Gaugino condensation and KKLT from a 10d perspective

Arthur Hebecker (Heidelberg)

based on published and ongoing work with: Hamada / Shiu / Soler

Outline:

- Introductory remarks / Comment on quintessence
- Consistently coupling 7-brane gauginos to 10d fields.
- Comments on related work by other groups / Perspective of Generalized Complex Geometry

• Including the gaugino condensates in 10d EOMs.

Preliminaries:

• KKLT is one leading concrete dS models in string theory (Also: 'Large Volume Scenario' or LVS; Kahler uplifting)

Kachru/Kallosh/Linde/Trivedi '03

• The present 'no-dS' debate

Danielsson/VanRiet; Obied/Ooguri/Spodyneiko/Vafa; Ooguri/Palti/Shiu/Vafa; Garg/Krishnan; ··· and especially Moritz/Retolaza/Westphal '17

triggered interest in a 10d understanding of KKLT.

For further recent (and old) 'problems of KKLT' see, e.g. McOrist/Sethi, Bena/Dudas/Grana/Lüst, Blumenhagen/Kläwer/Schlechter, Das/Haque/Underwood,....

An Aside on Quintessence:

- Of course, in spite of all that's going to be said, KKLT (and other dS constructions) might in the end fail.
- Quintessence is natural way out, but this also difficult..

see in particular Cicoli/Pedro/Tasinato '12 (also: Cicoli/Burgess/Quevedo '11)

• In particular, one faces an *F*-Term Problem:

AH/Skrzypek/Wittner

 Namely, one needs large volume, where phenomenological SUSY-breaking implies:

 $e^{\kappa}|D_{x}W|^{2} \gg \left|e^{\kappa}(|D_{T}W|^{2}-3|W|^{2})\right|$

⇒ completely new scalar-potential term needed!

Selection of recent work: Cicoli/DeAlwis/Maharana/Muia/Quevedo; Acharya/Maharana/Muia; Emelin/Tatar; Hardy/Parameswaran; ····

(2-slide reminder of) KKLT

- CY with all complex-structure moduli fixed by fluxes; The only field left: Kahler modulus T = τ + ic with τ ~ V^{2/3}.
- $K = -3\ln(T + \overline{T})$; fluxes give $W = W_0 = \text{const.}$, $\Rightarrow V \equiv 0$ ('no scale').
- Gaugino condensation on D7 brane stack: $W = W_0 + e^{-T}$.
- Small uplift by D3-brane
 in a warped throat:
 V → V + c/τ².

<u>KKLT</u>

• The scalar potential is changed first to SUSY-AdS, then to an 'uplifted' meta-stable de Sitter potential:

A longstanding critical debate has targeted the metastability of the D3 in view of flux-backreaction.
 (My take on this is that metastability remains plausible.)

Bena, Grana, Danielsson, Van Riet,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

KKLT under attack

Moritz/Retolaza/Westphal '17 Gautason/Van Hemelryck/Van Riet '18

• Recent criticism was rooted in possibly too simpistic treatment of D7-gaugino-bulk-coupling:

 $\mathcal{L}_{10} \ \supset \ |G_3|^2 \ + \ G_3 \cdot \Omega_3 \left< \lambda \lambda \right> \delta_{D7} \; .$

Camara/Ibanez/Uranga '04, Koerber/Martucci '07 Baumann/Dymarsky/Klebanov/Maldacena/McAllister '06 Heidenreich/McAllister/Torroba '10

- It is clear what to expect:
 - G_3 backreacts, becoming itself singular at the brane.
- Plugging this back into the action, one gets a divergent effect of type (δ_{D7})².
- Now anything can happen....

KKLT rescued

Hamada/AH/Shiu/Soler '18,'19; Kallosh '19; Carta/Moritz/Westphal '19

• Singular gaugino effects have been observed before, in other string models. Horava/Witten '96

> (see also Ferrara/Girardello/Nilles '83 Dine/Rohm/Seiberg/Witten '85 Cardoso/Curio/Dall'Agata/Lüst '03)

• It has been shown that a highly singular $\langle \lambda \lambda \rangle^2$ -term saves the day by 'completing the square'. Applied to our case:

$$\mathcal{L}_{10} \supset \left| G_3 + \Omega_3 \left\langle \lambda \lambda \right\rangle \delta_{D7} \right|^2$$

• Very roughly speaking, one now writes $G_3 = G_3^{flux} + \delta G_3$ and lets the second term cancel (most of) the δ -function.

