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Abstract

The LHC produces huge amounts of data in which signs of new physics can be hidden. To
take full advantage of existing or future LHC data, it is worth exploring novel techniques
such as deep learning methods or global analysis strategies. We first study BNNs, a
deep learning method which has the benefit of providing uncertainty estimates while still
performing similarly to ordinary deep neural networks. We show in different studies how
BNNs can be applied to LHC physics. A BNN is trained for the task of jet calibration
and we illustrate how we can disentangle and understand the predicted uncertainty types.
Furthermore, we discuss different ideas of how BNNs can be used for collider event
generation, introducing error bars which are necessary when replacing existing Monte
Carlo simulations with deep learning methods.

The focus is then shifted to the global analysis of LHC data. To derive accurate bounds
on the space of new physics, it is crucial to have an optimal understanding of all the
uncertainties involved. We first discuss the results of matching a specific UV model to
the SMEFT. The matching procedure introduces an additional theory uncertainty which
has a significant impact on the derived bounds. We then study more generally the results
of a global SMEFT analysis for different statistical approaches, namely a Bayesian one
and a profile likelihood based one. Both procedures are compared and the impact of
different uncertainty treatments is discussed. We encounter that it is crucial to describe
correlations between measurements as accurate as possible.

Zusammenfassung

Der LHC produziert riesige Datenmengen, in denen sich Anzeichen neuer Physik verber-
gen können. Um die Vorteile bestehender oder zukünftiger LHC-Daten voll auszuschöpfen,
lohnt es sich, neue Techniken wie Deep Learning Methoden oder globale Analysestrategien
zu erforschen. Wir untersuchen zuerst BNNs, eine Deep Learning Methode, die den
Vorteil hat, Unsicherheitsschätzungen zu liefern, während sie dennoch ähnlich funktioniert
wie gewöhnliche tiefe neuronale Netze. Wir zeigen in verschiedenen Studien, wie BNNs
auf die LHC-Physik angewendet werden können. Ein BNN wird für die Aufgabe der
Jet-Kalibrierung trainiert und wir veranschaulichen, wie wir die vorhergesagten Unsicher-
heitstypen entwirren und verstehen können. Darüber hinaus diskutieren wir verschiedene
Ideen, wie BNNs für die Generierung von Teilchenbeschleuniger-Ereignissen verwendet
werden können, und führen Fehlerbalken ein, die erforderlich sind, wenn bestehende
Monte Carlo Simulationen durch Deep Learning Methoden ersetzt werden.

Der Fokus wird dann auf die globale Analyse von LHC Daten verlagert. Um genaue
Grenzen für den Raum neuer Physik herzuleiten, ist es entscheidend, ein optimales
Verständnis aller damit verbundenen Unsicherheiten zu haben. Wir diskutieren zunächst
die Ergebnisse des Matchings eines bestimmten UV-Modells an die SMEFT. Das Matching-
Verfahren führt eine zusätzliche Theorieunsicherheit ein, die einen signifikanten Einfluss
auf die abgeleiteten Grenzen hat. Wir untersuchen dann allgemeiner die Ergebnisse einer
globalen SMEFT-Analyse für verschiedene statistische Ansätze, nämlich einen Bayesschen
und einen auf Profile Likelihoods basierenden. Beide Verfahren werden verglichen und
die Auswirkungen unterschiedlicher Unsicherheitsbehandlungen werden diskutiert. Wir
stellen fest, dass es entscheidend ist, Korrelationen zwischen Messungen so genau wie
möglich zu beschreiben.



Contents

List of Abbreviations vii

Preface viii

1 Introduction 1

2 Bayesian neural networks and high energy physics 3
2.1 Short introduction to neural networks . . . . . . . . . . . . . . . . . . . . 3
2.2 Bayesian neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Mean-field approximation . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Bayesian regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Bayesian classification . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.4 Reparameterization trick and how to implement a BNN . . . . . . 11
2.2.5 Maximum a posteriori and deterministic networks . . . . . . . . . 13

2.3 Normalizing flow networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Bayesian normalizing flows . . . . . . . . . . . . . . . . . . . . . . 16

3 Jet calibration with Bayesian neural networks 18
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Bayesian regression for jet calibration . . . . . . . . . . . . . . . . . . . . 20
3.3 Data set and network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Momentum determination and statistics . . . . . . . . . . . . . . . . . . . 22
3.5 Systematics and calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.6 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Event generation with Bayesian neural networks 32
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Generative networks with uncertainties . . . . . . . . . . . . . . . . . . . . 33

4.2.1 Uncertainties on event samples . . . . . . . . . . . . . . . . . . . . 33
4.2.2 Invertible Neural Networks . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Toy events with uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.1 Wedge ramp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.2 Kicker ramp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.3 Gaussian ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.4 Errors vs training statistics . . . . . . . . . . . . . . . . . . . . . . 40
4.3.5 Marginalizing phase space . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 LHC events with uncertainties . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Event generation with Bayesian neural networks – a different angle 48
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 Dataset and benchmark results . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3 Bayesian networks for amplitudes . . . . . . . . . . . . . . . . . . . . . . . 50

v



5.4 Network boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.4.1 Loss-based boosting . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.4.2 Performance boosting . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.4.3 Effect of training statistics . . . . . . . . . . . . . . . . . . . . . . . 57

5.5 Kinematic distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.6 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 From models to SMEFT and back? 61
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2.1 One-loop matching: generic approach . . . . . . . . . . . . . . . . 62
6.2.2 One-loop matching: implementation . . . . . . . . . . . . . . . . . 64
6.2.3 Triplet model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.2.4 SFitter setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.3 Toy fits and matching uncertainty . . . . . . . . . . . . . . . . . . . . . . 69
6.3.1 Decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.3.2 Matching scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.4 SMEFT global analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.4.1 Resonance searches at high invariant masses . . . . . . . . . . . . . 78
6.4.2 Global analysis results . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.5 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7 To profile or to marginalize?– a SMEFT case study 89
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.2 SMEFT Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.3 Bayesian SFitter setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.4 Updated dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.4.1 WW resonance search . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.4.2 WH resonance search . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.4.3 ZH resonance search . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.4.4 Boosted Higgs production . . . . . . . . . . . . . . . . . . . . . . . 107
7.4.5 From the top . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.4.6 Rates and signal strengths . . . . . . . . . . . . . . . . . . . . . . . 110

7.5 Global SFitter analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.5.1 Marginalization vs profiling complications . . . . . . . . . . . . . . 112
7.5.2 Full analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.6 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8 Summary and outlook 120

A Appendix: Bayesian neural network studies 122
A.1 Jet calibration – comparison to smeared data . . . . . . . . . . . . . . . . 122
A.2 Event generation – (2→ 4)-process . . . . . . . . . . . . . . . . . . . . . . 123

B Appendix: global SMEFT analysis 126
B.1 Operator basis of Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . 126
B.2 Collection of analytic expressions for marginal likelihood . . . . . . . . . . 129
B.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Acknowledgments 134

Bibliography 136

vi



List of Abbreviations

1LPI one-light-particle irreducible

1PI one-particle irreducible

BINN Bayesian invertible neural network

BNN Bayesian neural network

BSM beyond the Standard Model

CR control region

EFT effective field theory

EW electroweak

EWPO electroweak precision observable

GAN generative adversarial network

INN invertible neural network

KL Kullback-Leibler

LHC Large Hadron Collider

ML machine learning

MSE mean squared error

ReLU rectified linear unit

SGD stochastic gradient descent

SM Standard Model

SMEFT Standard Model effective field theory

VEV vacuum expectation value

vii



Preface

The research presented in this thesis has been conducted between 2019 and 2022 in
collaboration with other researchers. It covers the following five publications:

[1] Gregor Kasieczka, Michel Luchmann, Florian Otterpohl, Tilman Plehn,
Per-Object Systematics using Deep-Learned Calibration,
SciPost Phys. 9, 089 (2020), arXiv:2003.11099 [hep-ph]

[2] Marco Bellagente, Manuel Haußmann, Michel Luchmann, Tilman Plehn,
Understanding Event-Generation Networks via Uncertainties,
SciPost Phys. 13, 003 (2022), arXiv:2104.04543 [hep-ph]

[3] Ilaria Brivio, Sebastian Bruggisser, Emma Geoffray, Wolfgang Kilian,
Michael Krämer, Michel Luchmann, Tilman Plehn, Benjamin Summ,
From Models to SMEFT and Back?,
SciPost Phys. 12, 036 (2022), arXiv:2108.01094 [hep-ph]

[4] Simon Badger, Anja Butter, Michel Luchmann, Sebastian Pitz, Tilman Plehn,
Loop Amplitudes from Precision Networks,
to be published in SciPost, arXiv:2206.14831 [hep-ph]

[5] Ilaria Brivio, Sebastian Bruggisser, Nina Elmer, Emma Geoffray,
Michel Luchmann, Tilman Plehn,
To Profile or To Marginalize? – A SMEFT Case Study,
to be published in SciPost, arXiv:2208.08454 [hep-ph]

During this time, the author of this thesis was a doctoral student at the Institute for
Theoretical Physics (ITP) of the Heidelberg University.

viii

http://arxiv.org/abs/2003.11099
http://arxiv.org/abs/2104.04543
http://arxiv.org/abs/2108.01094
http://arxiv.org/abs/2206.14831
http://arxiv.org/abs/2208.08454


Chapter 1
Introduction

Since its start in 2008, the Large Hadron Collider (LHC) has been the main focus of
attention in the field of particle physics. Its greatest contribution is by far the discovery
of the Higgs boson [6–8] in 2012 [9–11] which was the last missing piece predicted by
the Standard Model (SM) of particle physics. Since then, many new analyses of LHC
data have successfully confirmed the SM and helped to constrain the space of new
physics [12–14]. No significant deviations from the SM have been found yet. While being
extremely successful, it is clear that the SM leaves many questions open such as the
nature of dark matter [15], baryogenesis [16], the strong CP problem [17] or quantum
gravity [18]. While it is within the range of possibilities that the LHC does not reach
energies necessary to find answers to these questions, it is also possible that new physics
is still hiding in the vast amount of current or future LHC data.

To take full advantage of the measurements provided by the LHC, it is worth exploring
new tools developed in the rapidly growing field of modern machine learning [19]. These
techniques which usually rely on deep neural networks can boost sensitivities of searches
by optimizing tagging performance for applications such as quark-gluon discrimination
[20–25], Higgs-tagging [26, 27] or top-tagging [28]. Other ideas1 include the detection
of anomalies using deep neural networks [30, 31], inverting detector effects [32, 33] or
optimizing Monte Carlo simulations [34] required for almost every analysis. While classical
machine learning methods such as shallow neural networks or boosted decision trees have
been applied to high energy physics for decades [35], the field is slowly moving towards
including more and more deep learning methods. LHC physics is ideally suited for the
application of these methods. Datasets are typically large and high dimensional and
simulations of collider events are accurate and well controlled, providing truth labels for
fully supervised learning methods.

While these tools can be very powerful, they usually lack any type of uncertainty estimate
which is a necessary ingredient for any physics application. Bayesian neural network
(BNN) [36–39] address this issue by providing a framework to include uncertainties in
deep learning. BNNs can be used whenever an ordinary neural network could be used.
They show similar performance to deterministic networks while providing additional
information about uncertainties. The first part of this thesis is dedicated to these
networks. Chapter 2 introduces the theory behind Bayesian neural networks, discusses
the different approximations taken and gives practical advice on how to implement
such a network. Chapters 3 to 5 focus on different possible applications of BNNs to
LHC physics. Chapter 3 presents the results of a study in which BNNs were applied
to jet calibration, demonstrating that the predicted uncertainties are accurate and well

1A more complete overview can be found in Ref. [29].
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1 Introduction

calibrated. Chapters 4 and 5 show how BNNs can be used for collider event generation,
introducing necessary error bars when replacing existing Monte Carlo simulations with
deep learning methods.

While Machine Learning techniques can help boost the sensitivity of existing searches,
the searches themselves are often highly model dependent. A vast amount of possible
new physics models have been developed over the last decades [40, 41], too many to
dedicate an analysis to each of them. A more model agnostic analysis strategy is to
not assume a specific model but to parameterize new physics with an effective field
theory (EFT) approach. The EFT that extends the SM is referred to as the Standard
Model effective field theory (SMEFT) [42]. One of the few assumptions in a SMEFT
analysis is that new physics – in the form of new particles – lives at a higher energy scale
than the one probed by the experiment. This framework is ideally suited for a global
analysis where many individual measurements are combined into a single fit, taking full
advantage of the vast amount of LHC data. The second part of this thesis is dedicated
to this approach. Chapter 6 discusses how to match SMEFT results to a specific model
and derives parameter bounds. The difference between a SMEFT and a model-specific
analysis is highlighted. Chapter 7 presents the results of a study performed purely within
the SMEFT framework and focuses on different statistical approaches, highlighting the
difference between a profile likelihood based approach and a Bayesian one.

2



Chapter 2
Bayesian neural networks and
high energy physics

Since the deep learning revolution [43] in the early 2010s there has been a continuously
increasing amount of research in the field of machine learning. Various new techniques
and ideas have been developed in the past couple of years. While classical machine
learning methods have been applied to high energy physics data in many analyses [35],
and plenty of research has already been performed using deep neural networks [29], there
are still many areas left within the field of high energy physics which could potentially
benefit from these new techniques.

LHC physics data is well suited for the application of deep learning methods. Existing
datasets are large and typically high dimensional and simulations are accurate and well
controlled. The former is usually seen as a necessary ingredient because the training of
deep neural networks requires large datasets and the latter provides truth labels which
are a needed for fully supervised learning methods.

While deep learning methods are powerful tools, they usually lack uncertainty estimates
which are crucial for any physics analysis. Bayesian neural networks (BNN) [36–39]
address this issue by providing a framework to include uncertainties in deep learning.
This chapter introduces the theory and concept behind BNNs. Section 2.1 provides a
very brief introduction to ordinary neural networks, Sec. 2.2 discusses BNNs and Sec. 2.3
focuses on normalizing flows and their Bayesian counterpart.

2.1 Short introduction to neural networks

This section provides a very brief introduction to neural networks. A more detailed
overview can for instance be found in Ref. [44] or Ref. [45].

There are various types of neural networks such as fully connected dense neural networks
[46], convolutional neural networks [43,47], graph neural networks [48,49], transformers
[50, 51] and many other. The common characteristic of these different ideas is that they
consist of layers and each layer is defined by some simple mathematical operation. The
prototype layer which can be found in almost all of these different architectures is the
fully connected dense layer. It is defined by a linear operation and a subsequent non-linear
operation:

z = Ŵx+ b

y = g(z) , (2.1)

3



2 Bayesian neural networks and high energy physics

where x is the input vector, Ŵ is the weight matrix, b is the bias vector and g(·) is
a non-linear function. In the context of neural networks, this non-linearity is referred
to as the activation function. The weights and the entries of the bias vector are free
parameters and adjusted in the training process. The most common activation function
is the rectified linear unit (ReLU) [46] which is defined as:

g(z) =
{
z if z > 0 ,
0 otherwise

. (2.2)

Many of such simple operations performed on top of each other is what defines a neural
network. While a neural network with only one inner or hidden layer usually has very
restricted expressive power, practice has shown that deep neural networks, where deep
simply refers to a network with many hidden layers, can approximate almost every
function. This high expressivity, the fact that gradients can be computed very efficiently
due to algorithms such as back propagation [19] and the fact that the computation of a
forward pass can be highly parallelized are upon the main reasons why neural networks
became the default choice in the field of machine learning.

While (deep) neural networks can approximate almost any function [52], it comes with the
cost of having many tunable parameters. These parameters are adjusted by minimizing
a loss function on a given training dataset. The choice of the loss function depends on
the task. For regression where the training objective is to learn continuous labels y for a
given input x a common choice is the mean squared error (MSE):

L = MSE =
M∑
i=1
|ypredi − ytruthi |2 ,

ypredi = fθ(xi) , (2.3)

where ypred refers to the label predicted by the neural network fθ(x) and ytruth to the
truth label given by the training dataset. The sum runs over examples of the given
dataset. As the name suggests the MSE is a measure for the error the neural network
makes. The process of adjusting iteratively the free parameters θ to find a minimal error
is what is referred to as the training. While there exist various optimization algorithms
to find suitable local or global minima, in modern machine learning they all rely on
evaluating gradients with respect to θ. One of the most simple update rules is referred to
as gradient descent [53] and given by:

θi+1 = θi + λ∇L(θ) , (2.4)

where λ is called the learning rate. Because training datasets are large these updates are
usually performed with respect to a subset of the full training data and the corresponding
algorithm is called stochastic gradient descent (SGD).

2.2 Bayesian neural networks

While it has been shown that deep neural networks can reach excellent performance on
different tasks within high energy physics [29], they usually do not come with any type
of uncertainty estimate. BNNs [36–39] address this issue by introducing a distribution
over the network parameters. This is in contrast to ordinary neural networks as they

4



2 Bayesian neural networks and high energy physics
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Figure 2.1: Illustration of a BNN as an ensemble of deterministic models. Taken
from Ref. [4].

were discussed in Sec. 2.1. After the training procedure the network parameters are fixed
to specific values θ̂. A BNN on the other hand treats θ as a random variable with a
corresponding probability distribution. By creating samples from this distribution an
ensemble of ordinary networks is created, each giving a different prediction. The spread
of these predictions incorporates uncertainties related to the model and the training data.
This basic intuition about BNNs is illustrated in Fig. 2.1. The two dimensional output
of each network presented in the figure is specific to the case of regression and will be
discussed in more detail in Sec. 2.2.2.

To define the distribution over network parameters three ingredients are required: the
likelihood p(D|θ) of the training dataset D, the prior p(θ) and the normalization p(D).
Applying Bayes theorem leads to:

p(θ|D) = p(D|θ) p(θ)
p(D) ∼ p(D|θ) p(θ) . (2.5)

The problematic part of this expression is p(D) which can be expressed as an integral
over θ:

p(D) =
∫
dθ p(D|θ) p(θ) . (2.6)

For high dimensional models, it is extremely challenging to perform the integration nu-
merically which is why different techniques have been developed to avoid its computation.
One of these methods is referred to as variational inference where p(θ|D) is approximated
by simple tractable distributions. These simple distributions qα(θ) are parameterized
by parameters α which are then tuned to have qα(θ) as close as possible to p(θ|D). To
achieve this, one possibility is to minimize the Kullback-Leibler (KL) divergence [54]:

arg min
α

KL[qα(θ)|p(θ|D)] . (2.7)

The KL divergence provides a measure for how similar two distributions are. It is zero if

5



2 Bayesian neural networks and high energy physics

two distributions are identical and positive otherwise. Inserting Eq. (2.5) leads to:

KL[qα(θ), p(θ|D)] =
∫
dθ qα(θ) log qα(θ)

p(θ|D)

=
∫
dθ qα(θ) log qα(θ)p(D)

p(θ)p(D|θ)

= KL[qα(θ), p(θ)]−
∫
dθ qα(θ) log p(D|θ) + log p(D)

∫
dθ qα(θ) .

(2.8)

If qα(θ) is properly normalized, the last term is a constant with respect to α:

log p(D)
∫
dθ qα(θ)︸ ︷︷ ︸

=1

= log p(D) ∼ const . (2.9)

Therefore, we can define the Bayesian loss function as:

LBNN = −
∫
dθ qα(θ) log p(D|θ) + KL[qα(θ), p(θ)] . (2.10)

The negative of this expression is also referred to as the Evidence Lower Bound (ELBO)
[55]. The step of removing the constant term containing p(D) is crucial because it is the
reason why LBNN is tractable.

