Landscape, Swampland and de Sitter

Arthur Hebecker (Heidelberg)

including recent work with F. Denef / T. Wrase / Y. Hamada / G. Shiu / P. Soler

<u>Outline</u>

- Landscape vs. Swampland a brief introduction.
- The |V'|/V de Sitter conjecture and its problems.
- The 'refined' and the 'asymptotic' de Sitter conjecture (and potential loopholes).

- Stringy de Sitter models: KKLT and its issues.
- Towards a 10d understanding of KKLT.

String Compactifications

• String theory provides an (essentially unique) and UV-complete field theory in 10d:

$$S=\int_{10}\mathcal{R}-|\mathcal{F}_{\mu
u
ho}|^2+\cdots$$

- At the very least, this is a useful toy-model for a well-defined gravitational theory.
- One may go for more by compactifying on Calabi-Yaus (6d spaces with vanishing Ricci tensor).
- One ends up with

(A) unrealistic moduli-space field theories ($\mathcal{N} = 2$ SUSY)

(B) very flat and poorly controlles field spaces ($\mathcal{N} = 1$ SUSY) [it remains unclear how $\Lambda \sim 10^{-120}$ can occur].

• The extra ingredient of fluxes induces an exponentially large landscape of discrete solutions.

Bousso/Polchinski '00, Giddings/Kachru/Polchinski '01 (GKP) Kachru/Kallosh/Linde/Trivedi '03 (KKLT), Denef/Douglas '04 Balasubramanian/Berglund/Conlon/Quevedo '05 (LVS)

• Key to the historical number 10^{500} (by now rather $10^{300.000}$) is not the abundance of Calabi-Yaus ($\sim 10^9$), but the discrete flux choice:

$$\oint_{3-cycle} F_{\mu\nu\rho} \in \mathbb{Z}$$

• To understand the discreteness ('flux quantization'), one may think of the twisting of a gauge-theory *U*(1) bundle:

- Typical CYs have $\mathcal{O}(300)$ 3-cycles.
- Each can carry some integer number of flux of $F_{\mu\nu\rho}$, $H_{\mu\nu\rho}$.
- With, for example, $\textit{N}_{\textit{flux}} \in \{-10, \dots, 10\}$ on gets

 $(2 \times 20)^{300} \sim 10^{500}$ possibilities.

 One may visualize the emerging situation like (just with φ → {φ₁,...,φ_N}):

But ususally this only works for the shape ('complex structure') moduli, the size ('Kahler') moduli remain flat.

- The size moduli (let's say just the volume) get a (much smaller) potential from quantum corrections.
- While the simplest solutions are runaway or SUSY-AdS, there is (in my opinion) evidence for meta-stable de-Sitter vacua

Landscape vs. Swampland

• Before coming to de Sitter, let us clarify the concepts of Landscape and Swampland:

Landscape: Any EFT obtained from string theory as above.

Swampland: Any other naively consistent EFT

(always including gravity).

Swamplan

• The existence of a swampland is, of course, one key possibility of how the string landscape could be predictive.

Landscape vs. Swampland

- In a way, this *existence* might however be almost trivial: The landscape is discrete, the space of EFTs is continuous.
 ⇒ Almost any EFT is in the Swampland.
- What is less obvious is the presence of well-defined 'empty' regions in the field-parameter space:

- Thus, this presence of unaccessible regions in parameter space might be the more useful 'swampland' definition.
- Another twist: Demand 'consistency in quantum gravity' (not necessarily string theory). This is of course poorly defined....

Concrete 'Swampland Criteria'

• Specific quantum-gravity consistency citeria have been discussed since a long time

No exact global symmetries Completeness see e.g. Banks/Seiberg '10 and refs. therein [the charge lattice is fully occupied]

The swampland distance conjecture [infinite distances in moduli space come with exponentially light states]

The weak gravity conjecture

Vafa '05, Ooguri/Vafa '06

Arkani-Hamed/Motl/Nicolis/Vafa '06

If any of those criteria were relevant experimentally...
 → unique opportunity to confront quantum gravity & reality!