The result is (very roughly):

$$\mathcal{L}_{10} \supset \left| G_3^{flux} + \langle \lambda \lambda \rangle \right|^2 \longrightarrow \left| D_T W_0 + \partial_T e^{-T} \right|^2.$$

The perfect square structure in M-theory

 The established part of the story is in M-theory (with x¹¹ compactified on S¹/Z₂). There, one has

$$S \sim -\int_{11} \left(G_4^2 - \delta(x^{11})(G_4)_{ABC\,11} j^{ABC} \right),$$

where $j^{ABC} \sim \overline{\lambda} \Gamma^{ABC} \lambda$.

 It is well-known that the divergence problem is resolved by the proposal (enforced by SUSY)

$$S\sim -\int_{11}\left(G_4-rac{1}{2}\delta(x^{11})j
ight)^2$$
 . Horava/Witten

Understanding the M-theory case in a toy model

 Let us first understand this better in a 5d toy-model, (with x⁵ ≡ y compactified on S¹/Z₂):

(inspired by Mirabelli/Peskin '97)

$$S = -\int_5 (d \varphi - j \delta(y) \, dy) \wedge * (d \varphi - j \delta(y) \, dy) \, .$$

• The equation of motion is

$$d*(d\varphi-j\delta(y)\,dy)=0\,,$$

which is solved by

$$d\varphi = j\delta(y)dy + \alpha_M dx^M$$
.

• Crucially, $\alpha = \alpha_M dx^M$ is co-closed: $d * \alpha = 0$.

Obtaining a finite action

• Excluding x^{μ} -dependence, we can write the EOM as

 $\partial_{y} \left[\partial_{y} \varphi - j \delta(y) \right] = 0$

and the solution as

 $\partial_y \varphi = j\delta(y) + \alpha_5$ with $\alpha_5 = \text{const.}$

• Flux quantization, $\int_{S^1} d\varphi \in \mathbb{Z}$, implies

$$\int dy \,\partial_y \varphi \,=\, j + \alpha_5 = n$$

such that $\alpha_5 = n - j$. The resulting action is

 $S=-(n-j)^2.$

• We see: $\partial_y \varphi$ cancels the singular term and develops a finite part $\sim (n-j)$. Obtaining a finite action (continued)

- The 'step' in $\partial_y \varphi$ cancels the source term $j\delta(y)$.
- Compactness and continuity of φ (≡ flux quantization) enforce a non-trival slope proportional to this 'step'.
- If n ≠ 0, continuity is replaced by an extra step of size n at the boundary. Hence:

$$\mathcal{L} = \int_{R} |d\varphi - j\delta|^2 = -(n-j)^2/R.$$

• Crucial: Radius dependence of j^2 term.

The co-dimension two case

• The case of interest is not co-dimension one but rather co-dimension two.

⇒ Generalize our toy-model to 6d(equivantly, consider type IIB compactified to d=8)

• In principle, everything goes through as before. The lagrangian is:

$$\mathcal{L} = -\int d^2 z \left(|G_1|^2 - G_1 \cdot \overline{\jmath}_1 + \mathrm{c.c.}
ight) \quad ext{with} \quad \overline{\jmath}_1 = j \, dz \, \delta^2(z, \overline{z}) \, .$$

• The naive perfect-square proposal would be

$$\mathcal{L}=-\int d^2 z\,|G_1-\bar{\jmath}_1|^2\,.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The co-dimension two case (continued)

• But: The singular 'source-form' is not closed,

$$d\left(j\,dz\,\delta^2(z,\overline{z})\right)\,\neq\,0\,.$$

To allow ' G_1 ' (assumed to be closed) to compensate, we must project on the closed part using the unique decomposition

$$\omega = \alpha + d\beta + d^{\dagger}\gamma.$$

In other words, one drops ' $d^{\dagger}\gamma$ '. This does not change EOMs.

• Using indices *h*, *e*, *c* for harmonic, exact and co-exact:

$$\mathcal{L} = \int_{z} - \left|\overline{G}_{1}^{h} + \overline{G}_{1}^{e} - j_{1}^{h} - j_{1}^{e}\right|^{2}$$
.

Here \overline{G}_1^e compensates j_1^e , so these terms drop out.

From toy-model to D7 brane case

• We are left with:

$$\mathcal{L} = \int_{z} - \left|\overline{G}_{1}^{h} - j_{1}^{h}\right|^{2}$$
.