Eq. (2.10) consists of two terms. The first term contains the negative log-likelihood
with an integral over all possible weight configurations and the second term is the KL-
divergence between the variational distribution and the prior. While the former is data
dependent, the latter depends only on the prior and is, therefore, a pure regularization
term. The integral over all possible weight configurations can be seen as an q(ω)-weighted
average of the log-likelihood:

Eθ
[
− log p(D|θ)

]
= −

∫
dθ qα(θ) log p(D|θ) . (2.11)

Minimizing the first term dictates the network to describe the training data well, while
the second term forces the variational distribution to not deviate too much from the
prior distribution. This can be seen more explicitly by giving an example: Setting the
variational distribution to a Gaussian with a central value of µq and a width of σq and
the prior to a Gaussian with a central value of zero and a width of σp the KL-divergence
becomes:

KL[qµ,σ(θ), pµ,σ(θ)] =
σ2
q − σ2

p

2σ2
p

+
µ2
q

2σ2
p

+ log σp
σq

. (2.12)

It contains the term µ2
q

2σ2
p
which is usually referred to as L2-regularization or weight

decay [56]. It is a penalty term for large weights and a common regularization technique in
machine learning. The other two terms constrain the width of the variational distribution.
They become zero for σp = σq. For simplicity only the result for a one-dimensional θ is
shown. In the usual case of a higher dimensional θ the KL-divergence factorizes into a
sum of the individual contributions, if independent distributions for each dimension are
assumed.

6



2 Bayesian neural networks and high energy physics

2.2.1 Mean-field approximation

In all of the studies presented in this thesis and in many studies performed in the
literature [38,57] qα(θ) is set to a product of Gaussian distributions:

qα(θ) =
K∏
i

N(θi|µi, σi) , (2.13)

where α = {µi, σi} and K is the number of parameters of the neural network. This
assumption which is usually referred to as the mean-field approximation [55] introduces
two parameters per weight: A mean value and a width. The number of free parameters
is twice the amount of the corresponding deterministic network. Anything beyond the
mean-field approximation usually does not scale well with the number of network weights.
For instance, one could go one step further by introducing correlation terms. This can be
achieved by setting qα(θ) to a multivariate normal distribution with a covariance matrix
Σ:

qα(θ) = N(~θ|~µ,Σ) (2.14)

where the vector symbols were introduced to emphasize that ~µ is a K-dimensional vector.
The mean-field approximation is recovered by setting all off-diagonal values of Σ to zero.
While this could lead to an improved approximation of the posterior distribution, it
introduces many new trainable parameters. A symmetric matrix with K ×K entries has
K(K+ 1)/2 ∼ K2 degrees of freedom which increases the number of trainable parameters
significantly compared to the deterministic case. Therefore, this construction is only
feasible for shallow neural networks with a small number of weights. While Eq. (2.13) is
a strong simplification, the experiments presented in this thesis (compare Chaps. 3 to 5)
demonstrate that the uncertainty estimates of a mean-field BNN can still be meaningful
and accurate. In the machine learning literature on the other hand it is an open question
how well the mean-field approximation works. To give one argument in favor of this
approach: Ref. [57] argues that the “deepness” of neural networks can compensate for
the lack of correlations directly described by qα(θ). The predictive distribution of a
deeper neural network with the simple mean-field approximation can be as powerful as
the predictive distribution of a shallower network where the posterior is approximated
more precisely.

Another important aspect worth mentioning, is the “direction” of the KL-divergence.
The KL-divergence is asymmetric in its arguments. While KL[p(θ|D)|qα(θ)] is referred
to as the forward direction, KL[qα(θ)|p(θ|D)] is referred to as the reverse direction [58].
The forward direction is usually associated to a mode-averaging approximation while
the other direction is a uni-mode seeking approximation which means that only one of
the modes is approximated well while the other modes are neglected. Equation (2.10)
represents the reverse direction. Therefore, qα(θ) should be seen as a description of the
posterior around only one of its modes. The posterior of a deep neural network is very
high dimensional which makes it difficult to visualize. However, one can easily argue
that it must possess many modes. Training deterministic deep neural networks several
times, starting from different initial weight configurations, results into very different final
weight configurations. Even if the performance of the trained networks is very similar
the individual weights can have completely different values. The same is usually true for
variational BNNs which means that each training converged in a different mode. While
this could in principle be problematic for the reliability of the mean-field approximation,
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one possible workaround is to simply train a BNN several times starting from different
initial weight configurations. If the posterior distribution has indeed many modes, the
different trainings may converge to different modes. If the resulting uncertainty estimates
are significantly different for the individual trainings, one should be careful about the
reliability, otherwise one can proceed with the single (mean-field) BNN. Simple checks
like this have always been performed for the studies presented in this thesis.

2.2.2 Bayesian regression

Regression refers to the task of finding a suitable function which approximately describes
the relation between a label A and some given input x. While x can be arbitrarily high
dimensional, A is usually only a one-dimensional number. To give an example relevant
for high energy physics: x could be the detector response of a given hadronic jet and the
task is to reconstruct the transverse momentum of the jet. In this case, the label would
be given by A = pT,jet [1].

The loss function of a BNN is given by Eq. (2.10). The problem specific part of
this function is the log-likelihood. While it would be possible to insert an arbitrarily
complicated expression for the log-likelihood, a common assumption is to simply have
some Gaussian noise in the dataset. In this scenario, the likelihood can be modeled as a
Gaussian distribution. If each data point of the training dataset is seen as an independent
observation, the log-likelihood is then given by:

− log p(D|θ) =
N∑
j


∣∣∣A(xj , θ)−A(truth)

j

∣∣∣2
2σ2

stoch(xj)
+ 1

2 log σ2
stoch(xj) + 1

2 log 2π

 , (2.15)

where the sum goes over all points of the training dataset. “truth” indicates that the
label was provided by the training dataset. In the pT -calibration context mentioned
above the truth label could be provided by simulations and refers to the pT before the
detector simulation. A(xj , θ) is the prediction of the model and, therefore, depends on
the observation xj and the neural network parameters θ. The standard deviation of the
Gaussian noise is given by σstoch(xj). It is in general x-dependent and unknown. Rather
than assuming some constant noise or trying to estimate it in some complicated way, the
neural network can be constructed to directly predict it. This can be achieved by making
the output of the last layer two dimensional:

BNN : x, θ →
(

A(x, θ)
σstoch(x, θ)

)
. (2.16)

In this way σstoch becomes θ dependent. Omitting constant terms the full loss function
becomes:

LBNN =
∫
dθ qµ,σ(θ)

N∑
j


∣∣∣A(xj , θ)−A(truth)

j

∣∣∣2
2σ2

stoch(xj , θ)
+ log σ2

stoch(xj , θ)


+ KL[qα(θ)|p(θ)] . (2.17)

For the default assumption of uncorrelated Gaussian variational distributions and a
Gaussian prior, a closed form solution for the KL-divergence can be given (compare
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Eq. (2.12)). Special care should be taken when working with mini-batch optimization. In
this case, the KL-term has to be rescaled accordingly (see discussion in Sec. 2.2.4).

Once a BNN is trained by minimizing Eq. (2.17), the prediction of a BNN can be extracted
from the predictive distribution which is defined as:

p(A|x) =
∫
dθ qα(θ) p(A|x, θ) , (2.18)

where x is a data point typically given by some statistically independent test dataset. By
construction the likelihood p(A|x, θ) is a Gaussian with its mean value and width given
as outputs of the BNN (compare Eq. (2.16)). The prediction can be defined as the mean
value of the predictive distribution:

〈A〉 =
∫
dAp(A|x)A

=
∫
dA

∫
dθ qα(θ) p(A|x, θ)A

=
∫
dθqα(θ)

∫
dAp(A|x, θ)A︸ ︷︷ ︸

=A(θ)

=
∫
dθ qα(θ)A(x, θ) . (2.19)

By exchanging integrals, 〈A〉 can be expressed as an q-weighted average of A(x, θ). The
uncertainty on this prediction is given by the variance of the predictive distribution:

σ2
tot = 〈(A− 〈A〉)2〉

=
∫
dA (A− 〈A〉)2 p(A|x)

=
∫
dA

∫
dθ (A− 〈A〉)2 qα(θ) p(A|x, θ)

=
∫
dθ qα(θ)

[∫
dA A2 p(A|x, θ)− 2〈A〉

∫
dA A p(A|x, θ) + 〈A〉2

∫
dA p(A|x, θ)

]
=
∫
dθ qα(θ)

[
A2(x, θ)−A(x, θ)2 +

(
A(x, θ)− 〈A〉

)2
]
≡ σ2

stoch + σ2
pred . (2.20)

In the last line two separate sources of uncertainty were identified:

σ2
pred =

∫
dθ qα(θ)

[
A(x, θ)− 〈A〉

]2
, (2.21)

and

σ2
stoch =

∫
dθ qα(θ)

[
A2(x, θ)−A(x, θ)2

]
=
∫
dθ qα(θ) σ2

model(x, θ)

=〈σ2
stoch(x, θ)〉 . (2.22)

To understand the difference between these two uncertainties, it is helpful to consider the
case of large training statistics. From general arguments about parameter estimation, the
width of the posterior distribution p(θ|D) should get smaller if the number of training
examples is increased. The same should hold for qα(θ) because it is an approximation
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of p(θ|D). Therefore, in the limit N →∞ where N is the training size qα(θ) becomes a
delta distribution:

qα(θ)→ δ(θ − θ0) for N →∞ . (2.23)

Evaluating all the integrals for this limiting case results into:

〈A〉 →
∫
dθ δ(θ − θ0)A(x, θ) = A(x, θ0)

σ2
pred →

∫
dθ δ(θ − θ0)

[
A(x, θ)− 〈A〉

]2
= 0

σ2
stoch →

∫
dθ δ(θ − θ0)σstoch(x, θ)2 = σ2

stoch(x, θ0)

σ2
tot → σ2

stoch(θ0) . (2.24)

This illustrates the key difference between both uncertainties: While σpred goes to zero
for infinite training statistics, σstoch approaches a constant. σpred describes the part of
the total uncertainty which is there due to limited training statistics. It incorporates
uncertainties from the weight distributions. σstoch on the other hand is the remaining part.
It should be roughly constant as a function of training size and capture inherent noise
of the training dataset and/or limited expressive power of the model itself. These key
differences will be further discussed in Chaps. 3 and 5. In the machine learning literature
the two sources of uncertainties are referred to as epistemic and aleatoric uncertainty
with the former being captured by σpred and the latter by σstoch [59]. These terms were
not adopted in the work presented in this thesis because they are not commonly used in
the field of high energy physics.

The arguments from above hold even if p(θ|D) is multi-modal. If p(θ|D) is multi-modal
with degenerate modes, the width around each of these modes should get smaller when
observing more data points and qα(θ) can be seen as an expansion around one of these
modes (compare discussion of Sec. 2.2.1).

All of the expressions above can be computed via Monte Carlo integration by sampling
from the distribution qα(θ):

〈A〉 ≈ 1
L

L∑
i

A(θi) , σ2
stoch ≈

1
L

L∑
i

σ2
stoch(θi) , σ2

pred ≈
L∑
i

(A(θi)− 〈A〉)2 ,

with θi ∼ qα(θ) . (2.25)

Thus, by simply generating a set of random numbers from qα(θ) which is in our case a
product of Gaussian distributions, evaluating a forward pass through the neural network,
and repeating this L times the prediction and all of the uncertainties can be computed
efficiently. In the research presented in this thesis L was typically set to 50.

2.2.3 Bayesian classification

Classification refers to the task of identifying to which category a certain object x belongs
to. To give an example in the context of high energy physics, x could be a calorimeter
image of a jet and possible classes could be top jets and QCD jets [28]. A neural network
is then trained to predict to which of these two categories the jet image belongs to.
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To be able to apply a BNN to this problem an expression for the log-likelihood has
to be constructed. Let p(c|x) be the probability of x being a member of class c. In
high energy physics there are usually only two classes: Something which is considered
interesting, signal, and something which is considered less interesting, background. They
are exclusive classes. For this binary case the probability that x belongs to the opposing
class is p(¬c|x) = 1 − p(c|x). If each data point of the training dataset is seen as an
independent observation, the log-likelihood is given by:

− log p(D|θ) =
N∑
i

log p(ctruthi |xi, θ)

=
N∑
i

log
(
p(c|xi, θ)y

truth
i (1− p(c|xi, θ))1−ytruth

i

)

=
N∑
i

ytruthi log p(c|xi, θ) + (1− ytruthi ) log(1− p(c|xi, θ)) (2.26)

where c stands for one of the two classes and ytruthi refers to a binary label which is 1 if c is
the correct class and 0 otherwise. Eq. (2.26) is called the binary cross entropy and is the
most common loss function for binary classification. As for the case of regression (compare
Sec. 2.2.2) plugging this expression into Eq. (2.10) defines the Bayesian loss function.
However, unlike in the regression case there is no additional parameter appearing to
describe noise. The loss function is fully defined by p(c|xi, θ) which is simply given by
the output of the (Bayesian) neural network:

BNN : x, θ → f(x, θ) ≡ p(c|x, θ) . (2.27)

In this case the activation function of the last layer is usually set to the sigmoid function
to constrain the output between zero and one which is required to give it its probabilistic
interpretation.

Similar to the regression case the prediction of a BNN can be extracted from the predictive
distribution which is defined as:

p(c|x) =
∫
dθ qα(θ) p(c|x, θ) . (2.28)

By selecting a threshold t one can then assign a class to each x. A data point fulfilling
p(c|x) > t is given the label c and everything below the threshold the opposing class.
The predictive uncertainty can be defined as:

σ2
pred =

∫
dθ qα(θ) (p(c|x, θ)− p(c|x))2 . (2.29)

Experiments in high energy physics regarding this uncertainty were, for instance, per-
formed in Ref. [60]. For further information about how to construct an uncertainty
similar to Eq. (2.22) see for instance Ref. [61].

2.2.4 Reparameterization trick and how to implement a BNN

The loss function of a BNN (compare Eq. (2.10)) consists of two terms: an integral over
the log-likelihood and the KL-divergence of the variational distribution and the prior.
For all studies presented in this thesis the mean field approximation (see Sec. 2.2.1) was
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used with each individual distribution set to a Gaussian. In addition, the prior were set
to Gaussian distributions as well. For these particular choices a closed form solution for
the second term can be given (see Eq. (2.12)) which makes the implementation trivial.
In contrast, the log-likelihood part is more challenging to compute because it involves an
integration over all possible weight configurations. Solving the integral via Monte Carlo
by sampling from the distribution qµ,σ(θ), leads to:

LBNN ⊃
∫
dθ qµ,σ(θ) log p(D|θ)

≈ 1
L

L∑
i

log p(D|θi) with θi ∼ qµ,σ(θ) , (2.30)

where L is the number of points sampled. However, for the training of a BNN the
gradients with respect to σ and µ are required and the dependency on these parameters
seems to be lost in Eq. (2.30). This issue can be solved by taking advantage of the fact
that a random sample, θ, of a Gaussian distribution can always be written as:

θ = µ+ σε with ε ∼ N(0, 1) , (2.31)

where N(0, 1) is a standard normal distribution. In this way the randomness is separated
from the parameters of interest. This idea is referred to as the reparameterization
trick [38,62]. The gradients can then simply be computed via the chain rule:

∇µ/σ
1
L

L∑
i

log p(D|θi) with θi = µ+ σε, ε ∼ N(0, 1)

= 1
L

L∑
i

(
∇θi

log p(D|θi)
)
∇µ/σ θi(µ, σ)

= 1
L

L∑
i

∇θi
log p(D|θi)

{
1 for µ
ε for σ

. (2.32)

L is usually set to 1 which provides only a very rough approximation of the actual
loss function and the corresponding gradients. However, because the gradients are only
computed on mini-batches they are stochastic in nature and the Monte Carlo error only
adds additional noise to an already noisy estimate. As typically argued in the context
of mini-batch optimization the stochasticity of the gradients does not need to be a
disadvantage, in many cases it can actually help moving away from local minima. For the
studies discussed in this thesis a slight variation of this algorithm has been used which
is referred to as the local reparameterization trick. The basic idea is the same but the
advantage is that networks usually converge faster. For further information see Ref. [63].

A simply way to implement a BNN with a library such as Pytorch [64] is by replacing
the forward pass of a layer, for instance of a fully connected dense layer, with a modified
forward pass involving the (local) reparameterization trick. The mathematical operations
defining the layer should remain the same, only an additional sampling step has to be
added (see Eq. (2.31)). By making µ and σ trainable parameters everything else will
be taken care of by Pytorch via Pytorch’s automatic differentiation package [65] and
backpropagation [19]. Special caution should be taken when defining the full loss function.
If performing mini-batch optimization, it is common to compute the mean over the
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training examples instead of the sum:

log p(D|θ) =
M∑
i=1

p(xi|θ) →
1
M

M∑
i=1

p(xi|θ) , (2.33)

where xi represents one point of the training dataset. To derive the correct prefactors of
the two contributions, the loss function is first divided by the total number of training
examples N and then approximated with a mini-batch of data:

L̃BNN := LBNN
N

= 1
N

N∑
i=1

log p(D|θk)︸ ︷︷ ︸
≈ 1

M

∑M

i=1 log p(D|θk)

+ 1
N

KL[q(θ)|p(θ)]

≈ 1
M

M∑
i=1

log p(D|θk) + 1
N

KL[q(θ)|p(θ)] ,

with θk = µ+ σεk, εk ∼ N(0, 1) (2.34)

where M is the mini-batch size. The correct prefactor of the KL-divergence is 1
N and

not 1
M as one would expect naively. As a final remark: Instead of making σ a trainable

parameter, usually the expression log σ2 is used. The expression log σ2 has the advantage
that it is, unlike σ, not strictly positive. The gradient updates during training could
push σ to negative numbers. Therefore, it is numerical much more stable to learn log σ2

instead. The same parameterization is usually used for the output of a BNN in the case
of regression (compare Eq. (2.16)) for the same reasons.

2.2.5 Maximum a posteriori and deterministic networks

While for a BNN θ is treated as a random variable and described by the distribution
p(θ|D), for an ordinary neural network the network parameters are fixed to specific values
θ̂. These values are found in the training process and can correspond to some local or
global minimum of the loss function. To get more intuition about the relation between
p(θ|D) and the training of an ordinary neural network, it is worth to consider the special
case of a Gaussian likelihood and a Gaussian prior. The negative log-posterior can be
written as:

L(θ) = − log p(θ|D)
= − log p(D|θ)− log p(θ) (2.35)

Treating each training example as an independent observation the log-likelihood becomes:

− log p(D|θ) =
N∑
i

(
1
2 log 2πσ2

i + 1
2σ2

i

|ypredi − ytuthi |2
)
, (2.36)

where N is the number of training samples. With the additional assumption of having a
constant width (σi = σ) the normalization term is a constant and can be neglected:

− log p(D|θ) ∼
N∑
i

1
2σ2 |y

pred
i − ytuthi |2 . (2.37)
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Repeating the same for a prior with a width of σp and a central value of 0 leads to:

− log p(θ) ∼ 1
2σp

K∑
j

θ2
k (2.38)

where the sum runs over all network parameters. Combining both and neglecting all
constant terms leads to:

L(θ) ∼
N∑
i

1
2σ2 |y

pred
i − ytuthi |2 + 1

2σp

K∑
j

θ2
k

∼
N∑
i

|ypredi − ytuthi |2 + σ

σp︸︷︷︸
=:λ

K∑
j

θ2
k (2.39)

which is the MSE loss introduced in Sec. 2.1 with an additional regularization term. This
additional regularization term is called L2-regularization or weight decay [56] and is a
common technique used to reduce overfitting. λ is a free parameter which dictates the
relative importance of this regularization term. The derivation shows that a loss function
typically used in regression can be recovered from the posterior used for BNNs. While a
BNN is constructed by sampling from the distribution p(θ|D) or an approximation of it,
a deterministic network is defined by the maximum of it. However, one should note that
the MSE-loss was only recovered after making simplifying assumptions such as having
input independent noise.