Example: Weak Gravity Conjecture

'Gravity is the weakest force':

 $m \lesssim g M_P$ for the (lightest) charge particle

• Generalization to axions (0-forms gauge fields):

$$S_{inst} \lesssim rac{1}{f} M_P$$
 or $f \lesssim rac{M_P}{S_{inst}} \lesssim M_P$

 General problem: Might be avoidable in low-energy EFT through 'model building':

Through special potential (KNP)

Or through flux choice (Higgsing) AH/Mangat/Rompineve/Witkowski See also Saraswat for U(1) version of this

- One possible constraint is clearly $\Lambda_{cosm.} \leq 0$.
- Indeed, a longstanding unease about the status of de Sitter space in quantum gravity exists.

Woodard, Danielsson, Van Riet, Bena, Grana, Sethi, Dvali, ...

The motivations are diverse, e.g. ...

- Backreaction of perturbations leaving the horizon.
- Possible problems with an interpretation of the 'inside-horizon region' as the full QM system.

(Personally, I do not fully understand this unease.)

• In string theory, dS space can only be metastable (one may always decay to the many Mink. or AdS vacua).

The |V'|/V de Sitter conjecture

 Recently, a very strong version of the doubts concerning (even metastable) dS vacua has been put forward:

|V'|/V > c (in Planck units and with $c \sim \mathcal{O}(1)$)

Obied/Ooguri/Spodyneiko/Vafa Agrawal/Obied/Steinhardt/Vafa '18

• Intriguingly, this does not immediately clash with late cosmology:

Indeed, a simple quintessence model with $V \sim e^{-c\varphi}$ and $c \sim O(1)$ can satisfy the conjecture and replace $\Lambda_{cosm.}$.

A lot of phenomenological work (both late-time and inflation) has followed

The |V'|/V de Sitter conjecture

- Let us briefly pause and (attempt to) explain how such an incredibly strong conjecture might be motivated.
- The generic result of a compactification with volume V (and some positive-energy source in the compact space) is

$$\mathcal{L} \sim \mathcal{V}\left[\mathcal{R}_4 - \frac{(\partial \mathcal{V})^2}{\mathcal{V}^2} - E\right]$$

 After Weyl-rescaling to the Einstein frame and introducing the canonical field φ = ln(V), one finds

$${\cal L} ~\sim~ \left[{\cal R}_4 - (\partial arphi)^2 - {\it E} \, e^{-arphi}
ight] \, .$$

 The exponent is usually O(1), so the simplest compactifications do indeed obey the |V'|/V conjecture.

The |V'|/V dS conjecture and the Higgs

- However, if this were unavoidable, we would be in deep trouble.
 Denef/AH/Wrase '18
- Indeed, in presence of the SM, an additive quintessence contribution does not save the conjecture:

$$V = \lambda (h^2 - v^2)^2 + \Lambda_{cosm.} e^{-c\varphi}$$

clearly violates the conjecture at h = v.

• An (apparent) remedy is also easily found:

$$V = \left[\lambda(h^2 - v^2)^2 + \Lambda_{cosm.}\right] e^{-c\varphi}$$

 But: Extreme tuning and equivalence principle violation now arise (especially if one generalizes from Higgs to pion).
 see also subsequent work by Cicoli/.../Quevedo; Murayama/Yamazaki/ Yanagida; Marsh;
 and especially Choi/Chway/Shin '18 The |V'|/V dS conjecture and the Higgs (summary)

- The |V'|/V conjecture might fall (has fallen?) on phenomenological grounds.
- As a logical possibility, the conjecture may still hold in string theory (which hence does not describe the real world!).
- However, critical points at V > 0 may exist even in ST.

see work by Lüst, Wrase, Andriot, Shiu, Danielsson, Van Riet,

• As a particularly simple, recent argument uses the potential..

The 'refined' dS Swampland conjecture

- One may say 'the conjecture is *really* about forbidding metastable de Sitter' (sacrificing |V'|/V).
- Such formulations have indeed been proposed:

Garg/Krishnan, Ooguri/Palti/Shiu/Vafa

One of the two must always hold:

 $|V'|/V > c_1$ or $V''/V < -c_2$.

- In words: No continued exponential expansion.
- Technically, this puts us 'back to square one': The old debate about realizing de Sitter (or just inflation) in string theory.
- Such a critical debate is clearly needed (see below), but at this time I do not see strong *new* reasons against dS.

The 'asymptotic' dS Swampland conjecture

- One of the above papers gave arguments against 'asymptotic' de Sitter vacua.
 Ooguri/Palti/Shiu/Vafa
- Here asymptotic means at asymptotically large field distance, corresponding e.g. to 'large volume'.