But $\overline{G}_1^h \equiv \overline{G}_1^{(0)}$ is the quantized flux, so it can not compensate for the continuous $j_1^h \sim \lambda^2 dz / A_{\perp}$. (Here A_{\perp} is the 'brane-transverse' compact volume.)

- Thus, this perfect square of quantized flux and (finite) λ^2 term is the sole remainder of the calculation.
- Now the generalization to the realistic case is straightforward:

$$\mathcal{L} \supset \left| \overline{G}_3 - P(\lambda \lambda \Omega_3 \delta_{D7}) \right|^2.$$

(Here *P* is the closed-form projection, as before.)

Cross checks / getting the KKLT-result

• As before, the singular parts cancel and, using $\int G_3^{(0)} \wedge \Omega \sim W_0$, one arrives at (after 4d-normalization of the gauginos)

$$\left. \mathcal{K}^{T\overline{T}} \right| e^{\mathcal{K}/2} \mathcal{K}_{T} \mathcal{W}_{0} + \lambda \lambda \right|^{2}$$

- This is precisely the perfect square structure that also appears in the SUGRA+gauge theory formulae of Wess/Bagger.
- With the substitution $e^{-K/2}\lambda\lambda \rightarrow e^{-T}$ one arrives at (pre-uplift) KKLT:

$$e^{K}K^{T\overline{T}}\Big|D_{T}(W_{0}+e^{-T})\Big|^{2}$$

 Note: In this last step we neglect terms subleading in 1/T. To get those right, one needs loop corrections in the running from UV to IR.
 Kaplunovsky/Louis

Recent related work by other groups

Bena/Grana/Kovensky/Retolaza Kachru/Kim/McAllister/Zimet

- The method used is Generalized Complex Geometry.
- Here, two 6d spinors η^{1} , η^{2} define polyforms

 $\Psi_1 \sim \sum_{\rho} \eta^2 {}^{\dagger} \Gamma_{m_1 \cdots m_p} \eta^1 \, dy^{m_1} \cdots dy^{m_p} , \qquad \Psi_2 \sim \text{similar, with } \eta^{*\dagger}$ which encode the full metric and background field information.

- SUSY conditions (and hence EOMs) are easily written down.
- Using 4d SUSY, the AdS parameter can be related to a parameter in 10d SUSY conditions.
 ⇒ fully 10d-local check of pre-uplift KKLT

Recent related work by other groups (continued)

- Kachru/Kim/McAllister/Zimet go further by using the Generalized Complex Geometry to discuss
 - the cancellation of singular terms and
 - the 10d component-field-derivation of KKLT.
- However, one potentially confusing issue is the (T-duality-derived) non-local 10d D7-brane λ^4 term they use:

$$\mu_7 \int \sqrt{-G_8} \, \frac{1}{A_\perp} \lambda^4 \, .$$

• Another concern is that, while the cancellation of the divergence in $G_3\lambda^2$ is discussed, the cancellation of the divergence in the kinetic term

is not explicitly demonstrated.

$$\int_{6} |G_{3}|^{2} , \ G_{3} \sim \delta_{D7} + \frac{1}{z^{2}}$$

Back to our proposal

- While SUSY and Generalized Complex Geometry arguments may be elegant, having a dow-to-earth 10d component analysis is also useful.
- The latter is obviously plagues by divergences in $|G_3|^2$.
- To me, our 'Horava-Witten-style' perfect-square singularity subtraction is still the leading candidate for this goal.
- It also has its troubles:

When subtracting $|j_3|^2$, we left out $|j_3^c|^2 \supset \left(\frac{1}{\tau^2}\right)^2$.

- This last piece has a non-local tail.
- By contrast, the full source $j_3 = j_3^h + j_3^e + j_3^c$ is completely D7-localized.

Electric-magnetic interpetation of $G_3\lambda^2$ coupling

• An unconventional re-interpetation of our perfect square action might hence start with the full source:

$$|G_3+j_3|^2$$
 with $j_3 \sim \lambda^2 \delta_{D7} \overline{\Omega}$.

Observe that, in the term

$$G_3 \wedge * \overline{\jmath}_3 = G_3 \wedge * (\overline{\jmath}_3^h + \overline{\jmath}_3^e + \overline{\jmath}_3^c),$$

the sources $\overline{\jmath}_3^c$ and $\overline{\jmath}_3^c$ correspond precisely to electric and magnetic currents.