2.3 Normalizing flow networks

Normalizing flow networks [66–69], (variational) Autoencoders [62,70], Generative Ad-
verserial Networks [71,72] and diffusion models [73,74] are some of the many different
ideas which have been developed for the task of generating samples of complicated and
high dimensional probability distributions. For instance, in the field of computer vision
one is interested in generating realistic looking images. The naive dimensionality of such a
space of images is the number of pixels. An image with only 28x28 pixels as it is the case
for the MNIST dataset [75] is already 729 dimensional. In the field of high energy physics
one application of generative networks is the generation of collider events. While there
are very powerful and accurate simulations available, they are typically computationally
very expensive. A generative model can solve this problem because once its trained the
generation of new examples is typically much faster than a full simulation based on first
principles. While all of the approaches mentioned above can be used for this particular
task, this chapter will focus on introducing normalizing flows. Normalizing flows were
the tool of choice in the studies presented in Ref. [2] which is discussed in Chap. 4. The
advantage of a normalizing flow network compared to the other approaches is that it
is a likelihood based model. This makes it easy to formulate the loss function of the
corresponding Bayesian version which provides a framework to introduce uncertainty
estimates for the learned probability densities.

The idea of a normalizing flow network is to transform a random number z drawn from
a simple probability distribution (typically a Gaussian) into a sample x following the
distribution of interest. By choosing a bijective transformation one can make use of the

14



2 Bayesian neural networks and high energy physics

change of variable formula:

px(x) = pz
(
f−1(x)

) ∣∣∣∣det
(
∂f−1(x)
∂x

) ∣∣∣∣ , (2.40)

where x = f(z) is the map from z to x; pz(z) is the prior of z which is called the latent
space in this context, px(x) is the distribution of interest and det(·) is the determinant
of the Jacobian. The function f(x) is in general unknown. A normalizing flow tries to
approximate f(x) by a bijective transformations which depend on tunable parameters θ.
The change of variable formula becomes:

px(x|θ) = pz
(
f−1(x; θ)

) ∣∣∣∣det
(
∂f−1(x; θ)

∂x

) ∣∣∣∣ , (2.41)

where f(z; θ) is the transformation given by the normalizing flow. The distribution
px(x|θ) is an approximation of the true distribution px(x). By having a training dataset
D with data points drawn from px(x) the loss function can be defined via the negative
log likelihood as:

LNF = − log p(D|θ) = −
N∑
i

log px(xi|θ)

= −
N∑
i

log pz
(
f−1 (xi; θ)

)
− log

∣∣∣∣det∂f
−1(xi; θ)
∂x

∣∣∣∣ , (2.42)

where the sum runs over points of the training dataset. Because the samples of the
training dataset follow the true distribution, minimizing this object should push px(x|θ)
as close as possible to the true distribution px(x). By setting pz to a multivariate Gaussian
distribution centred around 0 with unit covariance matrix the loss function becomes:

LNF =
N∑
i

(
f−1 (xi; θ)

)2
2 + n

2 log 2π − log
∣∣∣∣det∂f

−1(xi; θ)
∂x

∣∣∣∣
=

N∑
i

(
f−1 (xi; θ)

)2
2 − log

∣∣∣∣det∂f
−1(xi; θ)
∂x

∣∣∣∣+ const , (2.43)

where n is the number of dimensions of x. After the normalizing flow has been trained,
new samples of px(x|θ) can be created by simply drawing samples from pz(z) and then
computing f(z; θtrained). An alternative interpretation of the loss function is provided by
the fact that minimizing LINN can also be seen as minimizing the KL-divergence between
the true distribution and the learnt distribution.

By construction f(x; θ) needs to be a bijective transformation which introduces several
requirements for a normalizing flow. First, the dimensionality of the latent space has to be
the same as the dimensionality of the target space. Second, f(x; θ) needs to be invertible.
While the first requirement is easy to fulfill and also necessary for the invertibility, the
second requirement restricts the type of transformations strongly. For instance, ordinary
dense neural networks are typically not invertible, thus, not suited to be used out of
the box for f(x; θ). Furthermore, the determinant of the Jacobian has to be efficiently
computable. The Jacobian directly enters the loss function which has to be computed for
every gradient update during the training process. If there is no easy analytic expression
for the Jacobian of this transformation the training would be intractable. To fulfill these
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requirements flow networks are constructed as a series of simple transformations each
individually fulfilling the conditions. One possible type of flow networks are build from
so called affine coupling blocks [67]. Within an affine coupling block an input vector x is
split up into two halves x1 and x2. One of the two parts is kept unchanged while for the
other one a translation and rescaling is applied:

y1 = x1

y2 = x2 � exp (s(x1)) + t(x1) (2.44)

where t and s are arbitrarily complicated functions typically given by a series of fully
connected dense layer. � refers to the element-wise product. The affine coupling block
fulfills the desired properties by being easily invertible and the determinant of the Jacobian
is efficiently computable because it is triangular:

∂y

∂x
=
(

I 0
∂y2
∂x1

exp (s(x1))

)
. (2.45)

Because a part of the input is never actually changed several of such coupling blocks
have to be applied after each other, each time permuting the output dimensions such
that no input dimension stays unchanged. Stacking many of such coupling blocks on top
of each other can lead to very expressive models.

2.3.1 Bayesian normalizing flows

The derivation of the loss function of a Bayesian normalizing flow is completely analogous
to the one presented in Sec. 2.2. The negative log-likelihood is given by Eq. (2.42) and
can be plugged into Eq. (2.17). The resulting loss function is:

LBINN =
N∑
i

∫
dθqα(θ)

(
f−1 (xi; θ)2

2 − log
∣∣∣∣det∂f

−1(xi; θ)
∂x

∣∣∣∣)
+ KL[qα(θ), p(θ)] (2.46)

where the additional integration and regularization term are computed as discussed in
Sec. 2.2.4.

A Bayesian normalizing flow comes with two sampling steps: sampling from the latent
space distribution pz(z) and sampling from the learned weight distribution qα(θ). The
additional Bayesian specific sampling step can be used to derive uncertainty bands on
the joint target density px(x). A normalizing flow provides an analytic expression for the
target density via:

px(x|θ) = pz(z|θ)
∣∣∣∣det

(
∂f−1(x)
∂x

) ∣∣∣∣ (2.47)

For a Bayesian normalizing flow the joint density can be constructed by marginalizing
over θ:

p̂x(x) = Eq[px(x|θ)] =
∫
dθqα(θ) px(x|θ) , (2.48)

where the notation p̂ was introduced to not mistake the marginal distribution with the
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true distribution px(x). Similar to the definition of the predictive variance in the previous
sections (see Eq. (2.21)) an uncertainty on the joint distribution can be defined as:

σ2
pred = Varq[px(x|θ)] =

∫
dθqα(θ) (px(x|θ)− p̂x(x))2 . (2.49)

While this definition is straight forward and computationally efficient, in a typical
application of normalizing flows to high energy physics one is usually interested in the
marginalized distributions where most of the dimensions of x are integrated out. Using a
normalizing flow to generate collider events the interest usually lies in, for instance, the
pT of one of the final state particles. Unfortunately, the normalizing flow only provides
an analytic estimate for the joint distribution. To get an estimate for the marginal
distribution, samples have to be created. This is done by first generating samples from
pz(x), then computing f(z|θ) and as a last step creating a histogram in the dimension
of interest. By repeating this procedure several times for different θ where each θ was
sampled from qα(θ) an uncertainty can be defined similar to Eq. (2.49). Each sample
θ ∼ qα(θ) produces a different set of samples x ∼ px(x|θ) and correspondingly a different
histogram height. The standard deviation of these histogram heights provides an estimate
of the uncertainty. Formally one can write:

p̂x(x1) = Eq[px(x1|θ)] =
∫
dθ qα(θ)p(x1|θ) , (2.50)

and

σ2
pred = Varq[px1(x|θ)] =

∫
dθ qα(θ) (px(x1|θ)− p̂x(x1))2 , (2.51)

with

px(x1|θ) =
∫
dn−1x px(x|θ) . (2.52)

The interpretation and meaning of this uncertainty estimate is discussed in more detail in
Chap. 4 by focusing on experiments performed on toy datasets and a high energy physics
dataset.
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Chapter 3
Jet calibration with
Bayesian neural networks

The research presented in this chapter has been published in Ref. [1]. Most of the figures,
tables and text are completely identical to the content of this publication.

3.1 Introduction

Modern methods of machine learning are becoming a crucial tool in experimental and
theoretical particle physics. An especially active field in this direction is subjet physics
and jet tagging [76], where multi-variate analyses of high-level observables are being
replaced with deep neural networks working on low-level inputs. Early applications of
deep learning techniques in LHC physics rely on image recognition of jet images [77, 78].
Their main challenge is to combine calorimeter and tracking information, motivating
graph convolutional networks and point clouds [79]. Established benchmarks processes
for these methods include quark-gluon discrimination [20–25], flavor tagging [80], W -
tagging [81–84], Higgs-tagging [26,27], or top-tagging [47,83–91]. By now we can consider
top jet classification at the level of tagging performance as essentially solved [28, 92].
This gives us room to consider question beyond the performance, for instance what the
networks are learning, how they can be visualized, how robust they are, how we can
control the uncertainties, and how machine learning methods affect typical LHC analyses
structurally.

One open question is driven by particle physics’ obsession with error bars: how do we
quantify the different uncertainties in analyses using neural networks [60,93–95]? This
question is related to visualization [96], understanding the relevant physics features [97–
101], and weakly supervised learning approaches [30,31, 102–107] — all combined under
the general theme of explainable AI. In LHC physics we have the advantage of excellent
Monte Carlo simulations and full control of the experimental setup. This allows us to
define and control different sources uncertainties very precisely. If we accept that a neural
network is just a function relating training data to an output there exist (at least) two
main kinds of uncertainties:

1. first, labeled training data comes with statistical and systematic uncertainties,
where we define the former as uncertainties which vanish with more training data.
The systematic uncertainties can be Gaussian or include shifts, depending on their
sources. Unstable network training also belongs to this category of training-induced
uncertainties [60];
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2. second, on the test data or analysis side we also encounter statistical and systematic
uncertainties. When we include an inference or any kind of analysis we also
encounter model or theory uncertainties [93]. For these uncertainties it is crucial
that we ensure our analysis outcome is conservative.

In a previous paper [60] we have shown how Bayesian classification networks can track
uncertainties and provide jet-by-jet error bars for the tagging output. Such a Bayesian
network can supplement a probabilistic classification output of ‘60% signal’ with an
error estimate of the kind ‘(60 ± 10)% signal’ for a given jet. This kind of jet-by-jet
information exceeds what is available from standard LHC classification tools. In principle,
this approach covers both, statistical errors from the size of the training sample and
systematic uncertainties for instance from the calibration of the training sample. However,
our quantitative analysis of Bayesian top taggers encountered practical limitations, for
instance that the jet energy scale simultaneously affects the central value and the error
bar of the probabilistic output. A similar study of uncertainties just appeared for a
matrix element regression task [108].

In this follow-up study we look at this problem from a slightly different angle, now
defining the regression task of extracting the energy of a tagged top quark inside a fat
jet. Again, we translate statistical and systematic uncertainties from the training sample
to the test output. The Bayesian network, introduces in Sec. 3.2, allows us to construct a
per-jet probability distribution function over possible top momenta, or p(pt|fat jet). The
main advantage of using the regression task as example is that it does not enforce a closed
interval for the network output and hence removes the correlation between central value
and error estimate in the network output. We use this advantage to cleanly separate
effects from the finite size of the training sample and from the stochastic nature of the
training sample in Sec. 3.4.

In Sec. 3.5 the stochastic uncertainty leads us to a discussion of systematics in the sense of
training-related uncertainties which do not shrink with more training data. Our regression
task naturally leads us to developing a framework to calibrate deep network taggers and
account for uncertainties in the training sample. We find that a straightforward treatment
should be based on smearing the momentum labels in the training sample. It directly
accounts for the uncertainties in the underlying measurements of the calibration sample
and treats them as an additional systematic effect on the top momentum measurement.
As before, the Bayesian network allows us to cleanly separate all different sources of
uncertainty.

Our simple application serves as an example how we can use Bayesian networks to define
statistical and systematic uncertainties coming from the training sample and affecting the
network output. These error bars are defined jet by jet, or event by event, giving us more
control than standard methods do. Training on smeared labels allows us to implement
energy calibration in a straightforward and automized manner. While our modeling of
uncertainties on the reference measurements for calibration is simplified, our approach
can be extended in a straightforward manner. For instance, the effect of different jet
algorithms or different Monte Carlo simulations can be implemented as a non-Gaussian
contribution to the label smearing. The key observation is that Bayesian networks allow
us to quote uncertainties from all kinds of statistical and systematic limitations of the
labeled training data.
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3.2 Bayesian regression for jet calibration

For this study, we are interested in extracting the transverse momentum pT of a hadroni-
cally decaying top quark from a fat top jet. If we define p(pT |j) as the probability over
possible pT values for a given top jet, j, we can extract the mean value as:

〈pT 〉 =
∫
dpT pT p(pT |j) . (3.1)

As discussed in Sec. 2.2.2 this distribution is generated by integrating over the weight
distributions:

p(pT |j) =
∫
dω p(pT |ω, j) p(ω|M) ≈

∫
dω p(pT |ω, j) q(ω) , (3.2)

where we introduced the variational distributions q(ω) to approximate the integration.
Continuing from this expression the derivation of LBNN and the two types of uncertainties
is completely analogous to the one presented int Sec. 2.2.2. In this chapter we adopt the
notation σstoch instead of σmodel because the limiting factor in this study is the stochastic
noise in the dataset or in other words the energy resolution of each jet and not the
expressive power of the model.

While we will introduce a more sophisticated likelihood in Sec. 3.5, the simplest construc-
tion is to set the likelihood p(pT |ωj) to a Gaussian. This is again in complete analogy to
Sec. 2.2.2. A Gaussian comes with two parameters: a width and a mean. By making the
network output 2 dimensional

NN(ω) =
(
〈pT 〉ω
σstoch,ω

)
, (3.3)

we get an analytic expression for the likelihood for each input-jet and weight sample ω.
To extract the per-jet probability distribution p(pT |j) following Eq. (3.2), we usually rely
on Monte Carlo integration by sampling weights from the weight distributions q(ω). For
large training statistics the distribution q(ω) should become narrow. The effect of a finite
width of q(ω) can be tracked by σpred, so in the limit σpred � σstoch we can approximate
p(pT |j) as a Gaussian with weight-independent mean 〈pT 〉 and width σstoch.

3.3 Data set and network

The correct and precise reconstruction of the momentum of tagged top quarks is im-
portant for instance in top resonance searches and has influenced the design of many
top taggers [109]. Our data set is therefore similar to standard top tagging references,
with some modifications which simplify our regression task. We generate a sample of
R = 1.2 top jets in the range ptruthT,t = 400 ... 1000 GeV with Pythia [110] at 14 TeV
collider energy and the standard ATLAS card for Delphes [111]. We always neglect
multi-parton interactions and always include final state radiation. Given initial state
radiation we work with two event samples, one with ISR switched on and one with ISR
switched off. We require the jets to be central |ηj | < 2 and truth-matched in the sense
that each fat jet has to have a top quark within the jet area. These settings essentially
correspond to the public top tagging data set from Refs. [86] and [28]. The difference to
the standard tagging reference sets is that we flatten our data set in ptruthT,t , such that even
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Figure 3.1: Illustration of the predicted distribution from our Bayesian setup for
a single top jet. We show the individual predictions from sampling the weights
(petrol) as well as the aggregate prediction (red) and the corresponding per-jet
uncertainty σtot.

accounting for bin migration effects we can safely assume that in the fat jet momentum
the sample is flat for pT,j = 500 ... 800 GeV.

The final result of our Bayesian network will be a probability distribution over possible pT,t
values for a given jet. For our labeled data we know the corresponding ptruthT,t . However,
the fact that we will modify this truth label as part of the calibration training makes it
the less attractive option to organize our samples. The closest alternative observable is
the momentum of the fat jet, so we can think of pT,j as representing the complete fat jet
input to the network. So unless explicitly mentioned we train our networks on a large
data set defined in terms of the fat jet momentum,

pT,j = 400 ... 1000 GeV (training sample) , (3.4)

Whenever we need a homogeneous sample without boundary effects we choose a narrow
test sample with

pT,j = 600 ... 620 GeV (narrow test sample) (3.5)

The data format for the fat jet information is a pT -ordered list of up to 200 constituent
4-vectors (~p and E) with ISR and 100 constituents without. Our total sample size is
2.2M jets without ISR, of which we use 400k jet for validation and testing, each. The
training size is varied throughout our analysis.

Our regression network is a simple 5-layer fully connected dense network. Its first two
layers each consist of 100 units, the next two 50 units, followed by a 2-unit output
layer, unless mentioned otherwise. For the prior we choose a Gaussian around zero and
with width 0.1. We have confirmed that our results are width-independent over a wide
range [60]. The typical sizes and widths of the weights depends on the input data. The
input is a flattened set of 4-vectors where we re-scale the pT values by a factor 1000 to end
up between zero and one. The activation function is ReLU, except for the output layer.
That one predicts the mean value 〈pT 〉 without any need for an activation function and
the SoftPlus function for the error to have a smooth function which guarantees positive
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Figure 3.2: Correlation between the fat jet’s pT,j and the truth label ptruthT,t

(left) and between the extracted pT,t and the truth label ptruthT,t (right). Both
correlations are shown with initial state radiation in the training and test samples
switched off.

values for the error. We have checked that this setup with these hyper-parameters is not
fine-tuned.

For the Bayesian network features we rely on Tensorflow Probability [112] with Flipout
Dense layers [113] replacing the dense layer of the deterministic network. All networks
are trained with the Adam optimizer [114] and a learning rate of 10−4, determined by
early stopping when the loss function evaluated on the training dataset does not improve
for a certain number of epochs. This patience was set to 10 for a training size of 1M jets
and to larger values for smaller training sizes because the loss function is more fluctuating.
For the Bayesian network with a training batch size of 100 we observe no over-fitting.

3.4 Momentum determination and statistics

As a first part of our Bayesian regression analysis we need to show how well the networks
reconstructs the top momentum and what the limiting factors are. We then have to
separate the statistical and systematic uncertainties. In analogy to Ref. [60] we first
study how the size of the training sample affects the regression output, i.e. how well the
Bayesian network keeps track of the statistical uncertainty.

To illustrate the output of our Bayesian network for a single jet we show an example in
Fig. 3.1. Sampling from the weight distributions, q(ω), provides us with a Gaussian per
sampled set of weights, shown in petrol. The combination of these distributions is shown
in red. The width of the combined distribution is the predicted per-jet uncertainty σtot,
defined in Eq. (2.20). For illustration purposes we pick a top jet where ptruthT,t coincides
with the peak of the predicted distribution.

Regression performance

To begin, we show in the left panel of Fig. 3.2 the correlation between the measurable
pT,j and the MC label ptruthT,t . We see that over the entire range the two values are aligned
well. This allows us to use pT,j as a proxy to the truth information, keeping in mind that
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Figure 3.3: Left: distribution of the truth label ptruthT,t for jets with pT,j =
600 ... 620 GeV, without and with initial state radiation. Right: regression
uncertainty as a function of pT,j (solid), compared with the average σstoch as the
network output (dashed). The most top-like events are defined with a simple
LoLa tagger [86].

we will eventually smear the truth label to describe the jet calibration. In the right panel
of Fig. 3.2 we show the correlation between the central extracted pT,t value, which in
Sec. 3.2 is properly denoted as the expectation value 〈pT 〉, and the label ptruthT,t .

