
PHYSICAL REVIEW B 100, 115134 (2019)

Natural-orbital impurity solver and projection approach for Green’s functions
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We extend a previously proposed rotation and truncation scheme to optimize quantum Anderson impurity
calculations with exact diagonalization [Y. Lu, M. Höppner, O. Gunnarsson, and M. W. Haverkort, Phys. Rev.
B 90, 085102 (2014)] to density-matrix renormalization group (DMRG) calculations. The method reduces the
solution of a full impurity problem with virtually unlimited bath sites to that of a small subsystem based on a
natural impurity orbital basis set. The later is solved by DMRG in combination with a restricted-active-space
truncation scheme. The method allows one to compute Green’s functions directly on the real frequency or time
axis. We critically test the convergence of the truncation scheme using a one-band Hubbard model solved in
the dynamical mean-field theory. The projection is exact in the limit of both infinitely large and small Coulomb
interactions. For all parameter ranges, the accuracy of the projected solution converges exponentially to the exact
solution with increasing subsystem size.
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I. INTRODUCTION

The class of quantum impurity models are of long-standing
interest to physicists. They describe a wide range of quantum
mechanical problems that involve a subsystem with a limited
number of degrees of freedom (an impurity) coupled to a
much larger system (a bath) that contains a quasi-continuum
of degrees of freedom. Examples include the Kondo and
heavy-fermion systems [1–3], core-level x-ray spectroscopy
[4,5], tunneling in dissipative systems [6], and various prob-
lems in quantum optics [7]. In the past years, the interest in
impurity models has also been reinvigorated by the contin-
uous development of dynamical mean-field theory (DMFT)
[8,9], in which the correlated lattice problem is mapped self-
consistently to an effective impurity model. DMFT allows for
exact treatment of the local electronic correlations and has
proven to correctly describe the electronic structure of many
strongly correlated materials, which was beyond the reach of
traditional mean-field or independent-particle methods.

At the core of DMFT, or an impurity model in general,
is the efficient and accurate solution of the impurity ground
state and one-body Green’s functions. To this end, many
numerical methods have been developed, including the quan-
tum Monte Carlo (QMC) [10–15], numerical renormalization
group (NRG) [16–21], density-matrix renormalization group
(DMRG) [22–34], and exact diagonalization (ED) [35–41].
Each method has its own merits and shortcomings. QMC
can efficiently solve multiband problems, yet by formulating
on the imaginary axes, it entails an ill-conditioned inver-
sion problem when obtaining real-frequency spectra [42,43].
In addition, its application to problems with low-symmetry
interactions and/or off-diagonal Green’s functions is often
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hindered by the fermionic sign problem. NRG is originally
designed for impurity problems and works directly on the
real axis. It has extremely good energy resolution for low-
energy spectra. However, due to the necessarily logarithmic
bath discretization [20], it lacks satisfactory resolution for
high-energy features by construction. DMRG, when imple-
mented on the real axis, treats all energies equally well, yet
its solution is mostly limited to one and two band cases
due to the exponential scaling of the complexity—or bond
dimension in the matrix-product states (MPS) language—with
the number of bands. It was shown recently that multiband
solution in DMRG is feasible by introducing fork tensor-
product states [33,34] as a variant of the conventional MPS.
Another approach for countering the exponential growth of
computation cost is to search for an optimized local basis for
representing impurity problems. This has been most actively
explored using ED methods [39,41], which are otherwise
severely limited in accessible number of bands and bath sites.
In Ref. [41], some of us have demonstrated that a one-band
impurity problem with a few hundred bath sites, ten times of
that dealt in conventional ED, can be efficiently solved when
represented on a natural-orbital basis set.

The optimized ED method above has also been tested in
real, material-relevant scenarios involving general multior-
bital systems. It has been implemented in the freely avail-
able software package QUANTY [41,44,45], which provides a
flexible script language to solve quantum many-body prob-
lems. Several graphical interfaces are also available targeting
specific spectroscopy calculations [46,47], making efficient
solutions to multiorbital many-body impurity calculations
accessible to a large audience (see Refs. to [41,44,45]). For
generalized ligand-field theory calculations where an open d
or f shell interacts with only a few ligand orbitals, the method
works very well [45,48]. The same is true for observables
that only need a limited resolution, e.g., several forms of
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core-level spectroscopy where the fine details of the spectra
are smeared out by the large core-hole lifetime [5,49]. For
general materials, one often needs to correctly describe states
with a bandwidth on the order of a Rydberg with a resolution
better than the smallest energy scale (such as the crystal fields
as small as tens of meV in some rare-earth compounds).
Capturing all details of such materials requires one to have an
energy resolution better than one per mille of the bandwidth.
Such a requirement is crucial for understanding, for exam-
ple, the detailed interaction of local orbital and crystal-field
interactions with Kondo-like physics in some Ce compounds
[50,51]. However, it is currently difficult to achieve for all
impurity solver methods. Even for a single-band Hubbard
model, capturing the exact line-shape of the onset of the
Hubbard bands of a strongly correlated metal is still challeng-
ing [31,32,41,52–55].