The argument is:

- By the Swampland distance conjecture: large $\varphi \implies$ tower of light states at $m \sim e^{-\varphi}$.
- New assumption: This number of states behaves as $n(\varphi) e^{-\varphi}$ with $n(\varphi)$ monotonic.
- New assumption: Those states should saturate dS entropyy $S \sim R_{dS}^2 \sim 1/V$.
- Accepting all of this does indeed imply that
 V decays exponentially at φ → ∞.

The 'asymptotic' dS Swampland conjecture

- Clearly, many highly non-trivial new assumptions are invoked.
- In fact, one may argue much more directly:
 Reece, AH/Wrase

Large $\varphi \Rightarrow$ many light states Many light states \Rightarrow low cutoff Λ (species bound). Low cutoff \Rightarrow small potential ($V \sim 1/R_{dS}^2 \lesssim \Lambda^2$).

 <u>But:</u> This gives only an upper bound, wiggles and hence minima not ruled out (closely related: flux vacua at φ → ∞).
 AH/Wrase, Junghans

$$\psi(\varphi)$$
 $\varphi \sim \ln \mathcal{V}_{cy}$

dS Swampland conjectures: intermediate summary

- The above 'oscillations loophole' has a counterpart in the mononotonicity assumption of the entropy argument.
- Given our limited understanding of dS entropy, this does not appear easy to close.
- Quite generally, even the most widely accepted Swampland conjectures are hard to defend rigorously.
- Much harder: Rule out dS also in the regime of 'large but not asymptotically large' volume.
- Alternative approach: Do not fight the landscape, but try to establish it by studying best concrete models.

<u>KKLT</u>

Kachru/Kallosh/Linde/Trivedi '03

- KKLT is one of the leading concrete dS models in string theory (the other being the 'large volume scenario' or LVS). Balasubramanian/Berglund/Conlon/Quevedo '05
- The present 'no-dS' debate was sparked off (among others) by a concrete criticism of KKLT in Moritz/Retolaza/Westphal '17
- Before discussing the criticism, let us discuss the proposal.

(2-slide reminder of) KKLT

- CY with all complex-structure moduli fixed by fluxes; The only field left: Kahler modulus T = τ + ic with τ ~ V^{2/3}.
- $K = -3\ln(T + \overline{T})$; fluxes give $W = W_0 = \text{const.}$, $\Rightarrow V \equiv 0$ ('no scale').
- Gaugino condensation on D7 brane stack: $W = W_0 + e^{-T}$.
- Small uplift by D3-brane
 in a warped throat:
 V → V + c/τ².

<u>KKLT</u>

• The scalar potential is changed first to SUSY-AdS, then to an 'uplifted' meta-stable de Sitter potential:

A longstanding critical debate has targeted the metastability of the D3 in view of flux-backreaction.
 (My take on this is that metastability remains plausible.)

Bena, Grana, Danielsson, Van Riet,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

KKLT under attack

Moritz/Retolaza/Westphal '17 Gautason/Van Hemelryck/Van Riet '18

• Recent criticism was rooted in a possibly too simplistic treatment of D7-gaugino-bulk-coupling:

 $\mathcal{L}_{10} \supset |G_3|^2 + G_3 \cdot \Omega_3 \langle \lambda \lambda \rangle \, \delta_{D7} \; .$

Camara/Ibanez/Uranga '04, Koerber/Martucci '07 Baumann/Dymarsky/Klebanov/Maldacena/McAllister '06 Heidenreich/McAllister/Torroba '10

- It is clear what to expect:
 - G_3 backreacts, becoming itself singular at the brane.
- Plugging this back into the action, one gets a divergent effect of type (δ_{D7})².
- Now anything can happen....