In the left panel of Fig. 3.3 we show the ptruthT,t distribution for the narrow slice pT,j =
600 ... 620 GeV. In the absence of initial state radiation the distribution is asymmetric.
The simple reason is that the jet clustering can only miss top decay constituents, so we
are more likely to observe pT,j < ptruthT,t . Aside from that we see a clear peak, suggesting
that we can indeed represent ptruthT,t with pT,j . Because the peak is washed out by ISR,
we switch off ISR to make it easier to understand the physics behind our network task.
In practice, this could be done through a pre-processing and grooming step.

Whenever we have access to MC truth, we can measure the performance of the regression
network for each top jet as (pT,t − ptruthT,t )2. The squared difference measure only uses the
mean or central value reported by a Bayesian or deterministic network, not the additional
uncertainty information from the Bayesian network. For a given test sample with N top

pT,j = 600 ... 620 GeV
√
MSE

√
MSE/pT,j

√
MSE

√
MSE/pT,j

With ISR Without ISR

All jets 69.7± 0.2 (11.43± 0.03)% 50.6± 0.1 (8.30± 0.02)%
75% most top-like 67.8± 0.2 (11.11± 0.01)% 45.5± 0.1 (7.47± 0.02)%
50% most top-like 66.5± 0.1 (10.89± 0.01)% 41.8± 0.1 (6.85± 0.01)%
25% most top-like 66.5± 0.1 (10.89± 0.02)% 40.4± 0.1 (6.63± 0.02)%

Table 3.1: Performance of pT,t regression, uncertainty representing the standard
deviation of 5 trainings. The narrow pT,j range refers to the 5k test jets, not
the 500k training jets.
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Figure 3.4: Uncertainty contributions σpred and σstoch as a function of the size
of the training sample. The error bar represents the standard deviation of five
different trainings. In addition we include

√
MSE as defined in Eq. (3.6).

jets ti we construct the mean quadratic error as

√
MSE =

 1
N

∑
jets i

(
pT,ti − ptruthT,ti

)2
1/2

(3.6)

We evaluate it over homogeneous samples, for example our usual slice in pT,j . In Tab. 3.1
we contrast results with and without ISR and show what happens if we limit ourselves
to the most top-like jets based on a standard LoLa tagger [86], trained on events with
ISR. To estimate the effect of different trainings we also give an error bar based on
five independent trainings and the resulting standard deviation. Expectedly, the pT -
measurement benefits from more top-like events, but the effect is not as significant as in
the HEPTopTagger analysis [109]. One of the reasons is that we are using relatively
large R = 1.2 jets for the high transverse momentum range. Similarly, we confirm that
additional ISR jets have the potential to affect the top momentum measurement whenever
hard extra jets enter the fat jet area.

In the right panel of Fig. 3.3 we show
√
MSE as a function of pT,j for a bin width of

40 GeV. While the absolute error increases, the relative error on the extracted pT,t shrinks
for more boosted jets. If we assume that an improved jet pre-selection can efficiently
remove ISR contributions our regression network can measure the top momentum to
roughly 4%. This result is only a rough benchmark to confirm that the regression network
performs in a meaningful manner. It would surely be possible to improve the network
performance, but we deliberately keep the network simple, to understand the way it
processes information and the related uncertainties. From the right panel of Fig. 3.3 we
know that boundary effects will appear already around 200 GeV away from the actual
boundaries. Indeed, around pT,j we see such effects indicating the phase space boundary
of pT,j < 1 TeV in our training sample.

In the same Fig. 3.3 we also show this uncertainty estimate of the Bayesian network, σtot
as defined in Eq. (2.20). It follows the

√
MSE estimate of the network error, indicating

that the Bayesian output captures the same physics as the frequentist-defined spread of
the central values.
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Figure 3.5: Left: distribution of the statistical uncertainty σpred for 400k jets.
Center: number of constituents per jet for different σpred. Right: average number
of constituents per jet as a function of the extracted statistical uncertainty.

Training sample size and σpred

As discussed in Sec. 3.2 the contribution σpred to the uncertainty reported by the network
can be identified as a statistical uncertainty in the sense that it should vanish in the limit
of infinitely many training jets. In complete analogy to the classification task described
in Ref. [60] we confirm this by training Bayesian networks on 2k, 5k, 10k, 15k, 20k,
30k, 50k, 100k, 200k, 500k, and 1M jets. We test these networks on the narrow range
pT,j = 600 ... 620 GeV, similar to the results shown in Tab. 3.1. The uncertainties quoted
by the Bayesian network are shown in Fig. 3.4. In the lower part of the figure we first
see that the statistical error σpred indeed asymptotically approaches zero for 1M training
jets. The error bars on the extracted uncertainty are given by the standard deviation of
five independent trainings. As expected, they grow for smaller training samples, where
the Bayesian networks also give fluctuating results.

In the same figure we also show the systematic σstoch and the combined σtot, defined
in Eq. (2.20). We confirm that the extracted σstoch hardly depends on the size of the
training sample. Once we have a reasonably number of training events it reaches a
plateau of around 50 GeV or 8%, while for less than 10000 training events the network
simply fails to capture the full information. We can compare the plateau value for σstoch
to the

√
MSE value and find again that the two values agree.This allows us to conclude

that σstoch describes a systematic uncertainty and that it is related to the truth-based√
MSE estimate. We will discuss it in more detail in Sec. 3.5.

After observing the average effect of the training sample size on σpred the obvious question
is if we can understand this behavior. In the left panel of Fig. 3.5 we show the distribution
of σpred values for a sample of 400k jets. The network is trained on 100k jets with an
extended range pT,j = 500 ... 900 GeV. We see a clear maximum around σpred ≈ 5 GeV,
with a large tail towards large uncertainties. It is induced by the constraint that no
network should quote an uncertainty close to zero.

The jet property we can relate to the σpred behavior is the number of particle-flow
constituents. As mentioned before, we cover up to 100 constituents for jets without ISR.
Their effect on top tagging is discussed for instance in Ref. [86]. The center panel of
Fig. 3.5 shows how the number of constituents in the test sample jets peaks at around 25,
but with a tail extending to 60. Jets with a larger quoted uncertainty have significantly
more constituents. The same information is shown in the right panel, where we see the
average number of jets increases with the range of quoted statistical uncertainties. The
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Figure 3.6: All uncertainties as a function of the training size, comparing the
Bayesian network (left) with a (frequentist) set of deterministic networks (right).
The left panel corresponds to Fig. 3.4, and the ranges indicate the standard
deviation for five trainings.

reason for this pattern is that also within the training sample the number of constituents
will peak around 25, limiting the number of training jets with higher constituent numbers.
We note that we could use the same argument using the jet mass.

Frequentist approach

From a practical point of view it is crucial to validate the Bayesian network using a
frequentist approach. We do this by showing that predictions from many trainings
of a deterministic network reproduce our Bayesian network results for the statistical
uncertainty σpred.

For the deterministic networks we use the same architecture as for the Bayesian network.
The loss function of the deterministic networks is the negative log-likelihood given in
Eq. (2.15), and we fix the L2-regularization to match the Bayesian network in Eq. (2.12),

λL2 = 1
2σpriorN

, (3.7)

where N is the total training size and σprior = 0.1 is our prior width. We then train
40 deterministic networks on statistically independent samples, which we sample from
the total of 2.2M training jets. Each set of deterministic network then predicts a mean
and a standard deviation, in analogy to Eq. (3.3). The difference between the Bayesian
evaluation and the frequentist networks is that we replace the integral over weights with
a sum over independent networks.

For deterministic networks we need to avoid over-training. An over-trained set of networks
will underestimate σstoch, while the spread represented by σpred increases. However, it
is not guaranteed that these two effects compensate each other for finite training time.
This is why we introduce dropout for each inner layer with a rate of 0.1. This value
is a compromise between network performance and over-training. Unlike in our earlier
study [60] we do not use a MAP modification of the Bayesian network.
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Figure 3.7: Upper: 2-dimensional distribution of ptruthT,t vs pT,j including its
68% CL around the maximum. In blue we show the BNN results. Lower:
ptruthT,t -distribution for a narrow slice in pT,j . From left to right we approximate
ptruthT,t with one, two, and three Gaussians.

In Fig. 3.6 we compare the Bayesian and frequentist uncertainties for different training
sample size. While the results agree well for properly trained networks or large training
samples, the frequentist approach slightly underestimates the uncertainty for small
training samples. The plateau value of σstoch depends on the chosen dropout value.
Accounting for this effect we see that the training-size-dependent σpred and the plateau
value of σstoch, agree well between the Bayesian network and the frequentist sanity check.

3.5 Systematics and calibration

In our original paper [60] we have shown that the Bayesian setup propagates uncertainties
from statistical and systematic limitations of the training data through a neural network.
In addition to the usual output the Bayesian network provides event-by-event error bars.
A limitation we encounter in Ref. [60] is that forcing the network output onto a closed
interval, like a probability p ∈ [0, 1], strongly correlates the the central value and the error
bars in the network output. This makes it difficult to track systematic uncertainties.

We circumvent this problem by extracting the transverse momentum, which does not
live on a closed interval. In the previous section this allowed us to decompose σtot into a
statistical component, σpred, and a systematic component, σstoch. What we still need to
study is the actual output distribution of the Bayesian network, p(pT |M), and how it
compared to the truth information from the test data.
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α(i) 〈pT 〉(i) σ
(i)
stoch σstoch

√
MSE 〈pT,t〉 〈ptruth

T,t 〉 Max 68%CL 68%CL (truth)

1 1 644.4 51.43 51.4 644.4 644.4 593.0...695.9

2 0.72
0.28

623.4
698.3

20.4
65.6

51.1 644.1 623.4 592.4...657.3

3
0.59
0.30
0.11

617.8
659.8
738.6

16.6
33.7
78.6

51.5 52.2 643.8 643.8 619.1 592.4...656.8 590.0...654.0

Table 3.2: Parameters used in Fig. 3.7, specifically pT,j = 600...620 GeV.

Variance of training data and σstoch

In the upper left panel of Fig. 3.7 we show the correlation of ptruthT,t and pT,j . The
orange curves represent the maximum and the 68% CL interval in 20 GeV bin. The
corresponding maximum and 68% CL interval of the BNN output are illustrated in blue.
Both confidence intervals are constructed by requiring equal functional values at both
ends. In the lower left panel we see why the two sets of curves agree very poorly: for the
narrow pT,j slide the ptruthT,t distribution is all but Gaussian, while the Bayesian output in
our naive approach is forced to be Gaussian.

From Sec. 3.2 we know that it is not necessary to assume that the Bayesian network
output is Gaussian. As a simple generalization we can replace the two-parameter Gaussian
form of p(pT |ω, j) (compare p(D|ω) in Eq. (2.15)) with a mixture of Gaussians,

p(pT |ω, j) =
∑
i

αi,ω G(〈pT 〉(i)ω , σ
(i)
stoch,ω) , (3.8)

with
∑
i αi,ω = 1. The network output from Eq. (3.3) then becomes

NN(ω) =


α1,ω α2,ω · · ·
〈pT 〉(1)

ω 〈pT 〉(1)
ω · · ·

σ
(1)
stoch,ω σ

(2)
stoch,ω · · ·

 (3.9)

To guarantee
∑
i αi,ω = 1 we use SoftMax as an activation function for αi,ω and the

SoftPlus function for σ(i)
stoch,ω to ensure positive values. In the center and right sets of

panels in Fig. 3.7 we see what happens if we use two or three Gaussians, specifically with
the parameters averaged over weights and jets in a bin. For three Gaussians the BNN
output and the ptruthT,t distribution agree perfectly. The corresponding parameters are
shown in Tab. 3.2.

Technically, we follow Sec. 2.2.2 in extracting σstoch and σpred independently of the form
of the underlying assumption. Two aspects render this computation slightly expensive:
the integration over all weights and, if required, the combination of different predictions
in one pT,j bin. On the other hand we know that σpred � σstoch and we can always use
narrow bin sizes. This means that in both cases we can replace the integrals by simply
averaging over the parameters of the Gaussian mixture model. This implementation is
computationally less expensive and gives us simple analytic expressions from which we
extract the maximum and 68% CL interval.
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Figure 3.8: Upper: 2-dimensional distribution of ptruthT,t vs pT,j including its
68% CL around the maximum, after adding 4% (left) and 10% (right) Gaussian
noise on the top momentum label. In blue we also show the BNN error estimate.
Lower: corresponding ptruthT,t -distribution for a narrow slice in pT,j .

Noisy labels

A crucial question in experimental physics is how we include a systematic uncertainty for
instance on the jet energy scale in the training procedure. We can understand such an
energy calibration when we remind ourselves that the jets in the calibration sample come
with a measured reference value for their energies and the corresponding error bar; and
that the calibration sample in our case is the training sample. There are two ways we
can include the error on the calibration measurements in our analysis:

1A. fix the label or “true energy” and smear the jets in the training sample;
1B. fix the jets and smear the continuous label in the training sample;
2. train the Bayesian network on the smeared label-jet combination;
3. extract a systematics error bar for each jet in the test sample.

In Ref. [60] we have followed the option 1A and encountered some practical/numerical
problems when tracing the corresponding systematics to the network output. For this
approach we refer to Appendix A.1. In this study we shift to the less standard and
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Figure 3.9: Correlation between σstoch, as given by the Bayesian network and the
smearing σsmear applied to the label in the training data. The baseline σstoch,0
is defined as σstoch in the limit of no smearing. The error bars indicate the
standard deviation from five independent trainings.

yet straightforward option 1B. We assume that jet calibration incorporates external
information on the training sample, be it another measurement or a theory requirement
(one-shell Z-decays) or a MC prediction. This information defines a label together with
a corresponding error bar. This means we train our network on a fixed sample of jets
with a smeared label representing the full reference measurement. In this approach we
can trivially include additional uncertainties from pre-processing the training data, like
running a jet algorithm of the Z-sample, removing underlying event and pile-up, etc. As
a side effect our setup also allows us to capture possible transfer uncertainties, whenever
our test sample cannot easily be linked to the training sample. In the ML literature such
uncertainties are referred to as out-of-sample error.

To illustrate and test our setup we smear ptruthT,t , the label in the training data, according
to Gaussians with widths of

σsmear = (4 ... 10)%× ptruthT,t . (3.10)

In Fig. 3.8. we see that for a small amount of smearing the non-Gaussian shape of Fig. 3.7
remains, so we use two Gaussians in the BNN. For sizable Gaussian smearing we see
that the resulting distributions all assume a Gaussian shape and we can stick to the
single-Gauss standard BNN. In both cases the distribution of the BNN output and the
(smeared) label ptruthT,t agree almost perfectly.

From the previous sections we know that the reported uncertainty by the BNN includes
a statistical uncertainty vanishing with an increasing amount of training data and a
systematic uncertainty representing the stochastic nature of the training data. When we
introduce another uncertainty induced by smeared labels we expand Eq. (2.20) to

σ2
tot = σ2

stoch + σ2
pred

= σ2
stoch,0 + σ2

cal + σ2
pred ⇔ σ2

cal = σ2
stoch − σ2

stoch,0 , (3.11)

added in quadrature because of the central limit theorem. The baseline value σstoch,0
is defined as σstoch in the limit of no smearing. In Fig. 3.9 we show how σcal correlates
with the input σsmear over a wide range of scale uncertainties. As usually, the error bar
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represents the standard deviation from five independent trainings. This correlation shows
that our network picks up the systematic uncertainties from smeared training labels
perfectly. We note that, as before, this analysis does not require a Gaussian shape of the
network output.

3.6 Outlook

We have shown that Bayesian networks keep track of statistical and systematic uncertain-
ties in the training data and translate them into a jet-by-jet error budget for instance in a
momentum measurement. Outside particle physics it is not unusual to treat uncertainties
as a smearing of labels, whereas in particle physics we usually model them by smearing
the input data. We show that smearing labels is a natural, feasible, and self-consistent
strategy in combination with deep learning. An advantage of this approach is that the
treatment of uncertainties is moved from the evaluation time to the training time and
so-trained networks accurately report predictions of the central value as well as systematic
uncertainties.

We have shown that the corresponding Bayesian networks allow us to cleanly separate
statistical and systematic uncertainties. In addition, the smeared labels are ideally suited
to translate uncertainties from reference or calibration data to the network output.

Technically, we have modified the Bayesian network approach of Ref. [60] to include
non-Gaussian behavior. This step is crucial for modeling systematic uncertainties in
general.

We emphasize that before this approach can be generally adapted, open questions such
as multiple correlated uncertainties and the translation between input-uncertainties and
label-uncertainties need to be answered. However, our first results show great promise for
smeared labels describing uncertainties in particle physics applications of deep learning.
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Chapter 4
Event generation with
Bayesian neural networks

The research presented in this chapter has been published in Ref. [2]. Most of the figures,
tables and text are completely identical to the content of this publication.

4.1 Introduction

The role of first-principle simulations in our understanding of large data sets makes LHC
physics stand out in comparison to many other areas of science. Three aspects define the
application of modern big data methods in this field:

· ATLAS and CMS deliver proper big data with excellent control over uncertainties;

· perturbative quantum field theory provides consistent precision predictions;

· fast and reliable precision simulations generate events from first principles.

The fact that experiments, field theory calculations, and simulations control their uncer-
tainties implies that we can work with a complete uncertainty budget, including statistical,
systematic, and theory uncertainties. To sustain this approach at the upcoming HL-LHC,
with a data set more than 25 times the current Run 2 data set, the theory challenge is to
provide faster simulations and keep full control of the uncertainties at the per-cent level
and better.

In recent years it has been shown that modern machine learning can improve LHC
event simulations in many ways [34]. Promising techniques include generative adver-
sarial networks (GANs) [71,72,115], variational autoencoders [62,70], and normalizing
flows [66, 69, 116, 117], including invertible neural networks (INNs) [67, 68, 118]. They
can improve phase space integration [119, 120], phase space sampling [121–123], and
amplitude computations [108, 124]. Further developments are fully NN-based event
generation [125–129], event subtraction [130], event unweighting [131, 132], detector
simulation [133–142], or parton showering [143, 144, 144–146]. Generative models will
also improve searches for physics beyond the Standard Model [147], anomaly detec-
tion [148,149], detector resolution [150,151], and inference [152–154]. Finally, conditional
GANs and INNs allow us to invert the simulation chain to unfold detector effects [33,155]
and extract the hard scattering process at parton level [156]. The problem with these
applications is that we know little about

1. how these generative networks work, and

32



4 Event generation with Bayesian neural networks

2. what the uncertainty on the generative network output is.

As we will see in this paper, these two questions are closely related.

In general, we can track statistical and systematic uncertainties in neural network outputs
with Bayesian networks [36,37,39,59]. Such networks have been used in particle physics for
a long time [157–159]. For the LHC we have proposed to use them to extract uncertainties
in jet classification [60] and jet calibration [1]. They can cover essentially all uncertainties
related to statistical, systematic, and structural limitations of the training sample [93].
Similar ideas can be used as part of ensemble techniques [160]. We propose to use a
Bayesian invertible neural network (BINN) to extract uncertainties on a generated event
sample induced by the network training.

Because Bayesian networks learn the density and uncertainty maps in one pass, their
relation offers us fundamental insight into the way an INN learns a distribution. While
Bayesian classification [60] and regression networks [1] highlight the statistical and
systematic nature of uncertainties, our Bayesian generative network exhibits a very
different structure. We will discuss the learning pattern of the Bayesian INN in details for
a set of simple toy processes in Sec. 4.3, before we apply the network to a semi-realistic
LHC example in Sec. 4.4.