In this paper, we further explore the advantages of the
natural-orbital representation of the impurity model, espe-
cially, by combining our method with DMRG. In practice, we
exploit the energy separation of states provided by the natural-
orbital representation, such that we can calculate the ground
state and Green’s functions of the impurity model (with a
few hundred spin orbitals) by projecting the full Hilbert
space to a small subspace corresponding to low-order particle
excitations. The projection scheme can be further simplified
by constructing the projected states as product states of two
subsystems, an interacting one containing the impurity site
and a free one, respectively. Such a construction essentially
allows for solution of the full impurity model by solving a
small subsystem with only up to dozens of spin orbitals. The
proposed projection approach is applicable for all real-space
wave-function based methods and can be straightforwardly
implemented using ED and DMRG. In the following sections
we show that the method, combined with the numerical ad-
vantages of DMRG, results in up to two orders of magnitude
more efficient solution of a single-band Hubbard model in
DMFT with improved accuracy when compared with our
initial results obtained using ED in Ref. [41].

II. NATURAL-ORBITAL IMPURITY SOLVER

A general Anderson impurity model is described by the
Hamiltonian HA that contains two parts

HA = Hloc + Hbath,

Hloc =
∑
{τ }

ετ1τ2 a†
τ1

aτ2 +
∑
{τ }

Uτ1τ2τ3τ4 a†
τ1

a†
τ2

aτ4 aτ3 , (1)

Hbath =
∑

κ

εκa†
κaκ +

∑
τ,κ

Vτκa†
τ aκ + H.c.,

where a locally interacting impurity site (Hloc) is coupled to
a noninteracting bath (Hbath). The fermionic operators a(†)

τ/κ

annihilate (create) an electron labeled by a set of quantum
numbers τ or κ on the impurity site i or bath sites l . In
addition to the Coulomb interaction terms, the local Hamil-
tonian Hloc typically includes single-particle operators such as
crystal-field (dominant in 3d electron systems) and spin-orbit
coupling (relevant in 4/5d and 4 f systems). Hbath includes
the bath dispersion and its coupling to the impurity. The
Hamiltonian (1) is depicted in Fig. 1(a). In this section, we
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FIG. 1. Graphical representation of an impurity model in (a) the
conventional “star” geometry and (b) the natural-orbital geometry
(see text). The impurity is represented by a square and bath by
circles. The solid lines represent hoppings between two sites. Each
site consists of m spin orbitals.

present a natural-orbital representation of the impurity model,
which can be combined with a projection scheme to efficiently
obtain the ground state and one-body Green’s function on the
real-frequency axis.

A. Natural-orbital representation of an impurity model

The natural orbitals are defined as a single-particle basis
set on which the ground-state single-particle density matrix
of a quantum system is diagonal. They are widely used in
quantum chemistry [56] as they have several advantageous
features for molecular systems such as optimal convergence
properties for the wave functions and energies. In the context
of quantum impurity problems, they have been discussed in
conjunction with configuration-interaction expansion approx-
imation [39,40]. These methods have proven to be capable of
solving impurity problems exceeding the size of those dealt
by conventional ED [35]. The caveat of employing natural
orbitals for impurity models is that a naive implementation
that diagonalizes the density matrix of the whole system
inevitably mixes the impurity states with the noninteracting
bath states. This transforms the original local interactions in
Hloc into long range ones in the resultant Hamiltonian, which
may bring a severe penalty that overcomes the advantage of
the natural orbitals, especially for large systems that contains
O(102) bath sites.

In Ref. [41], some of us have introduced a natural-orbital
representation of the impurity model by restricting the opti-
mization of the basis set only for the bath degrees of freedom.
It was shown that an ED solver employing such a natural-
orbital basis set substantially outperforms conventional ones
and is capable of solving impurity models with the number
of bath sites comparable to that achieved by NRG or DMRG
solvers [41]. The resulting geometry of the impurity Hamil-
tonian is graphically represented in Fig. 1(b). The procedure
for obtaining such a representation is detailed in Ref. [41].
We briefly recapitulate the steps here. (1) Solve Hamiltonian
(1) [as depicted in Fig. 1(a)] within mean-field methods (e.g.,
Hartree-Fock) and obtain the ground-state single-particle den-
sity matrix ρ̂MF = ( ρ̂i ρ̂il

ρ̂li ρ̂l
)MF, where we distinguish the im-

purity (i) and bath (l) parts explicitly.
(2) Diagonalize the bath density matrix ρ̂MF

l , which leads
to a new set of bath orbitals with occupation of either 0
or 1, with the exception of m (the number of impurity spin
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orbitals) orbitals that have fractional occupation. We assign
these orbitals to site b as shown in Fig. 1(b). Its density matrix
ρ̂MF

b satisfies the relation Trρ̂MF
b = m − Trρ̂MF

i .
(3) Linearly combine the impurity site i and bath site b

into “bonding” and “antibonding” sites with occupation m
and 0. The former (latter) only couples to the completely
filled (empty) bath sites obtained from last step, respectively.
The mean-field Hamiltonian has now been separated into
two decoupled terms, each describes the filled or empty spin
orbitals of the complete single-particle Hilbert space.