KKLT rescued

Hamada/AH/Shiu/Soler '18,'19; Kallosh '19; Carta/Moritz/Westphal '19

- Singular gaugino effects have been observed before, in other string models.
 Horava/Witten '96
- It has been shown that a highly singular $\langle \lambda \lambda \rangle^2$ -term saves the day by 'completing the square'. Applied to our case:

$$\mathcal{L}_{10} \supset \left| G_3 \,+\, \Omega_3 \left< \lambda \lambda \right> \delta_{D7}
ight|^2 \,.$$

 Very roughly speaking, one now writes G₃ = G₃^{flux} + δG₃ and lets the second term cancel (most of) the δ-function. The result is (very roughly):

$$\mathcal{L}_{10} \supset \left| G_3^{flux} + \langle \lambda \lambda \rangle \right|^2 \longrightarrow \left| D_T W_0 + \partial_T e^{-T} \right|^2.$$

The perfect square structure in M-theory

 The established part of the story is in M-theory (with x¹¹ compactified on S¹/Z₂). There, one has

$$S \sim -\int_{11} \left(G_4^2 - \delta(x^{11})(G_4)_{ABC\,11} j^{ABC} \right),$$

where $j^{ABC} \sim \overline{\lambda} \Gamma^{ABC} \lambda$.

 It is well-known that the divergence problem is resolved by the proposal (enforced by SUSY)

$$S\sim -\int_{11}\left(G_4-rac{1}{2}\delta(x^{11})j
ight)^2$$
 . Horava/Witten

Understanding the M-theory case in a toy model

 Let us first understand this better in a 5d toy-model, (with x⁵ ≡ y compactified on S¹/Z₂):

(inspired by Mirabelli/Peskin '97)

$$S = -\int_5 (d \varphi - j \delta(y) \, dy) \wedge * (d \varphi - j \delta(y) \, dy) \, .$$

• The equation of motion is

$$d*(d\varphi-j\delta(y)\,dy)=0\,,$$

which is solved by

$$d\varphi = j\delta(y)dy + \alpha_M dx^M$$
.

• Crucially, $\alpha = \alpha_M dx^M$ is co-closed: $d * \alpha = 0$.

Obtaining a finite action

• Excluding x^{μ} -dependence, we can write the EOM as

 $\partial_{y} \left[\partial_{y} \varphi - j \delta(y) \right] = 0$

and the solution as

 $\partial_y \varphi = j\delta(y) + \alpha_5$ with $\alpha_5 = \text{const.}$

• Flux quantization, $\int_{S^1} d\varphi \in \mathbb{Z}$, implies

$$\int dy \,\partial_y \varphi \,=\, j + \alpha_5 = n$$

such that $\alpha_5 = n - j$. The resulting action is

 $S=-(n-j)^2.$

• We see: $\partial_y \varphi$ cancels the singular term and develops a finite part $\sim (n-j)$. Obtaining a finite action (continued)

- The 'step' in $\partial_y \varphi$ cancels the source term $j\delta(y)$.
- Compactness and continuity of φ (≡ flux quantization) enforce a non-trival slope proportional to this 'step'.
- If n ≠ 0, continuity is replaced by an extra step of size n at the boundary. Hence:

$$\mathcal{L} = \int_{R} |d\varphi - j\delta|^2 = -(n-j)^2/R.$$

• Crucial: Radius dependence of j^2 term.

The co-dimension two case

• The case of interest is not co-dimension one but rather co-dimension two.

⇒ Generalize our toy-model to 6d(equivantly, consider type IIB compactified to d=8)

• In principle, everything goes through as before. The lagrangian is:

$$\mathcal{L} = -\int d^2 z \left(|G_1|^2 - G_1 \cdot \overline{\jmath}_1 + \mathrm{c.c.}
ight) \quad ext{with} \quad \overline{\jmath}_1 = j \, dz \, \delta^2(z, \overline{z}) \, .$$

• The naive perfect-square proposal would be

$$\mathcal{L}=-\int d^2 z\,|G_1-\bar{\jmath}_1|^2\,.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The co-dimension two case (continued)

• But: The singular 'source-form' is not closed,

$$d\left(j\,dz\,\delta^2(z,\overline{z})\right)\,\neq\,0\,.$$

To allow ' G_1 ' (assumed to be closed) to compensate, we must project on the closed part using the unique decomposition

$$\omega = \alpha + d\beta + d^{\dagger}\gamma.$$

In other words, one drops ' $d^{\dagger}\gamma$ '. This does not change EOMs.

• Using indices *h*, *e*, *c* for harmonic, exact and co-exact:

$$\mathcal{L} = \int_{z} - \left|\overline{G}_{1}^{h} + \overline{G}_{1}^{e} - j_{1}^{h} - j_{1}^{e}\right|^{2}$$
.