4.2 Generative networks with uncertainties

We start by reminding ourselves that we often assume that a generative model has
learned a phase space density perfectly, so the only remaining source of uncertainty is the
statistics of the generated sample binned in phase space. However, we know that such
an assumption is not realistic [1, 60], and we need to estimate the effect of statistical or
systematic limitations of the training data. The problem with such a statistical limitation
is that it is turned into a systematic shortcoming of the generative model [128] — once
we generate a new sample, the information on the training data is lost, and the only way
we might recover it is by training many networks and comparing their outcome. For most
applications this is not a realistic or economic option, so we will show how an alternative
solution could look.

4.2.1 Uncertainties on event samples

Uncertainties on a simulated kinematic or phase space distribution are crucial for any
LHC analysis. For instance, we need to know to what degree we can trust a simulated
pT -distribution in mono-jet searches for dark matter. We denote the complete phase
space weight for a given phase space point as p(x), such that we can illustrate a total
cross section as

σtot =
∫ 1

0
dx p(x) with p(x) > 0 . (4.1)

In this simplified notation x stands for a generally multi-dimensional phase space. For
each phase space position, we can also define an uncertainty σ(x).

Two contributions to the error budget are theory and systematic uncertainties, σth/sys(x).
The former reflects our ignorance of aspects of the training data, which do not decrease
when we increase the amount of training data. The latter captures the degree to which
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we trust our prediction, for instance based on self-consistency arguments. For example,
we can account for possible large, momentum-dependent logarithms as a simple function
of phase space. If we use a numerical variation of the factorization and renormalization
scales to estimate a theory uncertainty, we typically re-weight events with the scales.
Another uncertainty arises from the statistical limitations of the training data, σstat(x).
For instance in mono-jet production, the tails of the predicted pT -distribution for the
Standard Model will at some point be statistics limited. In the Gaussian limit, a statistical
uncertainty can be defined by binning the phase space and in that limit we expect a
scaling like σstat(x) ∼

√
p(x), and we will test that hypothesis in detail in Sec. 4.3.

Once we know the uncertainties as a function of the phase space position, we can account
for them as additional entries in unweighted or weighted events. For instance, relative
uncertainties can be easily added to unweighted events,

evi =



σstat/p

σsyst/p

σth/p

{xµ,j}
{pµ,j}


, with µ = 0 ... 3 for each particle j. (4.2)

The entries σ or σ/p are smooth functions of phase space. The challenge in working
with this definition is how to extract σstat without binning. We will show how Bayesian
networks give us access to limited information in the training data. Specific theory and
systematics counterparts can be either computed directly or extracted by appropriately
modifying the training data [1, 60].

4.2.2 Invertible Neural Networks

To model complex densities such as LHC phase space distributions, we can employ
normalizing flows [66–69]. As discussed in Sec. 2.3 their advantage is that they are
likelihood-based generative models which allow an easy formulation in terms of Bayesian
neural networks.

The construction of normalizing flows relies on the property that the composition of a
chain of simple invertible nonlinear maps gives us a complex map. There exists a broad
literature of different transformations, each with different strengths and weaknesses [69].
In this work, we rely on the real non-volume preserving flow [67] in the invertible neural
network (INN) formulation [118].

The invertible neural net provides us with a powerful generative model of the underlying
data distribution. However, it lacks a mechanism to account for our uncertainty in the
transformation parameters θ themselves. To model it, we switch from deterministic
transformations to probabilistic transformations, replacing the deterministic sub-networks
in each of the coupling layers with Bayesian neural nets. The corresponding Bayesian
loss function is discussed in more detail in Sec. 2.3.1.
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4.3 Toy events with uncertainties

Before we tackle a semi-realistic LHC setup, we first study the behavior of BINNs for a
set of toy examples, namely distributions over the minimally allowed two-dimensional
parameter space where in one dimension the density is flat. Aside from the fact that
these toy examples illustrate that the BINN actually constructs a meaningful uncertainty
distribution, we will use the combination of density and uncertainty maps to analyze
how an INN actually learns a density distributions. We will see that the INN describes
the density map in the sense of a few-parameter fit, rather than numerically encoding
patches over the parameter space independently.

The default architecture for our toy models is a network with 32 units per layer, three layers
per coupling block, and a total of 20 coupling blocks. It’s implemented in PyTorch [64].
More details are given in Tab. 4.1. The most relevant hyperparameter is the number of
coupling blocks in that more blocks provide a more stable performance with respect to
several trainings of the same architecture. Generally, moderate changes for instance of
the number of units per layer do not have a visible impact on the performance. For each
of the trainings we use a sample of 300k events. The widths of the Gaussian priors is set
to one. We check that variations of this over several orders of magnitude did not have a
significant impact on the performance.

4.3.1 Wedge ramp

Our first toy example is a two-dimensional ramp distribution, linear in one direction and
flat in the other,

p(x, y) = Linear(x ∈ [0, 1])× Const(y ∈ [0, 1]) = x× 2 . (4.3)

The second term ensures that the distribution p(x, y) is normalized to one, and the
network output is shown in Fig. 4.1. The network output consists of unweighted events
in the two-dimensional parameters space, (x, y). We show one-dimensional distributions

Parameter Flow

Hidden layers (per block) 3
Units per hidden layer 32
Batch size 512
Epochs 300
Trainable weights 75k
Optimizer Adam
(α, β1, β2) (1× 10−3, 0.9, 0.999)
Coupling layers 20
Training size 300k
Prior width 1

Table 4.1: Hyper-parameters for all toy models, implemented in Pytorch
(v1.4.0) [64].
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Figure 4.1: Two-dimensional and marginal densities for the linear wedge ramp.

after marginalizing over the unobserved direction and find that the network reproduces
Eq. (4.3) well.

In Fig. 4.2 we include the predictive uncertainty given by the BINN. For this purpose
we train a network on the two-dimensional parameter space and evaluate it for a set of
points with x ∈ [0, 1] and a constant y-value. In the left panel we indicate the predictive
uncertainty as an error bar around the density estimate. Throughout the paper we always
remove the phase space boundaries, because we know that the network is unstable there,
and the uncertainties explode just like we expect. For this example, this is taken into
account by restricting x, y ∈ [0.1, 0.9]. The relative uncertainty grows for small values of
x and hence small values of p(x, y), and it covers the deviation of the extracted density
from the true density well. These features are common to all our network trainings.
In the central and right panel of Fig. 4.2 we show the relative and absolute predictive
uncertainties. The error bar indicates how much σpred varies for different choices of y.
We compute it as the standard deviation of different values of σpred, after confirming that
the central values agree within this range. As expected, the relative uncertainty decreases
towards larger x. However, the absolute uncertainty shows a distinctive minimum in
σpred around x ≈ 0.45. This minimum is a common feature in all our trainings, so we
need to explain it.

To understand this non-trivial uncertainty distribution σpred(x) we focus on the non-trivial
x-coordinate and its linear behavior

p(x) = ax+ b with x ∈ [0, 1] . (4.4)

Because the network learns a density, we can remove b by fixing the normalization,

p(x) = a

(
x− 1

2

)
+ 1 . (4.5)

If we now assume that a network acts like a fit of a, we can relate the uncertainty ∆a to
an uncertainty in the density,

σpred ≡ ∆p ≈
∣∣∣∣x− 1

2

∣∣∣∣ ∆a . (4.6)

The absolute value appears because the uncertainties are defined to be positive, as
encoded in the usual quadratic error propagation. The uncertainty distribution has a
minimum at x = 1/2, close to the observed value in Fig. 4.2.

The differences between the simple prediction in Eq. (4.6) and our numerical findings in
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Figure 4.2: Density and predictive uncertainty distribution for the wedge ramp.
In the left panel the density and uncertainty are averaged over several lines
with constant y. In the central and right panels, the uncertainty band on σpred
is given by their variation. The green curve represents a two-parameter fit to
Eq. (4.9).

Fig. 4.2 is that the predictive uncertainty is not symmetric and does not reach zero. To
account for these sub-leading effects we can expand our very simple ansatz to

p(x) = ax+ b with x ∈ [xmin, xmax] . (4.7)

Using the normalization condition we again remove b and find

p(x) = ax+
1− a

2 (x2
max − x2

min)
xmax − xmin

. (4.8)

Again assuming a fit-like behavior of the flow network we expect for the predictive
uncertainty

σ2
pred ≡ (∆p)2 =

(
x− 1

2

)2
(∆a)2 +

(
1 + a

2

)2
(∆xmax)2 +

(
1− a

2

)2
(∆xmin)2 . (4.9)

Adding xmin or xmax leads to an x-independent offset and does not change the x-
dependence of the predictive uncertainty. The slight shift of the minimum and the
asymmetry between the lower and upper boundaries in x are not explained by this
argument. We ascribe them to boundary effects, specifically the challenge for the network
to describe the correct approach towards p(x)→ 0.

The green line in Fig. 4.2 gives a two-parameter fit of ∆a and ∆xmax to the σpred
distribution from the BINN. It indicates that there is a hierarchy in the way the network
extracts the x-independent term with high precision, whereas the uncertainty on the
slope a is around 4%.

4.3.2 Kicker ramp

We can test our findings from the linear wedge ramp using the slightly more complex
quadratic or kicker ramp,

p(x, y) = Quadr(x ∈ [0, 1])× Const(y ∈ [0, 1]) = x2 × 3 . (4.10)

We show the results from the network training for the density in Fig. 4.3 and find that
the network describes the density well, limited largely by the flat, low-statistics approach
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towards the lower boundary with p(x)→ 0.

In complete analogy to Fig. 4.2 we show the complete BINN output with the density
p(x, y) and the predictive uncertainty σpred(x, y) in Fig. 4.4. As for the linear case, the
BINN reproduces the density well, deviations from the truth being within the predictive
uncertainty in all points of phase space. We remove the phase space boundaries restricting
x, y ∈ [0.05, 0.95], as the network becomes unstable and the predictive uncertainties grows
correspondingly. The indicated error bar on σpred(x, y) is given by the variation of the
predictions for different y-values, after ensuring that their central values agree. The
relative uncertainty at the lower boundary x = 0 is large, reflecting the statistical
limitation of this phase space region. An interesting feature appears again in the absolute
uncertainty, namely a maximum-minimum combination as a function of x.

Again in analogy to Eq. (4.7) for the wedge ramp, we start with the parametrization of
the density

p(x) = a (x− x0)2 with x ∈ [x0, xmax] , (4.11)

where we assume that the lower boundary coincides with the minimum and there is no
constant offset. We choose to describe this density through the minimum position x0,
coinciding the the lower end of the x-range, and xmax as the second parameter. The
parameter a can be eliminated through the normalization condition and we find

p(x) = 3 (x− x0)2

(xmax − x0)3 . (4.12)

If we vary x0 and xmax we can trace two contributions to the uncertainty in the density,

σpred ≡ ∆p ⊃ 9
(xmax − x0)4

∣∣∣∣(x− x0)
(
x− x0

3 −
2xmax

3

)∣∣∣∣∆x0

and σpred ≡ ∆p ⊃ 9
(xmax − x0)4 (x− x0)2 ∆xmax , (4.13)

one from the variation of x0 and one from the variation of xmax. In analogy to Eq. (4.9)
they need to be added in quadrature. If the uncertainty on ∆x0 dominates, the uncertainty
has a trivial minimum at x = 0 and a non-trivial minimum at x = 2/3. From ∆xmax we
get another contribution which scales like ∆p ∝ p(x). In Fig. 4.4 we clearly observe both
contributions, and the green line is given by the corresponding 2-parameter fit to the
σpred distribution from the BINN.
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Figure 4.3: Two-dimensional and marginal densities for the quadratic kicker
ramp.
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Figure 4.4: Density and predictive uncertainty distribution for the kicker ramp.
In the left panel the density and uncertainty are averaged over several lines
with constant y. In the central and right panels, the uncertainty band on σpred
is given by their variation. The green curve represents a two-parameter fit to
Eq. (4.13).

4.3.3 Gaussian ring

Our third example is a two dimensional Gaussian ring, which in terms of polar coordinates
reads

p(r, φ) = Gauss(r > 0;µ = 4, w = 1)× Const(φ ∈ [0, π]) , (4.14)

We define the Gaussian density as the usual

Gauss(r) = 1√
2π w

exp
[
− 1

2w2 (r − µ)2
]

(4.15)

The density defined in Eq. (4.14) can be translated into Cartesian coordinates as

p(x, y) = Gauss(r(x, y);µ = 4, w = 1) × Const(φ(x, y) ∈ [0, π])× 1
r(x, y) (4.16)

where the additional factor 1/r comes from the Jacobian. We train the BINN on Cartesian
coordinates, just like in the two examples before, and limit ourselves to y > 0 to avoid
problems induced by learning a non-trivial topology in mapping the latent and phase
spaces. In Fig. 4.5 we once again see that our network describes the true two-dimensional
density well.

In Fig. 4.6 we show the Cartesian density but evaluated on a line of constant angle.

−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5
x

1

2

3

4

5

6

7

y

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
×10−2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

×10−1

BINN

Training Data

−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5
x

0.8
1.0
1.2

B
IN

N
T

ru
th

0.0

0.5

1.0

1.5

2.0

2.5

N
or

m
al

iz
ed

×10−1

BINN

Training Data

0 2 4 6 8
y

0.8
1.0
1.2

B
IN

N
T

ru
th

Figure 4.5: Two-dimensional and marginal densities for the Gaussian (half-)ring.
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Figure 4.6: Cartesian density and predictive uncertainty distribution for the
Gaussian ring. In the left panel the density and uncertainty are averaged over
several lines with constant φ. In the central and right panels, the uncertainty
band on σpred is given by their variation. The green curve represents a two-
parameter fit to Eq. (4.17).

This form includes the Jacobian and has the expected, slightly shifted peak position at
rmax = 2 +

√
3 = 3.73. The BINN returns a predictive uncertainty, which grows towards

both boundaries. The error band easily covers the deviation of the density learned by
the BINN and the true density. While the relative predictive uncertainty appears to
have a simple minimum around the peak of the density, we again see that the absolute
uncertainty has a distinct structure with a local minimum right at the peak. The question
is what we can learn about the INN from this pattern in the BINN.

As before, we describe our distribution in the relevant direction in terms of convenient
fit parameters. For the Gaussian radial density these are the mean µ and the width w
used in Eq. (4.14). The contributions driven by the extraction of the mean in Cartesian
coordinates reads

σpred ≡ ∆p ⊃
∣∣∣∣G(r)
r

µ− r
w2

∣∣∣∣∆µ
and σpred ≡ ∆p ⊃

∣∣∣∣∣(r − µ)2

w3 − 1
w

∣∣∣∣∣∆w . (4.17)

In analogy to Eq. (4.9) the two contributions need to be added in quadrature for the full,
fit-like uncertainty. The contribution from the the mean has a minimum at r = µ = 4
and is otherwise dominated by the exponential behavior of the Gaussian, just as we
observe in the BINN result. In the central and right panels we show a one-parameter fit
of the BINN output and find that the network determined the mean of the Gaussian as
µ = 4± 0.037. We observe that including ∆w doesn’t improve the goodness of the fit.

4.3.4 Errors vs training statistics

Even though it is clear from the above discussion that we cannot expect the predictive
uncertainties to have a simple scaling pattern, like for the regression [1] and classifica-
tion [60] networks, there still remains the question how the BINN uncertainties change
with the size of the training sample.

In Fig. 4.7 we show how the BINN predictions for the density and uncertainty change if
we vary the training sample size from 10k events to 1M training events. Note that for
all toy models, including the kicker ramp in Sec. 4.3.2, we use 300k training events. For
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Figure 4.7: Dependence of the density (upper) and absolute uncertainty (lower)
on the training statistics for the kicker ramp. We illustrate BINNs trained on
10k, 100k, and 1M events (left to right), to be compared to 300k events used for
Fig. 4.4. Our training routine ensures that all models receive the same number
of weights updates, regardless of the training set size.

the small 10k training sample, we see that the instability of the BINN density becomes
visible even for our reduced x-range. The peak-dip pattern of the absolute uncertainty,
characteristic for the kicker ramp, is also hardly visible, indicating that the network has
not learned the density well enough to determine its shape. Finally, the variation of
the predictive density explodes for x > 0.4, confirming the picture of a poorly trained
BINN. As a rough estimate, the absolute uncertainty at x = 0.5 with a density value
p(x, y) = 0.75 ranges around σpred = 0.11 ... 0.15.

For 100k training events we see that the patterns discussed in Sec. 4.3.2 begin to form.
The density and uncertainty encoded in the network are stable, and the peak-dip with
a minimum around x = 2/3 becomes visible. As a rough estimate we can read off
σpred(0.5) ≈ 0.06 ± 0.03. For 1M training events the picture improves even more and
the network extracts a stable uncertainty of σpred(0.5) ≈ 0.03± 0.01. Crucially, the dip
around x ≈ 2/3 remains, and even compared to Fig. 4.4 with its 300k training events the
density and uncertainty at the upper phase space boundary are much better controlled.

Finally, we briefly comment on a frequentist interpretation of the BINN output. We
know from simpler Bayesian networks [1,60] that it is possible to reproduce the predictive
uncertainty using an ensemble of deterministic networks with the same architecture.
However, from those studies we also know that our class of Bayesian networks has a
very efficient built-in regularization, so this kind of comparison is not trivial. For the
BINN results shown in this paper we find that the detailed patterns in the absolute
uncertainties are extracted by the Bayesian network much more efficiently than they
would be for ensembles of deterministic INNs. For naive implementations with a similar
network size and no fine-tuned regularization these patterns are somewhat harder to
extract. On the other hand, in stable regions without distinctive patterns the spread of
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ensembles of deterministic networks reproduces the predictive uncertainty reported by
the BINN.

4.3.5 Marginalizing phase space

Before we move to a more LHC-related problem, we need to study how the BINN
provides uncertainties for marginalized kinematic distribution. In all three toy examples
the two-dimensional phase space consists of one physical and one trivial direction. For
instance, the kicker ramp in Sec. 4.3.2 has a quadratic physical direction, and in a typical
phase space problem we would integrate out the trivial, constant direction and show a
one-dimensional kinematic distribution. From our effectively one-dimensional uncertainty
extraction, we know that the absolute uncertainty has a characteristic maximum-minimum
combination, as seen in the central panel of Fig. 4.4.

To compute the uncertainty for a properly marginalized phase space direction, we remind
ourselves how the BINN computes the density and the predictive uncertainty by sampling
over the weights,

p(x, y) =
∫
dθ q(θ) p(x, y|θ)

σ2
pred(x, y) =

∫
dθ q(θ) [p(x, y|θ)− p(x, y)]2 . (4.18)

If we integrate over the y-direction, the marginalized density is defined as

p(x) =
∫
dy p(x, y) =

∫
dydθ q(θ) p(x, y|θ)

=
∫
dθ q(θ)

∫
dy p(x, y|θ) ≡

∫
dθ q(θ) p(x|θ) , (4.19)

which implicitly defines p(x|θ) in the last step, notably without providing us with a way
to extract it in a closed form. The key step in this definition is that we exchange the
order of the y and θ integrations. Nevertheless, with this definition at hand, we can
define the uncertainty on the marginalized distribution as

σ2
pred(x) =

∫
dθ q(θ) [p(x|θ)− p(x)]2 . (4.20)

We illustrate this construction with a trivial p(x, y) = p(x, y0), where we can replace the
trivial y-dependence by a fixed choice y = y0 just like for the wedge and kicker ramps.
Here we find, modulo a normalization constant in the y-integration

σ2
pred(x) =

∫
dθ q(θ) [p(x|θ)− p(x)]2

=
∫
dθ q(θ)

∫
dy [p(x, y0|θ)− p(x, y0)]2

=
∫
dydθ q(θ) [p(x, y0|θ)− p(x, y0)]2 =

∫
dy σ2

pred(x, y0) = σ2
pred(x, y0) .