(4) Perform unitary transformation (Lanczos tridiagonal-
ization) on the two parts of the Hamiltonian and obtain two
separate empty and filled “chains” starting with the bonding
and antibonding sites, respectively.

(5) Finally, reverse the unitary transformation in step (3)
and recover the i and b sites, which now couple to both the
empty and filled chains. Following the convention in Ref. [41],
we dub the two chains “conduction” and “valence” baths,
respectively.

In the limit of U → 0, these mean-field natural orbitals are
exact, and the many-body ground state of the exact impurity
solution can be written out using only 2m Slater determinants
[41]. At finite U values, the exact occupation of the conduc-
tion or valence bath sites will deviate from 0 or 1, necessi-
tating the inclusion of more states with excited electrons or
holes in the conduction or valence chains. Nonetheless, the
“leakage” of electrons (holes) onto a conduction (valence) site
is expected to rapidly decay as a function of its distance to
the impurity site, as states with electrons (holes) deep in the
conduction (valence) chain are energetically unfavorable. This
allows for an efficient description of the ground state and the
low-energy excitations by only including states with electron
(hole) excitations in the conduction (valence) bath that are
localized around the impurity site.

B. Ground-state projection

So far we have rewritten the impurity Hamiltonian (1) on
the natural-orbital basis, which was shown to be a highly
efficient representation of the impurity model. Such a rep-
resentation has an optimal scaling behavior with respect to
the number of bath sites, as adding empty (filled) bath sites
at the end of the conduction (valence) chains incurs little to
none cost for describing the ground state. However, the com-
putation complexity is still expected to scale exponentially
with the number of impurity spin orbitals, which, depending
on the occupation and the exact form of the Hamiltonian,
may become intractable for full d/ f -orbital impurities that are
each coupled to a few hundred bath sites.

To further reduce the computation cost and alleviate the
scaling problem, for the ground state, we follow ideas from
a restrictive active space calculation, similar to the opti-
mizations made by Gunnarsson and Schönhammer [1] for
the calculations of an f -level Anderson impurity model for
Ce compounds. These methods are currently often used for
ligand-field theory calculations for core-level spectroscopy
[44]. We propose to project the full Hilbert space onto a
subspace that only contains states with completely empty con-
duction (filled valence) sites with indices l > L (Fig. 2), with
L as a tunable parameter controlling the trade-off between

i b

v1 vL+1vL vL+2

c1 cL+1cL cL+2

HI

Hv

Hc

V

FIG. 2. Separating the full Anderson impurity Hamiltonian HA

defined on the natural orbitals into four parts HI, Hc, Hv, and V . Each
Hamiltonian acts on the sites enclosed by its corresponding box. The
hybridization operator V (dashed bonds) connects HI to Hc and Hv.

projection accuracy and computation cost. Note that a single L
is used here for simplicity. For a general multiorbital impurity
model, L does not need to be the same for the conduction
and valence baths or for different spin orbitals. The projection
essentially separates the full Hamiltonian HA into three parts:
an impurity Hamiltonian HI of a much smaller system, as well
as Hc and Hv describing two truncated bath chains that are
coupled to HI via hybridization V . The Anderson impurity
Hamiltonian is then

HA = H0 + V, (2)

where

H0 = HI + Hv + Hc. (3)

The projected ground state wave function is given as

|�0〉 = |φI〉 ⊗ |0c〉 ⊗ |1v〉. (4)

Here, |φI〉 is the exact ground state of HI that can be efficiently
computed by ED or DMRG methods for moderately large L,
and |0v〉 (|1c〉) denotes the product states of completely empty
conduction (filled valence) sites with indices l > L. |�0〉 is
the exact solution of H0. The projected ground-state energy is

E0(L) ≡ 〈�0|HA|�0〉 = 〈φI|HI|φI〉 +
∑

l>L,m

εv
lm, (5)

where the second term is simply the sum of on-site energies of
all spin orbitals with indices m at each site l in the truncated
valence chain. The accuracy of the projected ground-state
wave function can be assessed by calculating the deviation
of Eq. (5) from the exact ground-state energy when the latter
is attainable, or by calculating the energy variance of the
projected ground-state using the full Hamiltonian HA as

δE0(L)2 ≡ 〈�0|HA
2|�0〉 − E0(L)2

= δEI(L)2 + δV (L)2, (6)

with

δEI(L)2 = [〈φI|H2
I |φI〉 − 〈φI|HI|φI〉2

]
δV (L)2 = 〈�0|V 2|�0〉.