Here \overline{G}_1^e compensates j_1^e , so these terms drop out.

From toy-model to D7 brane case

• We are left with:

$$\mathcal{L} = \int_{z} - \left|\overline{G}_{1}^{h} - j_{1}^{h}\right|^{2}$$
.

But $\overline{G}_1^h \equiv \overline{G}_1^{(0)}$ is the quantized flux, so it can not compensate for the continuous $j_1^h \sim \lambda^2 dz / A_{\perp}$. (Here A_{\perp} is the 'brane-transverse' compact volume.)

- Thus, this perfect square of quantized flux and (finite) λ^2 term is the sole remainder of the calculation.
- Now the generalization to the realistic case is straightforward:

$$\mathcal{L} \supset \left| \overline{G}_3 - P(\lambda \lambda \Omega_3 \delta_{D7}) \right|^2.$$

(Here *P* is the closed-form projection, as before.)

Cross checks / getting the KKLT-result

• As before, the singular parts cancel and, using $\int G_3^{(0)} \wedge \Omega \sim W_0$, one arrives at (after 4d-normalization of the gauginos)

$$K^{T\overline{T}} \left| e^{K/2} K_T W_0 + \lambda \lambda \right|^2$$

- This is precisely the perfect square structure that also appears in the SUGRA+gauge theory formulae of Wess/Bagger.
- With the substitution $e^{-K/2}\lambda\lambda \rightarrow e^{-T}$ one arrives at (pre-uplift) KKLT:

$$e^{K}K^{T\overline{T}}|D_{T}(W_{0}+e^{-T})|^{2}$$

Recent related work by other groups

${\sf Bena}/{\sf Grana}/{\sf Kovensky}/{\sf Retolaza}$

• Using Generalized Complex Geometry, the AdS parameter can be related to a parameter in 10d SUSY conditions.

 \Rightarrow fully 10d-local check of pre-uplift KKLT

Kachru/Kim/McAllister/Zimet

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Also use Generalized Complex Geometry, but try to go further towards a component-level check of KKLT
- However, non-local D7 action introduced ad hoc; divergence cancellation in G₃ kinetic term remains unclear.

Back to our proposal

- While SUSY and Generalized Complex Geometry arguments may be elegant, having a down-to-earth 10d component analysis is also useful.
- The latter is obviously plagues by divergences in $|G_3|^2$.
- To me, our 'Horava-Witten-style' perfect-square singularity subtraction is still the leading candidate for this goal.
- It also has its troubles:

When subtracting $|j_3|^2$, we left out $|j_3^c|^2 \supset \left(\frac{1}{\tau^2}\right)^2$.

- This last piece has a non-local tail.
- By contrast, the full source $j_3 = j_3^h + j_3^e + j_3^c$ is completely D7-localized.

Electric-magnetic interpetation of $G_3\lambda^2$ coupling

• An unconventional re-interpetation of our perfect square action might hence start with the full source:

$$|G_3+j_3|^2$$
 with $j_3 \sim \lambda^2 \delta_{D7} \overline{\Omega}$.

Observe that, in the term

$$G_3 \wedge * \overline{\jmath}_3 = G_3 \wedge * (\overline{\jmath}_3^h + \overline{\jmath}_3^e + \overline{\jmath}_3^c),$$

the sources $\overline{\jmath}_3^c$ and $\overline{\jmath}_3^c$ correspond precisely to electric and magnetic currents.

• For example:

 $G_3 \wedge * \overline{\jmath}_3^c \ \sim \ *G_3 \wedge \overline{\jmath}_3^c \ \sim \ G_7 \wedge \overline{\jmath}_3^c \ \sim \ dA_6 \wedge \overline{\jmath}_3^c \ \sim \ A_6 \wedge J_{mag.}$

Here, \overline{j}_3^e would not have contributed since it is exact. Vice versa, \overline{j}_3^e couples analogously to the 2-form potential. Electric-magnetic interpetation of $G_3\lambda^2$ coupling (continued)

• In summary, one would have

 $|G_3 + j_3|^2 \quad \text{with} \quad j_3 \sim \lambda^2 \delta_{D7} \overline{\Omega} \,.$ and the EOMs $dG_3 = J_{mag_1} \equiv d\overline{j_3}^e \quad \text{and} \quad d * G_3 = J_{el_1} \equiv d\overline{j_3}^c \,.$

In this way, the non-flux part of G_3 would cancel all but the harmonic part of j_3 .