(4.21)

Adding a trivial y-direction does not affect the predictive uncertainty in the physical
x-direction.
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Figure 4.8: Marginalized densities and predictive uncertainties for the kicker
ramp. Instead of the true distribution we now show the training data as a
reference, to illustrate possible limitations. We use 10M phase space point to
guarantee a stable prediction.

As mentioned above, unlike for the joint density p(x, y|θ), we do not know the closed
form of the marginal distributions p(x) or p(x|θ). Instead, we can approximate the
marginalized uncertainties through a combined sampling in y and θ. We start with one
set of weights θi from the weight distribution, based on one random number per INN
weight. We now sample N points in the latent space, zj , and compute N phase space
points xj using the BINN configuration θi. We then bin the wanted phase space direction
x and approximate p(x|θi) by a histogram. We repeat this procedure i = 1 ... M times
to extract M histograms with identical binning. This allows us to compute a mean
and a standard deviation from M histograms to approximate p(x) and σpred(x). The
approximation of σpred should be an over-estimate, because it includes the statistical
uncertainty related to a finite number of samples per bin. For N � 1 this contribution
should become negligible. With this procedure we effectively sample N ×M points in
phase space.

Following Eq. (4.19), we can also fix the phase space points, so instead of sampling for
each weight sample another set of phase space points, we use the same phase space
points for each weight sampling. This should stabilize the statistical fluctuations, but
with the drawback of relying only on an effective number of N phase space points. Both
approaches lead to the same σpred for sufficiently large N , which we typically set to
105 ... 106. For the Bayesian weights we find stable results for M = 30 ... 50.

In Fig. 4.8 we show the marginalized densities and predictive uncertainties for the kicker
ramp. In y-direction the density and the predictive uncertainty show the expected flat
behavior. The only exceptions are the phase space boundaries, where the density starts
to deviate slightly from the training data and the uncertainty correctly reflects that
instability. In x-direction, the marginalized density and uncertainty can be compared
to their one-dimensional counterparts in Fig. 4.4. While we expect the same peak-dip
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structure, the key question is if the numerical values for σpred(x) change. If the network
learns the y-direction as uncorrelated additional data, the marginalized uncertainty
should decrease through a larger effective training sample. This is what we typically see
for Monte Carlo simulations, where a combination of bins in an unobserved direction
leads to the usual reduced statistical uncertainty. On the other hand, if the network
learns that the y-directions is flat, then adding events in this direction will have no effect
on the uncertainty of the marginalized distribution. This would correspond to a set
of fully correlated bins, where a combination will not lead to any improvement in the
uncertainty. In Fig. 4.8 we see that the σpred(x) values on the peak, in the dip, and
to the upper end of the phase space boundary hardly change from the one-dimensional
results in Fig. 4.4. This confirms our general observation, that the (B)INN learns a
functional form of the density in both directions, in close analogy to a fit. It also means
that the uncertainty from the generative network training is not described by the simple
statistical scaling we observed for simpler networks [1, 60] and instead points towards a
GANplification-like [115] pattern.

4.4 LHC events with uncertainties

As a physics example we consider the Drell-Yan process

pp→ Z → e+e− , (4.22)

with its simple 2→ 2 phase space combined with the parton density. The training set
consists of an unweighted set of 4-vectors simulated with Madgraph5 [161] at 13 TeV
collider energy with the NNPDF2.3 parton densities [162]. We fix the masses of the
final-state leptons and enforce momentum conservation in the transverse direction, which
leaves us with a four-dimensional phase space. In our discussion we limit ourselves to a
sufficiently large set of one-dimensional distributions. For these marginalized uncertainties
we follow the procedure laid out in Sec. 4.3.5 with 50 samples in the BINN-weight space.
In Tab. 4.2 we give the relevant hyper-parameters for this section.

To start with, we show a set of generated kinematic distributions in Fig. 4.9. The positron

Parameter Flow

Hidden layers (per block) 2
Units per hidden layer 64
Batch size 512
Epochs 500
Trainable weights ∼ 182k
Number of training events ∼ 1M
Optimizer Adam
(α, β1, β2) (1× 10−3, 0.9, 0.999)
Coupling layers 20
Prior width 1

Table 4.2: Hyper-parameters for the Drell-Yan data set, implemented in Pytorch
(v1.4.0) [64].
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Figure 4.9: One-dimensional (marginalized) kinematic distributions for the Drell-
Yan process. We show the central prediction from the BINN and include the
predictive uncertainty from the BINN as the blue band. The red band indicates
the statistical uncertainty of the training data per bin in the Gaussian limit.

energy features the expected strong peak from the Z-resonance. Its sizable tail to larger
energies is well described by the training data to Ee ≈ 280 GeV. The central value
learned by the BINN becomes unstable at slightly lower values of 250 GeV, as expected.
The momentum component px is not observable given the azimuthal symmetry of the
detector, but it’s broad distribution is nevertheless reproduced correctly. The predictive
uncertainty covers the slight deviations over the entire range. What is observable at the
LHC is the transverse momentum of the outgoing leptons, with a similar distribution
as the energy, just with the Z-mass peak at the upper end of the distribution. Again,
the predictive uncertainty determined by the BINN covers the slight deviations from
the truth on the pole and in both tails. In the second row we show the pz component
as an example of a strongly peaked distribution, similar to the Gaussian toy model in
Sec. 4.3.3.

While the energy of the lepton pair has a similar basic form as the individual energies, we
also show the invariant mass of the electron-positron pair, which is described by the usual
Breit-Wigner peak. It is well known that this intermediate resonance is especially hard
to learn for a network, because it forms a narrow, highly correlated phase space structure.
Going beyond the precision shown here would for instance require an additional MMD
loss, as described in Ref. [128] and in more detail in Ref. [33]. This resonance peak is
the only distribution where the predictive uncertainty does not cover the deviation of
the BINN density from the truth. This apparent failure corresponds to the fact that
generative networks always overestimate the width and hence underestimate the height of
this mass peak [128]. This is an example of the network being limited by the expressive
power in phase space resolution, generating an uncertainty which the Bayesian version
cannot account for.

In Fig. 4.10 we show a set of absolute and relative uncertainties from the BINN. The
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Figure 4.10: Absolute and relative uncertainties as a function of some of the
kinematic Drell-Yan observables shown in Fig. 4.9.

strong peak combined with a narrow tail in the Ee distribution shows two interesting
features. Just above the peak the absolute uncertainty drops more rapidly than expected,
a feature shared by the wedge and kicker ramps at their respective upper phase space
boundaries. The shoulder around Ee ≈ 280 GeV indicates that for a while the predictive
uncertainty follows the increasingly poor modeling of the phase space density by the
BINN, to a point where the network stops following the truth curve altogether and
the predictive uncertainty is limited by the expressive power of the network. Unlike
the absolute uncertainty, the relative uncertainty keeps growing for increasing values of
Ee. This behavior illustrates that in phase space regions where the BINN starts failing
altogether, we cannot trust the predictive uncertainty either, but we see a pattern in the
intermediate phase space regime where the network starts failing.

The second kinematic quantity we select is the (unobservable) x-component of the
momentum. It forms a relative flat central plateau with sharp cliffs at each side. Any
network will have trouble learning the exact shape of such sharp phase space patterns.
Here the BINN keeps track of this, the absolute and the relative predictive uncertainties
indeed explode. The only difference between the two is that the (learned) density at the
foot of the plateau drops even faster than the learned absolute uncertainty, so their ratio
keeps growing.

Finally, we show the result for the Breit-Wigner mass peak, the physical counterpart of
the Gaussian ring model of Sec. 4.3.3. Indeed, we see exactly the same pattern, namely a
distinctive minimum in the predictive uncertainty right on the mass peak. This pattern
can be explained by the network learning the general form of a mass peak and then
adjusting the mean and the width of this peak. Learning the peak position leads to a
minimum of the uncertainty right at the peak, and learning the width brings up two
maxima on the shoulders of the mass peak. In combination Figs. 4.9 and 4.10 clearly
show that the BINN traces uncertainties in generated LHC events just as for the toy
models. Again, some distinctive patterns in the predictive uncertainty can be explained
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by the way the network learns the phase space density.

4.5 Outlook

Controlling the output of generative networks and quantifying their uncertainties is the
main task for any application in LHC physics, be it in forward generation, inversion, or
inference. We have proposed to use a Bayesian invertible network (BINN) to quantify
the uncertainties from the network training for each generated event. For a series of
two-dimensional toy models and an LHC-inspired application we have shown how the
Bayesian setup indeed generates an uncertainty distribution, over the full phase space
and over marginalized phase spaces. As expected, the learned uncertainty shrinks with
an improved training statistics. Our method can be trivially extended from unweighted
to weighted events by adapting the simple MLE loss.

An intriguing result from our study is that the combined learning of the density and
uncertainty distributions allows us to draw conclusions on how a normalizing-flow network
like the BINN learns a distribution. We find that the uncertainty distributions are
naturally explained by a fit-like behavior of the network, rather than a patch-wise
learning of the density. For the LHC, this can be seen for instance in the non-trivial
uncertainty for an intermediate Breit-Wigner resonance. These results are another step
in understanding GANplification patterns [115] and might even allow us to use INNs to
extrapolate in phase space.

Obviously, it remains to be seen how our observations generalize to other generative
networks architectures. For the LHC, the next step should be an in-depth study of
INN-like networks applied to event generation.
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Chapter 5
Event generation with Bayesian
neural networks – a different angle

The research presented in this chapter has been published in Ref. [4]. Most of the figures,
tables and text are completely identical to the content of this publication.

5.1 Introduction

Combining our expectations of a vastly increased dataset from the upcoming LHC runs
with novel analysis methods and ever-improving theory predictions, we are looking at
exciting times for particle physics. One of the keys to make optimal use of the LHC
data is to consistently employ modern techniques, inspired by data science and further
developed for particle physics application. Inference based on precision predictions from
first principles critically rests on the assumption that we can provide theory predictions
over the full phase space fast, precisely, and with flexible model assumptions. To meet
the speed and precision expectations from HL-LHC we can use modern machine learning
(ML) throughout the event generation and simulation chain [163].

A straightforward ML-task is regression of loop amplitudes, represented as a smooth
scalar function over a relatively simple phase space. For simple (2→ 2)-processes learning
a non-divergent loop amplitude does not even require deep networks [124] and has been
achieved with conventional interpolation methods [164,165] as well. For higher final-state
multiplicities [166] precision turns into a challenge, which we can try to meet by separating
phase space into finite and divergent regions [108] or physics-inspired channels combined
with very large training samples [167]. For our di-photon benchmark process at one-loop
order current methods have shown to work well, but with limited precision especially in
challenging regions of phase space [168].

Like in many physics applications, we would like to complement precision predictions of
amplitudes with a reliable uncertainty estimate. Amplitudes are a simple problem because
the training data consists of arbitrarily precise numerical values for well-defined phase
space points. Once the network has learned all relevant features, we expect the leading
uncertainties to reflect a possible local sparsity of the training data. Bayesian networks
are perfectly suited to track training-related uncertainties [39]. In LHC physics they have
been applied to regression [1], classification [60], ensembling [160], and generation [2,169].
We will use Bayesian networks as a surrogate for ML-amplitudes because they learn
amplitude values together with an uncertainty, and because we can use their likelihood
loss to improve the network training.
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When we want to train a network on amplitudes over phase space, with the additional
condition that large amplitude values should be reproduced well, we need to re-think our
training strategy. While usual NN-applications can be viewed as a non-parametric fit, we
want to precisely reproduce individual amplitudes in the spirit of an interpolation [170].
We can force the network to reproduce certain amplitudes by boosting these amplitudes
in the training. To decide which amplitudes need boosting, we use a Bayesian network
with its point-wise uncertainty estimate. We find that moving freely between fit-like
and the interpolation-like tasks allows us to improve the uncertainty estimate through a
loss-based boosting and the precision though a process-specific performance boosting.

In Sec. 5.2 we introduce our dataset and the benchmark results, before introducing
the Bayesian network in Sec. 5.3. The improved training through the two boosting
strategies is illustrated for the γγg channel in Sec. 5.4. Finally, we compare a set of 1-
dimension kinematic distributions for the training data and the NN-amplitudes including
uncertainties and with the different boosting strategies, before we provide an Outlook.
In the Appendix we show the corresponding results for the γγgg final state, based on the
same concepts and architectures, but using a larger network and more training data.

5.2 Dataset and benchmark results

As an example process for our surrogate NN-amplitudes we use the partonic one-loop
process [168]

gg → γγg(g) , (5.1)

generated with Sherpa [171] and the NJet amplitude library [172]2. We apply a basic
set of detector-inspired cuts on the partons in the final state,

pT,j > 20 GeV |ηj | < 5 Rjj,jγ,γγ > 0.4
pT,γ > 40, 30 GeV |ηγ | < 2.37 . (5.2)

These cuts reduce the originally produced dataset from 1.1M (2 → 3)-amplitudes of
Ref. [168] to roughly 960k amplitudes. Each data point consists of real amplitude values
as a function of the external 4-momenta, defining a 20-dimensional phase space. We divide
our dataset into 90k training amplitudes and 870k independent test amplitudes acting as
a high-statistics truth. The results shown in this chapter focus on the 2→ 3-process. For
the 2→ 4-process we refer to Appendix A.2.

Transition amplitudes play a special role in the applications of neural networks to LHC
physics, because they can be computed as functions of phase space with essentially
arbitrary precision. The combination of high precision with limited training data is
the challenge for the corresponding regression networks. Implicitly, it is assumed that
the NN-amplitude networks will be faster than even the evaluation of leading-order
amplitudes with state-of-the-art methods. The main figure of merit compares the true
and the NN-amplitudes for a set of training or test data points,

∆(train)
j = Aj,NN

Aj,train
− 1 or ∆(test)

j = Aj,NN
Aj,test

− 1 , (5.3)

2In the main body of the paper we work with the (2 → 3)-process, the corresponding results for the
4-body final state are presented in the Appendix. The interface between NJet and Sherpa is provided
with Ref. [168] and available at https://github.com/JosephPB/n3jet.
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where j runs over amplitude data points and we subtract 1 compared with the original
paper [168]. Typical distributions of these ∆ for existing calculations come with a width
of 10% or more for the one-jet process of Eq. (A.1) [168]. For the tree-level process
e+e− → qq̄g the width of the ∆-distribution can be reduced to the per-mille level, using
a training dataset of 60M amplitudes and a rather complex, physics-inspired architecture
of networks [167].

Our approach follows a different strategy from the physics-inspired architectures men-
tioned above. We will use a relatively simple and small network, enhanced by a Bayesian
network structure, and target the precision requirements with a new training strategy.
The goal is to show that small and hence fast networks are expressive enough to describe
a scattering amplitude over phase space. Enforcing and controlling the required precision
leads us to, essentially, an appropriate loss function and the corresponding network
training strategy.

5.3 Bayesian networks for amplitudes

Deterministic networks, usually trained by minimizing an MSE loss function, exhibit
several weaknesses when it comes to LHC applications and controlled precision predictions.
First, they only learn the amplitude value over phase space, without any information
on if they have learned all features and how precise their estimate is. Second, their
conceptually weak MSE loss function limits their performance. We will show how a
Bayesian network with a likelihood comes with a whole range of conceptual and practical
benefits.

Bayesian network set up

The loss function and network construction is equivalent to the one discussed in Sec. 2.2.2.
In regression a BNN provides us with two types of uncertainties: σstoch and σpred. However,
to avoid mis-understanding we refer to the former one in this chapter as a model-related
uncertainty giving it the symbol σmodel rather than the usual σstoch. The dataset used
for the study presented in this chapter is non-stochastic. The true amplitudes can be
computed analytically and are, therefore, up to floating point precision exactly known.
Thus, it is more accurate to say that σmodel captures the limitation of the expressive
power of our model. As discussed in Sec. 2.2.2 with infinite training data σpred should go
to zero, while σmodel approaches a constant. To have σmodel approach zero as well, we
need to to go to the limit of having an extremely expressive model, a perfect training
and infinite training data.

Network architecture

We use one Bayesian network trained on the entire training dataset. We train on
amplitudes as a function of phase space with logarithmic preprocessing,

Aj → log
(

1 + Aj
σA

)
, (5.4)
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where σA is given by the distribution of the amplitude values. In addition, all phase
space directions are preprocessed by subtracting the respective mean and dividing by the
respective standard deviation.

The network describing the (2→ 3)-part of the reference process in Eq. (A.1) consists of
four hidden layers with 20 kinematic input dimensions, {20, 20, 30, 40} nodes, and two
output dimensions corresponding to the amplitude and its uncertainty, as illustrated in
Eq. (2.16). The network has around 6k parameters. Between the hidden layers we use
a tanh activation function, while for the last layer we find that a SoftPlus activations
outperforms GeLU slightly and ReLU significantly. The network is trained on 90k
amplitudes for 400000 epochs with a batch size of 8192 and learning rate of 10−4, after
which we observe no significant improvement in the loss. We use the Adam optimizer [114]
with standard parameters.

BNN performance

As a first test of our BNN, we check the precision with which it approximates the true
amplitudes in the training and test datasets, as defined in Eq. (5.3). For Fig. 5.1 we split
the amplitudes by their absolute values, to see the effect of the limited training statistics
in the collinear phase space regions. For the complete set of amplitudes the precision
follows an approximate Gaussian with a width of a few per-mille, for the training and for
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Figure 5.1: Performance of the BNN in terms of the precision of the generated
amplitudes, Eq. (5.3), evaluated on the training (upper) and test datasets
(lower).
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Figure 5.2: Pulls for the BNN, defined in Eq. (5.6) and evaluated on the training
and test data. The two upper panels show the same curve for the weight-
dependent pull on a linear and a logarithmic axis.

the test data. This matches the best available performance from the literature [167], but
with a very compact and fast network.

In the logarithmic panels of Fig. 5.1 we see that the tails of the ∆-distributions for
the full datasets are clearly enhanced. The picture changes when we only consider the
phase space points with large amplitudes. For the 0.1% largest amplitudes the network
is consistently less accurate with a slight tendency of underestimating the amplitudes.
This is the motivation for training a separate network on the divergent phase space
region(s) [168]. As we will see, the BNN offers an alternative approach which allows the
full amplitude to be accurately described by a single network.

Because the BNN provides us with an uncertainty estimate for the NN-amplitude, we
can define pull variables after integrating over the weight distributions,

tmodel,j =
〈A〉j −A(truth)

j

σmodel,j
or tpred,j =

〈A〉j −A(truth)
j

σpred,j
, (5.5)

where the point-wise “truth” refers to the training or test datasets we use to evaluate the
pulls. Neither of these pulls have an ω-dependent counterpart, because their numerators
and denominators are sampled over the network weights independently. In the upper
panels of Fig. 5.2 we see that the two pulls follow an approximate Gaussian shape, but
with a much broader distribution for the σpred-based pull because of the smaller estimated
uncertainty. We note that because of the log-rescaling of Eq. (5.4) it is not actually the
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Figure 5.3: Correlation between the two pulls for the BNN, evaluated on the
training data.

amplitudes A which should define Gaussian pulls, but their logarithms. We have explicitly
checked that indeed the logA lead to a Gaussian, but that given our limited range of
relevant amplitudes, the Gaussian shape translates into an approximately Gaussian shape
for the amplitudes themselves.

Making use of the Gaussian likelihood loss of the BNN, Eq. (2.17), we can also define
the weight-dependent pull

tmodel,j(ω) =
Aj(ω)−A(truth)

j

σmodel,j(ω) . (5.6)

As part of the loss we can use its distribution as a consistency condition during network
training. Given the Gaussian likelihood loss we expect a Gaussian distribution of
tmodel,j(ω), sampled over ω according to the Gaussian q(ω) and over phase space points
x. In the upper panels of Fig. 5.2 we see that, again, the pull distribution is Gaussian in
the center, but develops symmetric, enhanced tails roughly two standard deviations from
the mean.