The first term δEI(L)2 is intrinsic to the numerical method of
choice that solves HI. The second term δV (L)2 originates from
the imposed projection and therefore scales exponentially to
zero with increasing L.
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C. Excited-state projection and Green’s functions

The central object of interest for an impurity problem is
the impurity Green’s function Gimp(ω). On the real-frequency
axis, it is defined as

Gimp(ω) = G+(ω) − G−(−ω)∗, (7)

where G±(ω) are the retarded Green’s functions for electron
addition (+) and removal (−) at the impurity site i:

G+(ω) = lim
η→0+

〈�0|ai
1

ω − HA + iη
a†

i |�0〉,

G−(ω) = lim
η→0+

〈�0|a†
i

1

ω − HA + iη
ai|�0〉, (8)

with |�0〉 the impurity ground state. The Green’s functions
can be directly calculated in the frequency domain using
Lanczos method, which is an approach generally adopted in
ED-based solvers [35–41]. For DMRG solvers, Gimp(ω) is
also commonly obtained via Fourier transform from the real-
time Green’s functions [32,57]. While the proposed projection
scheme is applicable for both methods, in this paper, we will
focus on the direct calculation in the frequency domain.

The idea of our projection method is to obtain the impurity
Green’s function of the full system Gimp(ω) from that of the
projected system G0(ω) given by H0 and successive nonper-
turbative expansion in the hybridization V . Such an expansion
can in principle be done using diagrammatic methods and
the Dyson equations. This requires knowledge not only on
the impurity Green’s function of H0, but also on electron
(hole) propagators starting at site cL (vL). Here, however, we
employ a method based on Hilbert space reductions, which
has the advantage that we can use standard Lanczos routines
for solving the Green’s functions of impurity models.

The method is based on the notion that we can connect to
each operator H with a fixed number of electrons a Hilbert
space H. We start with the projected subspace H0 = HI ⊗
|1v〉 ⊗ |0c〉 defined for the ground-state calculation, where
HI is the Hilbert space of the subsystem HI. To obtain
G±

0 (ω), we use the Lanczos method and construct a series of
M Krylov vectors |ν̃ j〉 = H j

I a(†)
i |φI〉 ∈ H′

I, where the prime
denotes the Fock subspaces of electron removal (addition)
with respect to HI. After orthogonalizing each |ν̃ j〉 to the
previous states and proper normalization, the resultant set of
vectors {|ν j〉} become the basis set of a subspace (Krylov
space) KM of H′

I with dimension M. The Hamiltonian HI is
represented as a tridiagonal matrix H I on KM , and G±

0 (ω) can
be straightforwardly calculated as the leading element of the
resolvents G±

0 (ω) = (ω + iη − H I )−1
00 , which is conveniently

expressed as a continued fraction [41]. The corresponding
impurity Green’s functions G±

0 (ω) are identical to those of the
subsystem HI.

The G±
0 (ω) obtained above are in general quite different

from the Green’s functions G±(ω) of the full system, es-
pecially for small L values, due to the limited degrees of
freedom. To obtain a more accurate description, we need to
relax the projection condition to include more excited states.
This can be done by allowing electron (hole) excitations into
the completely empty conduction (filled valence) chains. As
states with higher-order excitations are energetically more
costly and therefore contribute less to the Green’s functions,

the number of excited particles p serves as a control parameter
for the projection. Conceptually this is similar to the restricted
active space method used in quantum chemistry.

The proposed projection scheme can be implemented in
ED and DMRG solvers by targeting a specific U(1) symmetry
sector for the bath chains in each step of the Lanczos or
time-evolution process when computing the Green’s function.
Here, we combine it with further simplification by manually
identifying the relevant states for p-particle excitations. While
it might seem cumbersome at first, the advantage of such
a procedure is that it allows for the calculation of the full
Green’s function by evaluating Hamiltonian matrix elements
on the basis of KM and their derived states with singly (p = 1)
and doubly (p = 2) excited particles in the bath chains. This
essentially reduces the solution of a many-body problem HA

with a few hundred spin orbitals to that of the much smaller
subsystem HI.

1. p = 1 projection

In the following, we derive the expression of the Hamilto-
nian and the Green’s functions on the expanded subspace that
includes single-electron (hole) excitations into the conduction
(valence) chain. For simplicity, we assume a single-orbital
model, as the generalization to multiorbital case is straight-
forward. We further omit spin indices as the expressions are
spin independent.

