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Abstract

This is a summary of the talk I gave in the Statistical Physics seminar by Prof.

A. Mielke.

In the first part the quantum Heisenberg model is introduced. Then a short

overview of the ferromagnetic and antiferromagnetic ordering of the Heisenberg

model is given. In last part the spin wave approximation for the antiferromag-

netic case is outlined.

1. Motivation

The Heisenberg model is an effective model to describe ferro- and antiferro-

magnetic solids. It is suited for the description of insulators rather than metals

[2]. Nevertheless it is used to describe real materials e.g. the insulator La2CuO4

which is important in the topic of superconductors. The Heisenberg model can5

only be exactly solved in one dimension. For higher dimensions one has to rely

on analytic approximation or numerical methods. One of these is the spin wave

approximation.

2. The Heisenberg Model

The model is defined on a d-dimensional lattice with N sites. To each site

i the spin operators Si = (Sx
i , S

y
i , S

z
i ) are assigned. Only nearest neighbor

interactions between the spins are considered. The hamiltonian reads as follows.

H =
∑
<i,j>

JxS
x
i S

x
j + JyS

y
i S

y
j + JzS

z
i S

z
j − h

∑
i

Sz
i (1)

The last term of the hamiltonian describes the lowering of the energy by an10

external magnetic field h.



For each spin S = 1
2 , 1,

3
2 , ... there exists a set of (2S + 1) × (2S + 1) spin

matrices S. Thus H is defined on the Hilbert space H =
⊗

N C2S+1 with

Sm
i = I⊗ I⊗ ...⊗ I⊗ Sm ⊗ I⊗ ...I, where Sm is at the i-th position. The spin

matrices satiesfy the commutation relation [Sm, Sn] = iεmnoS
o. Furthermore15

Sz has 2S eigenvectors |sz〉 with eigenvalues −S,−S+ 1, ...S. For simplicity we

set J = Jx = Jy = Jz.

3. Ferro- and Antiferromagnetism

3.1. Ferromagnetism

A spin system is said to be ferromagnetic, if the ground state has a ferromag-20

netic order. This means that the state is similiar to the classical ferromagnetic

state, in which all spins point in to the same direction. This is said to be true,

if for the magnetisation per site < m >6= 0 holds.

For J > 0 the Heisenberg model is ferromagnetic. In demension d = 1 and

d = 2 however there is no ferromagnetic order for finite temperatures T > 0. In25

dimension d ≥ 3 there exist a critical temperature Tc, so that for temperatures

T ≤ Tc the Heisenberg model is ordered.

3.2. Antiferromagnetism

A spin system is said to antiferromagnetic, if the ground state has an anti-

ferromagnetic order. This means it is similiar to the classical antiferromagnetic30

state, in which neighbouring spins point exactly in opposite direction. The lat-

tice of the system is devided into two sublattices A and B. On A the spins point

into Sz direction and on B they point into the opposite direction. To measure

the ordering one looks on the magnetisation < mSt > of the the sublattice A.

If it is nonzero the system is ordered.35

For J < 0 the Heisenberg model is in most cases antiferromagnetic depending

on the dimension d and the specific lattice. In dimension d = 1 it is assumed

that there is no odering. Whereas in dimension d = 2 it is assumed that there

is ordering only for the temperature T = 0. As in the ferromagnetic case, for
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d ≥ 3 there exists a critical temperature TN . For temperature T ≤ TN the40

Heisenberg model is ordered.

(a) the classical ferromagnetic state for a

2d cubic lattice

(b) the classical antiferromagnetic state

for a 2d cubic lattice

Figure 1

Source: https://en.wikipedia.org/wiki/Ferromagnetism#/media/File:Ferromagnetic_ordering.svg,

https://en.wikipedia.org/wiki/Antiferromagnetism#/media/File:Antiferromagnetic_ordering.svg

4. The Spin Wave Approximation

One can not solve the Heisenberg model exactly for d ≥ 2. But for system

with ferro- or antiferromagnetic ordered ground state and particular for large S

and small temperatures one can use the so-called spin wave aprroximation. In

the following we derive this approximation for the antiferromagnetic Heisenberg

model on a cubic lattice in the limit h→ 0.

First one defines ladder operators S± to rewrite the hamiltonian (1).