• As a result, one has added a completely local term $|j_3|^3$, and still finds the finite result:

$$|G_3^{(0)} + j_3^h| \sim |G_3^{(0)} + \lambda^2 \Omega / A_\perp|^2$$

• The details are still work in progress ...

KKLT rescued

 Concerning KKLT, the above are fine points. In any case, one has in the end (possibly without the need for the 'P'):

$$\mathcal{L} \supset \left| \overline{\mathcal{G}}_3 - \mathcal{P} \left(\lambda \lambda \, \Omega_3 \, \delta_{D7} \right) \right|^2.$$

- From this, one derives the 4d effective potential, without and with the $\overline{D3}$ brane uplift, in agreement with KKLT.
- One can plug this into the 10d Einstein equations and, again, obtain the expected 4d curvature (with or without uplift).

```
agreement with Carta/Moritz/Westphal,
still (partial) disagreement with Gautason/Van Hemelryck/Van Riet/Venken
```

KKLT rescued ?

• Crucially, we know this must work out since 4d EOMs imply the integrated 10d Einstein eqs.

(' Δ_{other} ' from steep slope)

cf. Hamada/AH/Soler/Shiu & Carta/Moritz/Westphal

 However, a different group disagrees (with the treatment of the volume- or *T*-dependence in the 10d E-M-tensor).
 Gautason/Van Hemelryck/Van Riet/Venken '19

• Let us comment on this concern in more detail

An aside on the E-M tensor of the gaugino condensate:

• Our approach:

$$g_{mn} rac{\delta}{\delta g_{mn}} S_{eff} \quad o \quad T rac{\partial}{\partial T} S_{eff} \quad o \quad T rac{\partial}{\partial T} e^{-T}$$

- The derivative acting on e^{-T} gives the crucial, dominant term stopping the runaway to large volume
- The approach of Gautason et al. (disregarding the red part):

$$T rac{\partial}{\partial T} S_{class.}$$
 with $S_{class.} \supset T [G_3 \lambda^2 + (F_{\mu
u})^2]$

- Subsequent quantum averaging gives $\langle \lambda^2 \rangle \sim e^{-T}$, but the *T*-derivative never gets to act on the exponential.
- We believe this is insufficient and the key effect (in this approach) will come from terms like $\langle G_3 \lambda^2 (F_{\mu\nu})^2 \rangle$. (for details on this point see added comment in v3 of our paper)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Furthermore:

- New concerns have been raised (about the large volume required to house the complicated topology needed for the D7-brane stack)
 Carta/Moritz/Westphal
- For further recent issues see...

Das/Haque/Underwood, Bena/Dudas/Grana/Lüst, Blumenhagen/Kläwer/Schlechter

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

 Nevertheless, I believe one may be more optimistic about KKLT than last year.

Summary / Conclusions

- One should certainly not simply believe in metastable stringy de Sitter but try to establish it.
- Concerning the recent '10d-line-of-attack', KKLT appears to in better shape now than a year ago.
- An interesting (partially open) issue in this context is the detailed structure of the D7-gaugino-bulk coupling.
- I view the a Horava-Witten-style divergence-cancelling $\lambda^4 \delta(z)^2$ term as a central and new feature.
- In parallel to establishing KKLT in more and more detail, getting stringy quintessence to work is the natural alternative.
- This is not easy....(cf. recent paper on the *F*-term problem)

An Aside on Quintessence:

- Of course, in spite of all that's going to be said, KKLT (and other dS constructions) might in the end fail.
- Quintessence is a natural way out, but this is also difficult..

see e.g. Cicoli/Pedro/Tasinato '12 (also: Cicoli/Burgess/Quevedo '11)

• In particular, one faces an *F*-Term Problem:

AH/Skrzypek/Wittner

• Namely, one needs an extremely large volume, where phenomenological SUSY-breaking implies:

 $e^{\kappa}|D_{x}W|^{2} \gg \left|e^{\kappa}(|D_{T}W|^{2}-3|W|^{2})\right|$

 \Rightarrow completely new scalar-potential term needed!

Selection of recent work: Cicoli/DeAlwis/Maharana/Muia/Quevedo; Acharya/Maharana/Muia; Emelin/Tatar; Hardy/Parameswaran; ···