The expanded states with single-particle excitations in the
bath chains can be obtained by acting HA on the initial
subspace H′

0 = H′
I ⊗ |1v〉 ⊗ |0c〉. As H′

0 is closed under H0,
the singly excited states are then generated by VH′

0. Note
that H′

I is still exponentially large for a sufficiently large L,
in practice we approximate it by KM , which is known to
provide an accurate representation for HI. H′

0 is then replaced

by H′
0 = span(|ψ j〉 = |ν j〉 ⊗ |1v〉 ⊗ |0c〉| j = 0, . . . , K ). The

p = 1 expanded vector space H′
1 is therefore approximately

given as

H′
1 ≈ H′

1 = span
({∣∣ψe

jk

〉}) + span
({∣∣ψh

jk

〉})
,

where ∣∣ψe
jk

〉 = tccL|ν j〉 ⊗ |ek〉 = |η j〉 ⊗ |ek〉 and∣∣ψh
jk

〉 = tvv
†
L|ν j〉 ⊗ |hk〉 = |ζ j〉 ⊗ |hk〉,

where |ek〉 = |1v〉 ⊗ c†
L+k|0c〉 and |hk〉 = vL+k|1v〉 ⊗ |0c〉 (k �

1) are the single electron and hole states of the truncated
bath chains. We have relabeled the fermionic operators on
the conduction and valence sites by c(†) and v(†), respectively.
V is now explicitly given as V = tcc†

LcL+1 + tvv
†
LvL+1 + H.c.,

where tc(v) is the hopping between conduction (valence) bath
sites L and L + 1 (see Fig. 2). It is easily seen that H′

1 is
orthogonal to H′

0. We can evaluate the matrix elements of
HA = H0 + V on the p � 1 subspace as

〈ψ j |H0|ψk〉 = 〈ν j |HI |νk〉 = HI
jk,〈

ψe
jk

∣∣H0

∣∣ψe
lm

〉 = 〈η j |HI |ηl〉δkm + 〈ek|Hc|em〉δ jl

= HIη
jl δkm + Hc

k,mδ jl ,〈
ψh

jk

∣∣H0

∣∣ψh
lm

〉 = 〈ζ j |HI |ζl〉δkm + 〈hk|Hv|hm〉δ jl

= HIη
jl δkm + Hv

kmδ jl , (9)

115134-4



NATURAL-ORBITAL IMPURITY SOLVER AND … PHYSICAL REVIEW B 100, 115134 (2019)

and

〈ψ j |V
∣∣ψe

kl

〉 = 〈η j |ηk〉δ0l = V η

jkδ0l ,

〈ψ j |V
∣∣ψh

kl

〉 = 〈ζ j |ζk〉δ0l = V ζ

jkδ0l . (10)

Note that we have defined the ground-state energy to be zero.
The elements of the matrices HI (≡ HI ), Hc, and Hv are al-
ready known. One only needs to evaluate the (M-dimensional)
matrices HIγ and V γ (γ = η, ζ ), with the latter identified
with the overlap matrix of {|γ 〉}. Note that the states {|ψe(h)

jk 〉}
are not orthonormal. To bring them into an orthonormal form,
one can solve the generalized eigenvalue problem HIγ with
respect to V γ and obtain the eigenvector matrix T γ . The above
matrices are then expressed on the orthonormal basis set as
H̃ Iγ = T γ †HIγ T γ , which is the diagonal eigenvalue matrix,
and Ṽ γ = V γ T γ . The Green’s function can then be calculated
by inverting the full HA defined on the p � 1 subspace.

2. p = 2 projection

We further relax the projection condition to allow double
excitations. The full p � 2 subspace is given by HA

2H′
0 =

H′
0 + H′

1 + V 2H′
0. The p = 2 subspace H′

2 is then spanned by
the subset of doubly excited states in V 2H′

0 = VH′
1. Similar

to the p = 1 case, we approximate H′
2 ≈ H′

2 = VH′
1 [58].

Under such approximation, the states in H′
2 are given as

ψ
e↑e↓
jkl = t2

c cL,↑cL,↓|ν j〉⊗|ek↑el↓〉 = |λ j〉⊗|ek↑el↓〉,
ψ

h↑h↓
jkl = t2

v v
†
L,↑v

†
L,↓|ν j〉⊗|hk↑hl↓〉 = |μ j〉⊗|hk↑hl↓〉,

ψeσhσ ′
jkl = tctvcL,σv

†
L,σ ′ |ν j〉⊗|ekσ hlσ ′ 〉 = |θ j〉⊗|ekσ hlσ ′ 〉,

which describe two-electron, two-hole, and electron-hole ex-
citations into the bath chains. The spin indices are recovered
here considering the Pauli principle. The Hamiltonian matrix
elements for H0 read〈