S±i ≡ S
x
i ± S

y
i

H =
∑
<i,j>

J

2
(S+

i S
−
j + S−i S

+
j ) + JSz

i S
z
j − h

∑
i

Sz
i (2)

Then we define the operator

n̂i =

S − S
z
i i ∈ A

S − (−Sz
i ) i ∈ B

(3)

, which measures the difference of a state from the classical antiferromagnetic

state. From the definition it follows that the eigenvectors of Sz
i are eigenvectors
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|ni〉 of n̂i with eigenvalues ni = 0, 1, ..., 2S. S± are ladder operators and one

can show that

S+
i |ni〉 =

√
2S(1− ni − 1

2S
)ni |ni − 1〉

S−i |ni〉 =

√
2S(ni + 1)(1− ni

2S
) |ni + 1〉 (4)

for an i ∈ A. For an i ∈ B S+ and S− are interchanged. The idea is now to

rewrite S± in terms of boson creation and annihilation operators c+i and ci.

c+i |ni〉 =
√
ni + 1 |ni + 1〉

ci |ni〉 =
√
ni |ni − 1〉 (5)

[ci, c
+
j ] = δij

The relations (5) are similiar to the S± relations (4) and yield

n̂i = c+i ci.

Then we rename ai ≡ ci on A and bi ≡ ci on B to obtain an expression of S±

for an i ∈ A.

S+
i =

√
2S

√
1− n̂i

2S
ai

S−i =
√

2Sa+i

√
1− n̂i

2S

For i ∈ B one interchanges ai ↔ bi and S+
i ↔ S−i . This is known as the

Holstein-Primakoff transformation. Inserting it into (2) yields

H =NdJS2

− 2dJ(
∑
i

n̂i)S − J
∑
<i,j>

(fS(n̂i)aifS(n̂j)bj + a+i fS(n̂i)b
+
j fS(n̂j))S

+ J
∑
<i,j>

n̂in̂j (6)

with

fS(n̂i) =

√
1− n̂i

2S
≈ 1− n̂i

4S
− n̂2i

32S2
− .... (7)
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To simplify the hamiltonian we approximate fS(n̂i) ≈ 1 and neglect the term

quadratic in n̂i, which yields

H =NdJS2

− 2dJ(
∑
i

n̂i)S − J
∑
<i,j>

(aibj + a+i b
+
j )S (8)

On the one hand this is valid in the limit S → ∞, because the quadratic

term is only of order S0. On the other hand one can argue as follows: (7) is

an exspansion in n̂i

2S and not only in 1
S . For small temeperature the relevant

states are small exitiation of the ground state |0〉. So, if 〈0|n̂i|0〉
2S � 1, fS(n̂i) ≈ 1

should hold and the quadratic term can be neglected.

To diagonalize (8) we write it in terms of a pair of new creation and annihilation

operators αk and βk.

αk = cosh(θk)ak + sinh(θk)b+k

βk = sinh(θk)a+k + cosh(θk)bk

The θk is some real constant choosen in such a way, that (8) becomes diagonal.

The ak and bk are the fourier transformations of ai and bi with k in the Brillouin

zone of the sublattices A or B [1]. The hamiltonian (8) becomes:

HLSW = E0 +
∑
k

ω(k)(α+
k αk + β+

k βk) (9)

Then with E0 < 0 and ω(k) > 0 the ground state |0〉 is define by

αk |0〉 = 0, βk |0〉 = 0

and exitation are given by

α+
k |0〉 , β+

k |0〉 ,

the so-called spin waves or magnons.

To measure the validity of the approximation in (8) one can look if 〈0|n̂i|0〉
2S � 1

really holds. For S = 1
2 in the limit N →∞ one finds:

1

N

∑
i

〈0| n̂i |0〉
2S

=

≤ 0, 2 d = 2, 3

∞ d = 1
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So in dimension d = 2, 3 one can assume that the approximation holds, but in

one dimension it is clearly wrong. This is due to the fact that only in dimensions

d ≥ 2 the model has an ordered ground state, which is necassary for n̂i to be45

small.

In conclusion we rewrote our system of interactiong spin into a system of

non interaction bosons. The eigenvalues and eigenstates in the spin wave ap-

proximation are easily computable. But one has to check in the end, if it is

really a valid approximation.50
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