Finally, we need to go back to the definition of the network uncertainties and understand
how the split σ2

tot = σ2
model + σ2

pred can affect improved ways of training the amplitude
network. We show the two sampled pulls defined in Eq. (5.5) in the lower panels of
Fig. 5.2. Both are approximately Gaussian, and the width of the tmodel,j distribution
is much smaller than for tpred,j . This is an effect of the general observation that for a
well-trained model

σtot ≈ σmodel > σpred . (5.7)

The only issue with all pulls shown in Fig. 5.2 is that they come with a slight bias towards
positive values, which means the network slightly overestimates the amplitudes as a
whole. This is in contrast to the underestimation of the 0.1% largest amplitudes observed
in Fig. 5.1, and we will target it by improving the network training.

Figure 5.3 shows very strong correlations between the two pulls defined in Eq. (5.5).
Both pulls correctly identify the training data points which are not described by the
network well. For our regression tasks with exact amplitudes both uncertainties are
largely induced by the lack of training statistics especially in the divergent phase space
regions, so this correlation is expected.
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Figure 5.4: Pulls for the loss-boosted BNN, defined in Eq. (5.6) and evaluated
on the training and test data. The two panels show the same results on a linear
and a logarithmic axis. All curves can be compared to the BNN results without
boosting in Fig. 5.2.

5.4 Network boosting

While the BNN-amplitude results described in the previous section are promising, the
distribution of amplitudes and the pull distributions indicate potential improvements.
We know that for generative networks we can employ an additional discriminator network
to identify poorly learned phase space regimes [169], the solution is much simpler for a
regression network. In the BNN loss we can compute the relative deviations between
data and network output, or large pulls, and target these amplitudes directly. Once we
control the network and its uncertainties, we can even think about further enhancing the
training in the direction of an interpolation.

5.4.1 Loss-based boosting

Because the BNN loss in Eq. (2.17) represents a Gaussian log-likelihood, we can modify
it and require a higher precision for those phase space points which according to the
BNN uncertainty are not yet learned well. In practice, this is equivalent to feeding these
training data points nj times into the computation of the BNN loss

LBoosted BNN =
∫
dω qµ,σ(ω)

∑
points j

nj ×


∣∣∣Aj(ω)−A(truth)

j

∣∣∣2
2σmodel,j(ω)2 + log σmodel,j(ω)


+
σ2
q − σ2

p + (µq − µp)2

2σ2
p

+ log σp
σq

. (5.8)

As mentioned for Eq. (2.17), the regularization has to be adjusted for the additional
amplitudes in the boosted training sample. This feedback training is similar to simple
boosting algorithms for decision trees, where amplitudes for which the decision tree gives
a wrong result are enhanced with additional weights. In our simple approach we duplicate
some training amplitudes, or equivalently increases their weights in discrete steps.

In a first stage, we improve the self-consistency of the network with the initial assumptions
and boost the network training for amplitudes with a large ω-dependent pull, Eq. (5.6).
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Figure 5.5: Performance of the loss-boosted BNN in terms of the precision of
the generated amplitudes, Eq. (5.3), evaluated on the training and test datasets
on a linear (left) and logarithmic (right) axis. The curves can be compared to
the BNN results without boosting in Fig. 5.1.

In five iterations we identify the amplitudes with values of tmodel,j(ω), which are more
than two standard deviations away from the mean and increase their contribution to the
loss function in Eq. (5.8) by values nj = 5. This is done four times. After adding the
weights we continue the training on the enlarged datasets. For the next training cycle
we again add weights to the amplitudes which now have pulls more than two standard
deviations away. Each training ends when we see no more significant change to the loss
which usually takes around 2000 epochs. This boosting forces the network towards a
more self-consistent description of the tails of the pull distributions. We checked that
small variations of nj or the number of cycles do not have a significant impact on these
improvements.

In Fig. 5.4 we show the pulls from the boosted Bayesian neural network, boosted based
on the self-consistency of the loss measured by the pull. We see a significant improvement
for tmodel(ω), the parameter we target with our boosting. One would naively expect the
corresponding distribution to assume a Gaussian shape with unit width. However, first
of all our loss-based boosting only moves amplitudes from the tails into the bulk, which
means that the tails of the boosted pull distributions should be low. Second, the pulls
entering the loss and the pulls shown in Fig. 5.4 are different because the loss includes
weights for high-pull amplitudes. In combination, both effects explain the narrower
Gaussian for tmodel(ω). In the logarithmic version we also see a visible over-training
though loss-boosting.

Moving on to the precision for the amplitudes, we see in Fig. 5.5 that the loss-boosting
only has a mild impact on the ∆-distributions. It does not significantly improve the
precision of the amplitudes compared to Fig. 5.1, so we need a second boosting step.

5.4.2 Performance boosting

Given that the loss-boosting in the previous section worked for the uncertainty estimate
but only had a modest effect on the performance of our amplitude network, we proceed
to a more powerful boosting strategy. Independent of the self-consistency of the network,
we know at the training level which amplitudes challenge the network. This means we
can select them with the goal of improving the training for the largest amplitudes. The
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difference between a general loss boosting and this process-dependent strategy is that
now we target the largest and most poorly learned amplitudes by selecting them based
on σtot. We choose the 200 amplitudes with the largest uncertainty σtot and add three
additional copies to the training dataset. This process is repeated 20 times, where each
training ends when we see no more significant change to the loss which is usually around
2000 epochs.

In Fig. 5.6 we first see that the process-specific performance boosting broadens the pull
distributions and this way reverses some of the beneficial effects of the loss-boosting on
tmodel(ω). However, the widths of the boost distributions remains below one, and the
bias towards larger amplitudes is removed. This is true for the training data and for the
test data. In addition, the consistency with the Gaussian shape is broken symmetrically
for too small and too large amplitudes, again consistently for training and test data.
Given that the two boostings target different amplitudes and effectively compete with
each other, this pattern is expected.

The positive impact on the large amplitudes can be seen more clearly in Fig. 5.7.
Evaluated on the training data, the 0.1% largest amplitudes now show a clear peak at
small ∆train, consistent with all other amplitudes. This means the network has learned all
amplitudes in the training dataset equally well. This effect translates to the test sample
qualitatively, so the performance on the test data improves after performance-boosting,
but this improvement is less pronounced than for the training data. This means that, at
the expense of an overtraining, we have improved our network from a fit-like description
to an interpolation-like description of the largest amplitudes.

The pattern observed by performance-boosting points to a conceptual weakness of
standard network training when it comes to precision applications. If we stop the network
training at the point where the performance on a training sample exceeds the performance
on the test sample, we miss the opportunity of improving the network on the test and
training data, but at a different rate. Overtraining is, per se, not a problem, as we know
from applications of interpolation to describe data. The only challenge from such a
network overtraining is a reliable uncertainty estimate from the generalization, for which
we propose an appropriate scheduling of loss-boosting and performance-boosting.
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Figure 5.6: Pulls for the performance-boosted BNN, defined in Eq. (5.6) and
evaluated on the training and test data. The two panels show the same results
on a linear and a logarithmic axis. All curves can be compared to the BNN
results without boosting in Fig. 5.2 and the loss-boosted results in Fig. 5.4.
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Figure 5.7: Performance of the performance-boosted BNN in terms of the
precision of the generated amplitudes, Eq. (5.3), evaluated on the training (left)
and test datasets (right). All curves can be compared to the BNN results without
boosting in Fig. 5.1 and the loss-boosted results in Fig. 5.5.

5.4.3 Effect of training statistics

Given that our amplitude-BNN has successfully learned the amplitudes for the partonic
process gg → γγg well below the percent level, with a small and simple network and 90k
training points, we can ask the question how much training data we actually need for a
precision amplitude network. For this study we use the same BNN as before, including
loss-boosting and performance-boosting, but trained on a reduced dataset of

10% (9.000 amplitudes) · · · 100% (90.000 amplitudes) . (5.9)

In Fig. 5.8 we show the corresponding ∆-distributions for the test dataset. Our smallest
training dataset contains 9000 amplitudes, which turn out sufficient to train our network
with its 6192 parameters. The corresponding network reproduces the test data well,
albeit with sizable overflow bins. Increasing the amount of training data improves the
precision of the network, but relatively slowly. We observe the same level of improvement
for all amplitudes and for the 1% largest amplitudes. For the latter we only show results
after process boosting, without any boosting the quality of the low-statistics training is
comparably poor.

5.5 Kinematic distributions

After illustrating the performance of the amplitude network in a somewhat abstract
manner, we can also show 1-dimensional kinematic distributions. The integration of the
remaining phase space dimension requires a little care, because we cannot just integrate
the uncertainties together with the central values for the amplitudes.

For the central values we combine the amplitudes with phase space sampling. For example
applying the simple Rambo [173] algorithm we identify the phase space weights with
A. A 1-dimensional distribution is generated through bins which collect the sum of the
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Figure 5.8: Performance of the BBN for all amplitudes (left) and a performance-
boosted BNN for the largest 1% of all amplitudes (right), after training on
different fractions of the full training dataset.

amplitudes in the remaining phase space directions. The histogram value for a bin k is

hk =
N∑
j=1

Aj . (5.10)

To use the amplitudes predicted by the BNN we have to add the sampling over the
weights ω. By replacing the truth amplitudes with the NN-amplitudes we can target
the uncertainties from the modeling of the amplitudes through the BNN. In analogy to
Eq. (2.19) and omitting the index k for the histogram we first extract a central histogram
value as

〈h〉 =
∫
dω q(ω)

∑
j

Ai(ω)

=
∫
dω q(ω)h(ω) with h(ω) =

∑
j

Āj(ω) . (5.11)

Again in analogy to Eqs. (2.21) and (2.22) we define the absolute uncertainties on the
bin entry as

σ2
h,pred =

∫
dω q(ω)

[
h(ω)− 〈h〉

]2
σ2
h,model =

∫
dω q(ω)

[
h2(ω)− h(ω)2

]
. (5.12)

The total uncertainty is again σ2
h,tot = σ2

h,model + σ2
h,pred. We can simplify σh,model

further. In all of the above formulas h is just a sum over amplitudes. If we assume
that the corresponding σmodel values are uncorrelated, we can relate σh,model to σmodel
by exchanging the sum and the variance,

σ2
h,model =

∫
dω q(ω)Var(h(ω))

=
∫
dω q(ω)Var

∑
j

Aj(ω)

 =
∫
dω q(ω)

∑
j

Var (Aj(ω))
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Figure 5.9: Kinematic distributions from the BNN without boosting (upper)
and after performance-boosting (lower). The grey error bars in the lower panels
indicate the statistical limitation of the training and test data.

=
∫
dω q(ω)

∑
j

σ2
model,j(ω) ≡

〈∑
j

σ2
model,j(ω)

〉
. (5.13)

While we assume uncorrelated uncertainties for σmodel we cannot do the same for σpred.
To compute σpred we first sample a set of weight configurations, which turns our BNN
into an ensemble of neural networks, and then use each of these neural networks to
compute the corresponding histogram value. Computing the standard deviation of these
values gives us an estimate for σh,pred. By sampling from the weight distributions we
change the neural network itself and all of its predictions. To assume that these changes
are uncorrelated for different amplitudes seems not exceptionally well justified.

Based on this procedure we show BNN-amplitude results for a set of kinematic dis-
tributions in the upper panels of Fig. 5.9. We see the effect of limited training data
towards the end of the different kinematic distributions, where the agreement between
the NN-amplitudes and truth deteriorates. For our reference process this happens for
|ηg| & 2.5 or |ηγ | & 1.5. Still, the BNN uncertainty estimate covers the deviation from
the truth reliably.

In the lower panels of Fig. 5.9 we see that after performance-boosting the BNN predictions
agree with the training data spectacularly well. This is the goal of the boosting and
leads to the network learning all features in the training data extremely well. In the
phase space regions where the regular BNN precision is limited by sparse and large
training amplitudes, the improved agreement between NN-amplitudes and the training
data carries over to the test data at a level that the network prediction is significantly
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improved. The uncertainties for the training data still cover the deviations from the truth,
but unlike the central values this uncertainty estimate does not generalize correctly to the
test data. This structural issue with process boosting could be ameliorated by alternating
between loss-boosting and performance-boosting, until the specific requirements of a
given analysis in precision and uncertainty estimates are met.

5.6 Outlook

Learning loop-amplitudes for LHC simulations is a classic ML-problem, because we need
to train a precision network only once to provide a much faster simulation tool which can
be used many times. In this application neural networks really work like better fits to
the training data. Unlike for many other network applications, the training amplitudes
are not noisy, which means we would like to reproduce the training amplitudes exactly,
supplemented with a controlled uncertainty over all of phase space. To provide a reliable
uncertainty map over phase space, we can rely on Bayesian regression networks [1].

The precision task reminds us of an interpolation rather than a fit, which means we need
modify our ML-approach conceptually. If we are willing to accept a certain amount of
overtraining, we can significantly improve the network training through boosting certain
amplitudes. Because the Bayesian network provides a reliable uncertainty estimate, we
can select the to-be-boosted amplitudes based on their deviation from the training data
in units of the uncertainty. This loss-based boosting simply improves the self-consistency
of the Bayesian network training. In a second step, we can boost training amplitudes
just based on their absolute uncertainty. This selection helps with the precision for a
given process, and because we use the absolute uncertainty we typically focus on the
largest amplitude values.

We have applied Bayesian network training and the two strategies of amplitude boosting
to the partonic process gg → γγg [168]. We have first found that the network amplitudes
agree with the true amplitudes at the sub-percent level, for the training data and for a
test dataset. For the 1% largest amplitudes an agreement at the percent level required
process-specific performance boosting. For 1-dimensional kinematic distributions we have
seen that the performance-boosting allows for extremely precise predictions in kinematic
tails, albeit with a somewhat reduced performance in the uncertainty estimate for the
test dataset. This can be improved by alternating between process and loss boosting in
order to retain improved uncertainty estimation and increased performance which will be
subject of future studies.

Finally, we have checked what happens with our boosted Bayesian network training when
we reduce the number of training amplitudes from 90k to 9k and found that thanks to
the boosting this only leads to a mild decrease in the network precision. This leaves us
confident that boosted amplitude training with its shift from a fit-like to interpolation-like
objective provides us with highly efficient surrogate models whenever the generation of
training data is CPU-intensive.
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Chapter 6
From models to SMEFT and back?

The research presented in this chapter has been published in Ref. [3]. Most of the figures,
tables and text are completely identical to the content of this publication.

6.1 Introduction

The Higgs discovery [9,10] and many measurements of the Higgs Lagrangian [174] indicate
that the Standard Model with its single, weakly interacting Higgs boson might well be
the correct effective theory around the electroweak scale. However, the Standard Model
is extremely unlikely to be the full story. Many theoretical considerations, including
electroweak baryogenesis, dark matter, or neutrino mass generation, point to an extended
electroweak or scalar sector. To avoid a bias through a specific, pre-selected signal
hypothesis, modern LHC searches for beyond the Standard Model (BSM) physics are
often conducted in the Standard Model effective theory (SMEFT) [175]. Because of its
vast operator landscape, the corresponding experimental searches [176,177] and global
analyses [178–184] provide a comprehensive probe of rates and kinematic patterns in
LHC processes.

One of the complications of SMEFT analyses of LHC data is that the effective theory
truncated at dimension six has a limited validity range, and that LHC measurements span
a large energy range. Moreover, even if we assume the SMEFT to be generally valid, it is
not clear how much information on a full BSM model is lost when we confront it with LHC
data via a truncated SMEFT Lagrangian rather than the original full model. Combining
these questions, it is instructive to consider concrete, albeit simplified, BSM models and
examine the limits extracted through a SMEFT interpretation matched to these models
in comparison with the constraints obtained from direct searches [183,185–192].

The naive expectation behind SMEFT analyses is that we can use the complete, correlated
information on the Wilson coefficients from a global analysis and derive limits on any BSM
model through matching. However, if the BSM scale is not sufficiently well-separated
from the electroweak (EW) scale, an interpretation based on the SMEFT Lagrangian
truncated at dimension six will likely give inaccurate results [193, 194]. The theory
uncertainties related to the matching to full models are usually not accounted for in
global analyses, which instead take their Lagrangian as a fixed interpretation framework.
In general, limits derived on BSM models through a SMEFT framework using the same
data and with all uncertainties accounted for will differ from limits derived on the full
model directly, where the former can be significantly weaker or stronger than the latter.
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This work aims at exploring the complementarity of the two analysis strategies and at
highlighting general aspects that emerge when the SMEFT results are related to a concrete
BSM scenario. We address this question for a global analysis of electroweak, di-boson and
Higgs measurements, matching the relevant Wilson coefficients to the UV-model at one
loop, using functional matching methods. We use the SFitter framework and include a
proper estimate of a new and non-negligible theory uncertainty from the variation of the
matching scale. As a UV-model we use a triplet-extended gauge sector [185,195–198] a
standard scenario when it comes to motivating the SMEFT approach to the Higgs and
electroweak sector. Such a triplet model can be linked for instance to the weakly coupled
gauge group SU(3)×SU(2)×SU(2)×U(1) [199] or deconstructed extra dimensions [200].

The paper is organized as follows: in Sec. 6.2 we review the basics of functional one-loop
matching, we define the gauge triplet model under study, and we provide details about the
SFitter setup. In Sec. 6.3 we discuss the decoupling limit of the new heavy states and
the relevance of the matching scale choice. The impact of these two aspects on the global
analysis is illustrated via simplified fits. In Sec. 6.4 we present the results of a global
fit to the full vector triplet model, based on the dimension-6 SMEFT Lagrangian, and
compare our results with limits obtained from direct searches. We conclude in Sec. 6.5.

6.2 Basics

In this section, we briefly review the one-loop matching procedure, the UV-model, as
well as the SFitter setup. Experienced readers are welcome to skip this section.

6.2.1 One-loop matching: generic approach

The methods of constructing and matching effective-field theories [201,202] have been
in use for more than four decades [203–206]. Generic expressions for the low-energy
effective action of a gauge theory at the one-loop order were derived in the 80s [207].
More recently, the approach has been further explored, particularly within the context of
SMEFT [208–221].

We consider a UV model which can be defined in terms of light fields ψ and heavy fields Ψ,
and which supports a perturbative expansion based on a local Lagrangian. Heavy fields
are characterized by the condition that the support of their spectral functions vanishes
below a certain threshold. We may identify the threshold with a mass M , typically the
lightest mass that belongs to the heavy spectrum. The remaining fields are understood
as light fields.

The UV model is expressible in terms of an effective action ΓUV[ψ,Ψ], the generating
functional of its one-particle irreducible (1PI) vertex functions. If fields of spin higher
than 1/2 are involved, or if global symmetries are present, it is constrained to be a solution
of a Slavnov-Taylor identity. By assumption, ΓUV is calculable in a loop expansion from
a local Lagrangian LUV(ψ(x),Ψ(x)) with a finite number of fields and parameters. The
parameters depend on the choice of a regularization and renormalization scheme and are
redefined order by order by suitable renormalization conditions. This includes resolving
inherent ambiguities associated with field reparameterizations, such as wave-function
renormalization and terms vanishing by equations of motion.
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The EFT is likewise expressible in terms of an effective action ΓEFT[ψ], a functional of
the light fields only. Again, we assume that a perturbative loop expansion is possible, and
that it can be computed from a local Lagrangian LEFT(ψ(x)). The number of parameters
of LEFT is intended to be finite, but it increases without bounds with the accuracy that we
want to implement via matching conditions. To keep the EFT parameter set manageable,
we have to define an organizing principle which amounts to a series of approximations,
and a prescription to truncate this series at a certain order.