ψ
e↑e↓
jkl

∣∣H0

∣∣ψe↑e↓
mno

〉=HIλ
jmδknδlo+Hc

knδ jmδlo+Hc
loδ jmδkn,〈

ψeσhσ ′
jkl

∣∣H0

∣∣ψeσhσ ′
mno

〉=HIθ
jmδknδlo+Hc

knδ jmδlo+Hv
loδ jmδkn, (11)

with HIλ and HIθ the Hamiltonian matrices evaluated on the
basis set {|λ〉} and {|θ〉}. The matrix elements for V are given
as 〈

ψ
e↑
jk

∣∣V ∣∣ψe↑e↓
lmn

〉 = 〈θ j |θl〉δk,mδ0,n = V θ
jlδk,mδ0,n,〈

ψ
e↓
jk

∣∣V ∣∣ψe↑e↓
lmn

〉 = 〈θ j |θl〉δk,mδ0,n = V θ
jlδ0,mδk,n. (12)

Similar expressions can also be derived for the excited-hole
states. Same as for the p = 1 case, the expanded states {|λ〉},
{|μ〉}, {|θ〉} need to be orthonormalized.

Finally, we emphasize that as we approximate the electron
addition/removal Hilbert space H′

0 of the subsystem HI by
KM , the completeness of the p = 1 and p = 2 states depends
on M, and the results should be tested for convergence in M.

III. DMFT

We now demonstrate an application of the natural-orbital
solver presented above in the context of DMFT [8,9]. Within
DMFT, a Hubbard model is mapped onto a single-impurity

Anderson model supplemented by a self-consistency condi-
tion that identifies the impurity Green’s function with the local
lattice one. The central ingredient of DMFT is thus the (iter-
ative) calculation of the impurity Green’s function. The steps
for constructing the DMFT self-consistency loop entirely on
the real-frequency for a general Hamiltonian can be found in,
e.g., Refs. [34,41]. It should be noted that the prerequisite of
such constructions is to include a sufficiently large number
[O(102)] of bath sites in the Hamiltonian (1), which is neces-
sary for an accurate real-frequency representation of the bath
Green’s function. This also guarantees that the computed self
energy in a general DMFT loop is always causal [41], which
could otherwise be an issue for conventional real-frequency
(configuration-interaction) implementations that include only
a limited number of bath sites.

In the following sections, we focus our discussion on the
calculation of the one-band Hubbard model on the Bethe
lattice with infinite coordination number, for which the DMFT
mapping is exact. The corresponding impurity Hamiltonian is
given as

HA =
∑

σ

εiniσ + Uni↑ni↓ +
∑
lσ

εl nlσ

+
∑

lσ

(Vla
†
iσ alσ + H.c.), (13)

where i and l denote the impurity and bath sites, respec-
tively. In addition, for benchmark purposes we assume spin-
symmetric couplings and particle-hole symmetry, as there
is abundant literature containing high-quality results ob-
tained from different numerical methods. In this case, the
DMFT loop can be greatly simplified, as the imaginary part
of the bath hybridization function �̃(ω) ≡ − 1

π
Im�(ω) =∑

l |Vl |2δ(ω − εl ) is related to the impurity spectral function
Aimp(ω) ≡ − 1

π
ImGimp(ω) as �̃(ω) = D2

4 Aimp(ω), where D is
the half-bandwidth of the semielliptic noninteracting density
of states. The spin indices for the observables are omitted
hereafter for the ease of notation.

Within each DMFT loop, the bath parameters are obtained
by a discrete representation of the hybridization function over
Nl ∼ O(102) poles. We employ a scheme similar to Ref. [20]
by discretizing the frequency axis into Nl intervals {Il}, and
obtain Vl and εl as

V 2
l =

∫
Il

dω�̃(ω),

εl = 1

V 2
l

∫
Il

dωω�̃(ω). (14)

Here we chose the intervals such that the weight V 2
l is equal

for each bath site. We note that the details of the discretization
scheme has little effect on the results when the number of bath
sites is large enough. The impurity spectral function Aimp(ω)
is then obtained by solving the resulting impurity model with
our solver described in Sec. II, which leads to an update of the
hybridization function

�̃(ω) = D2

4
[αA′

imp(ω) + (1 − α)Aimp(ω)], (15)
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with α ∈ [0, 1) a mixing factor that allows for under-
relaxation by mixing in the spectral function A′

imp(ω) from the
previous loop. The convergence is reached once Aimp(ω) =
A′

imp(ω).

IV. RESULTS

We note that while the natural-orbital representation and
projection scheme in Sec. II can be readily implemented in
existing ED solvers [41], we adopt the MPS-based DMRG
method [26] here for computing the impurity ground state and
Green’s functions, which is expected to be more efficient for
large L values considering the quasi one-dimensional geome-
try in Fig. 1(b). We use the zip-up method when multiplying
a Hamiltonian (as a matrix-product operator) to MPS [59] for
generating the Krylov states. Note that due to the relatively
small size of the subsystem HI, the total truncated weight of
the MPS in each Lanczos step can be kept well below 10−16.

