thermodynamics of a 3D spin-polarized p-wave
Fermi gas can be accurately described by a model of
noninteracting fermions and bosons. The pressure of the
system is then given by:

1 .
Grpyreg |

+3 X 23/2 Li5/2 (Z2€7ﬁEb9(7Eb)):| s
(D.1)

where Li, (2) is the polylogarithm function. In Eq. ,
the first term is related to the noninteracting Fermi
gas. The second term describes the noninteracting
bosons with twice the mass and chemical potential 2y —
Ey0(—Ey). The factor of 3 originates from the 24 1 de-
generacy of the p-wave coupling, i.e., there are 3 bound
states corresponding to coupling in the my, = —1,0,1
channels, where my is the azimuthal quantum number.

In this model the density is given by

1 .
n= W [— Lis/o(—2)

+6 x 22 Lig (ZQG_BEbQ(_Eb))] . (D.2)

From Egs. one can calculate the specific heat
at constant pressure per unit volume and the density for
arbitrary temperature in the normal phase [3I]. In this
article we primarily focus on the limit where |SE,| is
small, hence we ignore the bound state energy and its
correction to the bosonic chemical potential.

A Qg . . . .
(DiD;PrDif (2))p = / T;pipjpkpzf(x) =
1 2\2
/ d;f(x) [(1;) (04,0k,1 + 2 permutations)
-1
52t 4622 —1 /. -~ Ao
< (QiQ ks + 0, QuQu + 2 perms. )
+Q1QijQ1P4($)] , (C.3)
PP dQp . . . . . .
(BibjPrDiDrPs f(2))p = | -~ Dibjbrbibrbs f(2) =
1 213
dx (1—22)
/_1 7]”(95) {48 (6:,j0k,10r,s + 14 perms.)
728 — 1524 + 922 — 1
" x x4+ 9x
48
(Qinék,l(sr,s + 5i,j Qk‘Ql(ST,S + 6i,j5k,lQ7'Qs
+14 perms.)
N —2125 4 352 — 1522 + 1
48
(QinQsz5r,s +QiQ,;01.Q.Q.
+5¢,ijQ1QTQS + 14 perms.)
+QinQleQrQsP6($>} . (C4)
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