• For example:

 $G_3 \wedge * \overline{\jmath}_3^c \ \sim \ *G_3 \wedge \overline{\jmath}_3^c \ \sim \ G_7 \wedge \overline{\jmath}_3^c \ \sim \ dA_6 \wedge \overline{\jmath}_3^c \ \sim \ A_6 \wedge J_{mag.}$

Here, $\overline{\jmath}_3^e$ would not have contributed since it is exact. Vice versa, $\overline{\jmath}_3^e$ couples analogously to the 2-form potential. Electric-magnetic interpetation of $G_3\lambda^2$ coupling (continued)

• In summary, one would have

 $|G_3 + j_3|^2 \quad \text{with} \quad j_3 \sim \lambda^2 \delta_{D7} \overline{\Omega} \,.$ and the EOMs $dG_3 = J_{mag_1} \equiv d\overline{j_3}^e \quad \text{and} \quad d * G_3 = J_{el_1} \equiv d\overline{j_3}^c \,.$

In this way, the non-flux part of G_3 would cancel all but the harmonic part of j_3 .

• As a result, one has added a completely local term $|j_3|^3$, and still finds the finite result:

$$|G_3^{(0)} + j_3^h| \sim |G_3^{(0)} + \lambda^2 \Omega / A_\perp|^2$$

• The details are still work in progress ...

KKLT rescued

 Concerning KKLT, the above are fine points. In any case, one has in the end (possibly without the need for the 'P'):

$$\mathcal{L} \supset \left| \overline{\mathcal{G}}_3 - \mathcal{P} \left(\lambda \lambda \, \Omega_3 \, \delta_{D7} \right) \right|^2.$$

- From this, one derives the 4d effective potential, without and with the $\overline{D3}$ brane uplift, in agreement with KKLT.
- One can plug this into the 10d Einstein equations and, again, obtain the expected 4d curvature (with or without uplift).

```
agreement with Carta/Moritz/Westphal,
still (partial) disagreement with Gautason/Van Hemelryck/Van Riet/Venken
```

KKLT rescued ?

• Crucially, we know this must work out since 4d EOMs imply the integrated 10d Einstein eqs.

(' Δ_{other} ' from steep slope)

cf. Hamada/AH/Soler/Shiu & Carta/Moritz/Westphal

- However, a different group disagrees (with the treatment of the volume- or *T*-dependence in the 10d E-M-tensor).
 Gautason/Van Hemelryck/Van Riet/Venken '19
- Let us comment on this concern in more detail

An aside on the E-M tensor of the gaugino condensate:

• Our approach:

$$g_{mn} rac{\delta}{\delta g_{mn}} S_{eff} \quad o \quad T rac{\partial}{\partial T} S_{eff} \quad o \quad T rac{\partial}{\partial T} e^{-T}$$

- The derivative acting on e^{-T} gives the crucial, dominant term stopping the runaway to large volume
- The approach of Gautason et al. (disregarding the red part):

$$T rac{\partial}{\partial T} S_{class.}$$
 with $S_{class.} \supset T [G_3 \lambda^2 + (F_{\mu\nu})^2]$

- Subsequent quantum averaging gives $\langle \lambda^2 \rangle \sim e^{-T}$, but the *T*-derivative never gets to act on the exponential.
- We believe this is insufficient and the key effect (in this approach) will come from terms like $\langle G_3 \lambda^2 (F_{\mu\nu})^2 \rangle$. (for details on this point see added comment in v3 of our paper)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Furthermore:

- New concerns have been raised (about the large volume required to house the complicated topology needed for the D7-brane stack)
 Carta/Moritz/Westphal
- For further recent issues see...

Das/Haque/Underwood, Bena/Dudas/Grana/Lüst, Blumenhagen/Kläwer/Schlechter

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

 Nevertheless, I believe one may be more optimistic about KKLT than last year.

Summary / Conclusions

- One should certainly not simply believe in metastable stringy de Sitter but try to establish it.
- Concerning the recent '10d-line-of-attack', KKLT appears to in better shape now than a year ago.
- An interesting (partially open) issue in this context is the detailed structure of the D7-gaugino-bulk coupling.
- I view the a Horava-Witten-style divergence-cancelling $\lambda^4 \delta(z)^2$ term as a central and new feature.
- In parallel to establishing KKLT in more and more detail, getting stringy quintessence to work is the natural alternative.
- This is not easy....(cf. recent paper on the *F*-term problem)