In the following, we present DMFT results obtained for
the one-band Hubbard model on the Bethe lattice using the
proposed projection method. The total number of bath sites
is set to Nl = 301, with each bath chain of full length 150.
With such a setting the coexisting region of the metallic and
insulating solution is found between U/D = 2.40 and 3.10,
in close agreement with previous results obtained using NRG
[19]. The presented calculation is performed for interaction
values U/D ranging from 1/16 to 16, including both the itin-
erant and atomic limits. Especially, we focus our discussion
on three representative values U/D = 1.0, 2.0, and 4.0, which
correspond to weakly-correlated metal, strongly-correlated
metal, and Mott insulator ground states in DMFT, respectively
[9].

A. Ground-state convergence

We start by discussing the ground-state results for the
different U values. Figure 3(a) shows the number of electrons
per spin orbital on the first 10 conduction bath sites in the
converged DMFT ground state. Note that this is identical to
the hole occupation in the valence chain due to the particle-
hole symmetry. In the metallic regime with U/D from 1/16
to 2, nl on each site converges towards 0 with decreasing U
values. This is expected as the natural orbitals are exact in
the U → 0 limit. For a given U , we observe near-exponential
decay of nl with increasing site index l . Exact exponential
decay of nl is observed for the insulating cases with U/D �
4, as any particle-hole excitations into the bath chains is
suppressed by the Mott gap of approximately U − 2D. The
slowest convergence is observed for the correlated metals with
U/D ∼ 2, yet the electron density reaches below 10−3 within
the first two to four bath sites for all the cases considered here.
Closer inspection of the ground-state wave function reveals
that even for the worst cases, states with completely empty
conduction (filled valence) bath sites for l � 2 comprise more
than 99% of the total weight, which justifies the proposed p =
0 projected wave function in Sec. II B as a valid approximation
for the exact ground state.

Figure 3(b) shows the relative error of the projected
ground-state energy E0(L) [Eq. (5)] when applying projection
at bond L between bath sites L and L + 1 (see Fig. 2). As the
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FIG. 3. (a) Number of electrons per spin orbital on the first ten
conduction bath sites in the converged DMFT ground state for U/D
values ranging from 1/16 to 16 as a geometric sequence with com-
mon ratio 2. The values are noted next to each curve. (b) Normalized
ground-state energy deviation [E0(L) − Eexact]/|Eexact| as a function
of L.

energy deviation is directly correlated with the ground-state
electron (hole) density in the conduction (valence) chains,
one observes that E0(L) converges exponentially to the exact
DMRG ground-state energy for the full system Eexact.

B. Green’s functions

We proceed to calculate the DMFT Green’s functions
with a few different sets of control parameters (L, p). The
calculated spectral functions are presented in Figs. 4(a)–4(c)
for U/D = 1.0, 2.0, and 4.0, respectively. The spectra are
convoluted with a Gaussian kernel with full width at half
maximum of 0.04D.

The first row of each panel shows the spectral functions
calculated with p = 1. Within each row, the results are pre-
sented for L = 1 on the left up to L = 4 on the right. For
all U values, the spectra retain the general line shape of
previous results [31,32,41]. This is best seen for the U/D =
2.0 case in Fig. 4(b), where the spectra show a sharp resonance
at ω = 0 and two broad Hubbard bands at approximately
ω = ±U/2. Especially, the Luttinger pinning [60] at ω = 0
with the condition πDA(ω = 0) = 2.0 is fulfilled to a high
accuracy for the metallic cases in Fig. 4(a) and 4(b). This
suggests that the p = 1 projected states, i.e. those with only
single-particle excitations in the bath sites, indeed capture the
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FIG. 4. DMFT spectral functions for (a) U/D = 1.0, (b) 2.0, and (c) 4.0 calculated with different projection parameters (L, p).

low-energy physics of the impurity model. On the other hand,
we notice spurious oscillatory features/small peaks on the
side of the quasiparticle peak or on the Hubbard bands, most
noticeably for the metallic cases. As the amplitude of these
features decreases with increasing L, they can be attributed
partially to the missing of states with multiparticle excitations
in bath sites close to the impurity site in the p = 1 projected
subspace. We also note that for the insulating case in Fig. 4(c),
there is some small residual weight (smaller than 10−4) close
to ω = 0 for L = 1, which vanishes for L � 2.

The second row of each panel shows the spectral functions
calculated with p = 2. Compared to the p = 1 results, the
oscillatory features are greatly suppressed and smooth spectra
are recovered for all U and (L, p) values. The results for L = 3
and 4 are in excellent agreement with previous results ob-
tained using time evolving block decimation (TEBD) [32] (see
Appendix). For the case of U/D = 2.0, two sharp side peaks
can be observed at the inner edges of the Hubbard bands, in

line with previous ED or DMRG results [29,31,32,41]. We
do note that the exact size of the side peaks is L dependent,
and shows a converging behavior with increasing L similar
to that of a Fourier spectral decomposition with increasing
frequency cutoff. It is also closely related to the observation in
Ref. [32], where the peak position and size are dependent on
the system size (number of bath sites), and are likely related to
the time-dependent probability of the impurity being doubly
occupied. For the insulating case, we note that the change of
A(ω) between the p = 1 and p = 2 results is less than 10−3 at
all frequencies for L � 2.

As mentioned before, the convergence of the projected
results depends on the size of the initial Krylov space M.
Figure 5 shows the DMFT spectral functions with (L, p) =
(4, 2) for U/D = 2.0 calculated with M ranging from 50 up
to 400. The details of the quasiparticle peak and the upper
Hubbard band are shown in the insets. For small M values,
small oscillations are seen on the side of the quasiparticle
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FIG. 5. DMFT spectral function for U/D = 2.0 with different
sizes of the initial Krylov space M. The insets show the detail of
the quasiparticle peak and the Hubbard band.

peak, whose amplitude decreases with increasing M. The line
shape becomes smooth and converges between M = 300 and
400. The size of the side peak on the Hubbard band is also
seen to be M dependent, which becomes static for M � 100.
For all spectra shown in Fig. 4, their convergence in M is
tested, which typically requires a value no more than a few
hundred.

Finally, we comment on the computation cost of the pro-
posed projection method. The most time-consuming part of
the method is the generation of the initial Krylov space KM

and evaluating the Hamiltonian and overlap matrix element of
the Krylov states as described in Sec. II C. The computation
time then strongly depends on L and the size of the Krylov
space M. For (L, p) = (1, 2), calculating one G(ω) takes
less than two minutes using a single CPU core (with G±(ω)
less than one minute each). The computation cost increases
substantially with increasing L due to the increase of system
size, and consequently the necessary increase of M. For the
most challenging case of U/D = 2.0 and (L, p) = (4, 2),
calculating one G(ω) with M = 300 takes about two hours on
a node with two eight-core processors (Intel Xeon E5-2630
v3, 2.40 GHz). However, as shown in Fig. 5, the spectral
function calculated with M = 100 already closely resembles
the converged result and correctly reproduces all the key
features. It takes about twenty minutes to compute.

V. CONCLUSION

In conclusion, we have proposed a projection scheme for
efficiently solving impurity models represented on a natural-
orbital basis set. We have shown that for a one-band Hubbard
model solved within DMFT, accurate Green’s functions can
be calculated directly on the real-frequency axis for all inter-

πA
(ω

)D

0

1.0

2.0

-2 0 2 4-4
ω/D

-2 0 2 4-4
ω/D

4
3

L=2

0.8 1.61.2 0.7

1.0

0.6 1.41.0
0.4

0.7

(a) (b)

FIG. 6. DMFT spectral functions for (a) U/D = 1.0 and (b) 2.0
for L = 2, 3, and 4 (solid lines), in comparison to exact results ob-
tained by TEBD (dashed lines) reproduced from Fig. 1 in Ref. [32].
Note that the TEBD results are calculated with 119 bath sites.

action strengths in the matter of minutes while including a
few hundred bath sites. We reiterate here that although the
particle-hole symmetric Bethe lattice is discussed above as
a proof of concept, given the generality of the construction
of natural orbitals, the proposed method applies to general
fermionic impurity Hamiltonians regardless of their details.
In addition, other than the DMRG plus Lanczos framework
as we presented here, we expect the projection approach to
work equally well with wave-function based techniques when
calculating spectral functions, e.g., correction-vector method
[61], dynamical DMRG [62], and various time-evolution
methods [24]. For multiband problems, the method should fur-
ther benefit from loop-free higher-connectivity tensor product
states such as tree [63,64], fork [33,34], or comb [65] tensor
networks. As an outlook, we comment that our method can be
straightforwardly extended to calculating various core-level
spectroscopy starting from the converged DMFT ground state
[5], which can complement the conventional multiplet ligand-
field calculations [5,44] that commonly have difficulties cap-
turing effects such as resonances, edge singularities, and band
excitations due to the limited degrees of freedom included in
the Hamiltonian.
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APPENDIX: CONVERGENCE OF GREEN’S FUNCTIONS
IN L AND COMPARISON TO EXACT RESULTS

Figure 6 shows the DMFT spectral functions obtained for
U/D = 1.0 and 2.0 with p = 2 and L = 2, 3, 4. Compared to
the exact results by solving the full impurity model [32], the
key spectral features including the width of the quasiparticle
peak and the size and position of the Hubbard bands are well
reproduced already with L = 2.
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