To find the EFT Lagrangian iteratively, one introduces the one-light-particle irreducible
(1LPI) effective action ΓL,UV[ψ]. Formally, this is a double Legendre transform of
ΓUV[ψ,Ψ]; in practice, it amounts to absorbing a maximal set of independent heavy-field
propagators in the skeleton expansion of S-matrix elements. This results in redefined
light-field effective vertices. By contrast, the light-field propagators are kept explicit.
In general they still carry a mixture of light and residual heavy degrees of freedom,
depending on the precise definition of the original UV model. Like the original effective
action, ΓL,UV[ψ] depends on conventions regarding renormalization and handling the
equations of motion. In terms of this entity, the matching condition reads

ΓL,UV[ψ] = ΓEFT[ψ] + ∆Γ[ψ] . (6.1)

The matching error ∆Γ[ψ] describes a set of vertex-function corrections ∆Γi(x) that
are not calculable from a local Lagrangian involving light fields only. The matching
procedure succeeds if, in momentum space, all contributions to this error are sufficiently
power-suppressed at low energy,

∆Γi(p) < c|p|k , (6.2)

where p is any light-particle mass or momentum component.

At the tree level, the 1LPI effective action Γ(0)
L,UV[ψ] of the UV model can be derived by

simple variable changes, applying the equations of motion. Unless the ψ multiplets are
incomplete under a symmetry, the result satisfies the tree-level Slavnov-Taylor identity
with only light fields taken into account. The tree-level effective action SEFT[ψ] = Γ(0)

EFT[ψ]
is evaluated, to arbitrary order, by means of a momentum-space Taylor expansion of the
1LPI effective action on the l.h.s. of Eq. (6.1). In this expansion, residual heavy degrees
of freedom are naturally removed from the tree-level light-field propagators. The latter
assume their canonical tree-level form while any extra terms are shifted to the interaction
part of SEFT[ψ].

The operator content of the tree-level effective action SEFT[ψ] can be determined indepen-
dently by algebraic methods. Their coefficients are fixed by a term-by-term comparison
with the vertices of Γ(0)

L,UV. The symmetries are preserved in this expansion if covariant
derivatives are used consistently. At one loop, new contributions to the UV effective
action arise which are generically non-local, and can be formally summarized as

Γ1`
UV[ψ,Ψ] = ics Tr log

(
−δ

2SUV[ψ,Ψ]
δ2(ψ,Ψ)

)
, (6.3)

where the trace is integrated over all field components at all space-time points and cs
accounts for the statistics of the fields that are integrated over. This evaluates to the sum
of all one-loop Feynman graphs with external fields attached. In expressions of this kind,
the external field insertions act as bookkeeping devices, or background fields [222–230].
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This allows for employing gauges and conventions that distinguish between internal
and external lines, a generic feature of working with 1PI vertex functions. This means
in particular that, with respect to the background fields, a manifestly gauge-invariant
effective action can be computed [231, 232]. The trace is in general UV divergent and
requires the application of a regularization scheme and the addition of local counterterms,
such as dimensional regularization and minimal subtraction.

To match the UV model to the EFT at the one-loop order, we have to evaluate Eq. (6.1)
again. Initially,

∆Γ1`[ψ] = ics Tr
[
log

(
−δ

2SUV[ψ,Ψ]
δ2(ψ,Ψ)

)
− log

(
−δ

2S
(0)
EFT[ψ]
δ2ψ

)]∣∣∣∣∣
Ψ=0

, (6.4)

where the formal trace includes the integral over all one-loop diagrams which are 1LPI
and do not contain open external Ψ lines. Because S(0)

EFT = Γ(0)
EFT = Γ(0)

L,UV +O(|p|k), the
difference is well-behaved in the IR. Loops of canonical light propagators only would
exactly cancel between the two terms, but since the light-field propagators need not
coincide between the two Lagrangians, we have to be careful to take all terms into account.
In any case, due to the IR cancellation the one-loop functional Eq. (6.4) again admits a
Taylor expansion up to the order of the previous tree-level truncation. The result can
be expressed as a finite set of local terms that modify the coefficients of terms which
are already present in the generic effective Lagrangian of the tree-level EFT. They are
absorbed in SEFT[ψ],

S1`
EFT[ψ] = −∆Γ1`[ψ]

∣∣∣
local, truncated

, (6.5)

and disappear from Eq. (6.4). In effect, the remainder still contains all non-local parts of
the matching error but satisfies Eq. (6.2), to one-loop order.

By the same reasoning, the difference in Eq. (6.4) is not well-behaved but divergent in
the UV, and therefore requires regularization and renormalization. The renormalization
conditions are given by the matching conditions themselves and thus indirectly refer to
the renormalization conditions of the UV model. All free parameters of the EFT are
fixed, order by order, in terms of the original parameters of the UV model. Nevertheless,
a practical scheme such as dimensional regularization with minimal subtraction may
introduce an intermediate renormalization which depends on an arbitrary scale µR. The
implications of this additional mass scale will be discussed in detail below.

In analogy with the tree-level matching procedure, in order to manifestly preserve the
symmetries of the theory one should consistently work with covariant derivatives in the
one-loop matching calculation, as discussed in the following subsection. However, due to
the presence of UV divergences in the matching conditions the Slavnov-Taylor identity
need not be compatible with a local Taylor expansion of the one-loop vertex functions,
and the separation of the UV effective action into a gauge-invariant low-energy effective
action and a remainder like in Eq. (6.1) may fail [207, 233, 234]. In the current paper, we
assume that such an obstruction does not critically affect our argument.

6.2.2 One-loop matching: implementation

Instead of constructing the difference in Eq. (6.4) in terms of Feynman graphs explicitly,
the subtraction may be accounted for in the integrand by employing the method of
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regions [235–237]. The matching correction (Eqs. (6.4) and (6.5)) is replaced by

S1`
EFT[ψ] = ics Tr log

(
−δ

2SUV[Ψ, ψ]
δ(Ψ, ψ)2

)∣∣∣∣∣
hard

. (6.6)

The label “hard” has to be understood in the following way: the functional trace is
computed in momentum space. Two different regions are of interest in the matching, the
hard and the soft region. If q denotes the typical size of a loop momentum, the hard
region is defined by q ∼ M � m, whereas the soft region is defined by q ∼ m � M .
Here m stands for the typical mass scale of the light sector. As discussed above, only the
hard region is relevant while in the soft region the matching integral is well behaved. It
has been shown that the tree-level induced EFT contribution to the matching cancels
the soft region contributions from the UV-theory in the difference in Eq. (6.4) [213, 238].
Therefore, the integrands of the loop integrals in Eq. (6.6) are expanded only in the hard
region. The evaluation of the functional trace then reduces to computing integrals of the
form ∫ ddq

(2π)d
qµ1 . . . qµ2nc

(q2 −M2
i1

)n1 . . . (q2 −M2
im

)nm(q2)n0
. (6.7)

Here, all masses Mi1 , . . . ,Mim are of the order of M . This implies that the dependence
of Eq. (6.6) on any external momentum or mass |p| is analytic, and no logarithms of the
form log(m/|p|) or log(|p|/M) can appear. The only logarithm possible is log(M/µR),
and to avoid large logarithms in the relation between EFT and UV parameters we need
to choose µR ∼M .

Apart from the prescription “hard”, the second derivatives of the UV-action evaluated
at the background field configurations appear in the matching. To derive a universal
result these derivatives are split into a part that contains the gauge-kinetic term of the
field and its mass term, generating the propagator of the field, and a pure interaction
contribution that appears in the final result. For the field ψ this latter piece is given by

Xψψ = −δ
2SUV,int.
δψ2 , (6.8)

where only the interaction part of the action excluding the interactions with gauge
bosons through the covariant derivative appears. The interactions with the gauge bosons
are included in the propagator part of the functional derivative, which allows for an
evaluation in which only gauge covariant objects appear at every step and the final result
is manifestly gauge invariant. The price to be paid for this manifest gauge covariance is
that every occurrence of a covariant derivative has to be shifted by a loop momentum in
the evaluation of the functional trace in Eq. (6.6). We therefore have to parameterize
Eq. (6.8) as

Xψψ = Uψψ + iDµZ
µ
ψψ + iZ†µψψDµ + . . . , (6.9)

where Dµ is the covariant derivative of the UV-model. The quantities Uψψ, Zµψψ and
Z†µψψ only depend on covariant derivatives through commutators whereas the explicit
covariant derivatives appearing in Eq. (6.9) are so-called open covariant derivatives
that act on everything to their right. The ellipsis denotes terms with further open
covariant derivatives. Importantly, contributions with one open covariant derivative
arise at dimension six whenever there is a scalar field charged under the gauge group
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and therefore they contribute to the matching through the presence of the Higgs field.
Consequently, for our matching computations we use an extension of the results of
Ref. [215], adding gauge bosons and the heavy resonance of our model. Since the gauge
boson fluctuations appear in loops they have to be gauge fixed. This gauge fixing does
not disturb the manifest gauge invariance at the level of the background fields and the
gauge-fixing parameter can be chosen at convenience. Choosing Feynman gauge allows
for easy incorporation of these operators into the results of Ref. [215], since we can treat
gauge bosons like scalar fields with an extra index. Care has to be taken to account for
the overall sign in the propagator. For the resonance this choice is not available since it
does not have a gauge-fixing term and some operators with up to two open covariant
derivatives have to be computed for the matching.

6.2.3 Triplet model

The UV model we study in this paper is a gauge-triplet extension of the Standard
Model [185,195–198]. In the unbroken electroweak phase, the Lagrangian reads

L = LSM −
1
4 Ṽ

µνAṼ A
µν −

g̃M
2 Ṽ µνAW̃A

µν + m̃2
V

2 Ṽ µAṼ A
µ

+
∑
f

g̃f Ṽ
µAJfAµ + g̃H Ṽ µAJHAµ + g̃V H

2 |φ|2Ṽ µAṼ A
µ , (6.10)

where Ṽ A
µ is a new, massive vector field transforming as a triplet of SU(2)L, W̃A

µ are the
SM weak gauge bosons, and φ is the SM Higgs doublet. The kinetic term of the vector
field includes a covariant derivative,

Ṽ A
µν = D̃µṼ

A
ν − D̃ν Ṽ

A
µ with D̃µṼ

A
ν = ∂µṼ

A
ν − g2f

ABCW̃B
µ Ṽ

C
ν . (6.11)

where A,B,C are SU(2)L indices and the covariant derivative carries a tilde to indicate
that it contains the fields W̃A

µ . The currents coupling the heavy vector to the SM-fields
are given by

J lAµ = l̄iγµt
Alj δ

ij , JqAµ = q̄iγµt
Aqj δ

ij , JHAµ = φ†i
←→
D A

µφ , (6.12)

with l, q being the SM lepton and quark doublets, tA = σA/2 the SU(2) generators
and σA the Pauli matrices. i, j are flavor indices and the Lagrangian is defined in a
flavor-symmetric limit. In the Higgs current, (φ†i←→D A

µφ) = iφ†tA(Dµφ)− i(Dµφ
†)tAφ. As

pointed out in [238], the theory cannot be quantized in a self-consistent way for g̃V H < 0.

The gauge mixing described by the triplet model is familiar from the general case of
extra-U(1) bosons [239]. A special feature is the explicit Ṽ -mass term, which would have
to be generated by some kind of symmetry breaking and likely involve additional fields;
we ignore these additional fields, for instance in their effect on g̃M . The Higgs doublet φ
is yet to develop a VEV, which means we are working in the unbroken electroweak phase.
Underlying this choice is the assumption that a SMEFT expansion for the EFT exists.
This is the case unless there are additional sources of electroweak symmetry breaking, or
a heavy particle obtains all of its mass from the Higgs VEV [240]. Even in the weakly
coupled UV-completion of the triplet model there are no additional sources of electroweak
symmetry breaking, because the additional scalar breaks SU(2)× SU(2) to SU(2)L and
leaves the electroweak symmetry completely intact.
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To remove the kinetic mixing, we can re-define the SM-gauge field as [196,197]

WµνA = W̃µνA + g̃M Ṽ
µνA = ∂µ(W̃ νA + g̃M Ṽ

νA)− ∂ν(W̃µA + g̃M Ṽ
µA) + · · · (6.13)

For the triplet field we only allow for a re-scaling, Ṽ µA = αV µA, so that the triplet
mass does not get transferred into the SM-gauge sector. The triplet mass also fixes the
phase of the real vector field Ṽ A

µ , such that α has to be real. Requiring a canonical
normalization of the new kinetic term V µνAV A

µν we find α2 = 1/(1− g̃2
M ). This relation

requires g̃M 6= ±1, to ensure a valid model with a propagating heavy vector. Furthermore,
as we will see in Sec. 6.3, we need to require |g̃M | < 1 for the squared pole mass of the
resonance to be positive. The final form of the gauge field re-definition in Eq. (6.13)
becomes

W̃µA = WµA − g̃M√
1− g̃2

M

V µA and Ṽ µA = 1√
1− g̃2

M

V µA , (6.14)

and brings the Lagrangian into the form

L = LSM −
1
4V

µνAV A
µν + m2

V

2 V µAV A
µ

+
∑
f

gf V
µAJfAµ + gHV

µAJHAµ + gV H
2 |H|2V µAV A

µ

+ g3V
2 fABC V µAV νBV C

µν −
g2VW

2 fABC V µBV νCWA
µν , (6.15)

which has the same structure as Eq. (6.10), but additional triple and quartic gauge
couplings between the weak and triplet sectors. The Lagrangian parameters are related
through

m2
V = m̃2

V

1− g̃2
M

, gH = g̃H + g2g̃M√
1− g̃2

M

, gf = g̃f + g2g̃M√
1− g̃2

M

,

gV H = 2g̃V H + g2
2 g̃

2
M + 2g2g̃H g̃M

2(1− g̃2
M )

, g3V = − 2g2g̃M
(1− g̃2

M )1/2 , g2VW = g2g̃
2
M

1− g̃2
M

,

(6.16)

where g2 denotes the SU(2)L gauge coupling. The heavy vector triplet couples to the
weak gauge bosons not only via the g−couplings in Eq. (6.15), but also through the
non-abelian component of the covariant derivative Eq. (6.11), that leads to interaction
terms of the form (∂V )VW and V VWW . These interactions are weighted by the weak
gauge coupling, and therefore are present even if gi (g̃i) ≡ 0.

6.2.4 SFitter setup

The SFitter framework [241] has been long employed for global analyses of LHC
measurements in the context of Higgs couplings and EFTs [178, 242–246], including a
comprehensive study of an analysis in terms of Higgs couplings and its UV-completion [247].
The approach is unique in that it allows a comprehensive treatment of uncertainties:
SFitter uses a likelihood set up that includes a broad set of statistical, systematic, and
theory uncertainties. Statistical and most systematic ones are described by a Poisson- or
Gauss-shaped likelihood. Theoretical uncertainties lack a frequentist interpretation, and
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are described by flat likelihoods in SFitter, corresponding to a range of equally likely
theory predictions. An important difference between employing a flat likelihood compared
to a Gaussian one is that the uncorrelated profile likelihood adds the uncertainties from
the flat distributions linearly, while Gaussian error bars are added in quadrature. The
profile likelihood combination of a flat and a Gaussian uncertainty gives the well-known
RFit prescription [248]. Correlations among certain classes of systematic uncertainties
are also included.

From the technical point of view, the new aspect of the SFitter analysis presented
in this paper is the translation of the SMEFT likelihood into the parameter space of
the UV model. In the fit, all observables are parameterized in the SMEFT using the
operator set provided in Tab. B.1, that is based on the HISZ basis [249]. All SMEFT
predictions are at LO in QCD and scaled by the same corrections as the SM-rates used
for the actual experimental analysis. Terms obtained from squaring amplitudes with one
operator insertion, that are quadratic in the Wilson coefficients, are retained. The Wilson
coefficients are then expressed in terms of g̃i parameters of the UV model, Eq. (6.10),
using the one-loop matching expressions onto the Warsaw basis provided in Ref. [250]
and the Warsaw-to-HISZ basis translation in Appendix B.1. In this way, the likelihood
can be directly sampled in the parameter space of the UV model.

In addition, we employ a new likelihood sampling method [5] compared to previous
SFitter analyses, that ensures a much more efficient sampling close to the SM point,
where all Wilson coefficients vanish. By contrast, the previous sampling method was
optimized for the detection of potential secondary maxima in the likelihood, by giving
higher weight to the edges of the parameter space.

Dataset

The SMEFT analysis presented in this work builds directly on the dataset employed
in Ref. [178], which includes electroweak precision observable (EWPO) at LEP (14
measurements), Higgs measurements (275) and di-boson measurements at the LHC (43).
The latter contain results from both Run 1 and Run 2 [245]. In addition, we include
differential measurements from three resonance searches by ATLAS, that reach up to
invariant masses in the multi-TeV range and that we re-interpret within the SMEFT
framework. One of these [251] was already included in the analysis of Ref. [178]. The
other two [252,253] are more recent and have been added specifically for this work. These
measurements are not usually included in the SMEFT analyses and are not covered by
the simplified template cross section framework [254]. Nevertheless, it can be instructive
to explore their sensitivity, particularly to operators that induce momentum-enhanced
corrections. Moreover, all the resonance searches considered here target heavy vector
triplets decaying into WH or WW as a potential signal. Therefore they allow to compare
directly the constraining power of the SMEFT analysis to that of the direct search.

Theory uncertainties

In view of the upcoming LHC runs and their rapidly growing data sets, the treatment of
theory uncertainties in global analyses is becoming critical. In our analysis, we include
theory uncertainties associated to parton distribution functions, to missing higher orders
in the SM or SMEFT predictions, and to the matching scale to the EFT. The latter will
be discussed in more detail in Sec. 6.3.2.
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For the time being, we do not include uncertainties associated to missing SMEFT operators
due to the truncation of the SMEFT Lagrangian [255] or to symmetry assumptions,
such as CP-conservation. Nevertheless, the impact of missing higher orders in the EFT
expansion becomes obviously manifest in the comparison between constraints extracted
from the SMEFT analysis and from direct searches.

Concerning higher orders in the loop expansion, Higgs analyses in SFitter currently
adopt the most accurate SM predictions available, which are implemented so as to match
the state-of-the art predictions reported in the experimental analyses. The corresponding
K-factors are then applied onto the tree-level SMEFT predictions as well, which is
tantamount to assuming that QCD corrections scale evenly for all SMEFT operators
and in the same way as in the SM. Although this assumption is, strictly speaking, not
correct [256], for the rate measurements considered here we do not expect large variations
in the K-factors between different operators. For some kinematic distributions these
effects can be larger. We therefore assign conservative theory uncertainties in order to
reduce the numerical impact of these effects. A proper SMEFT simulation of Higgs and
di-boson production up to NLO in QCD is postponed to a future work.

6.3 Toy fits and matching uncertainty

In this section we discuss two aspects of the vector triplet model and of its matching
onto the SMEFT, that are preliminary to a correct SMEFT global analysis. The first is
the decoupling limit of the model, and the second is the numerical impact of varying the
scale at which the 1-loop matching is performed. Both issues are analyzed via simplified
toy fits.

6.3.1 Decoupling

The decoupling limit of the vector triplet model considered in this work is most easily
identified starting from the Lagrangian of Eq. (6.15), where, as long as the EW symmetry
is unbroken, the heavy triplet and the SM gauge bosons do not mix. In this case, it is
easy to see that the BSM states decouple for large values of the physical mass, mV →∞.
This is directly reflected in the matching formulas, which give limmV→∞Ci ≡ 0 for all
the dimension-6 Wilson coefficients. At the level of a global fit, the decoupling limit can
be visualized by setting the central values of all the measurements included to match
the corresponding SM predictions. Figure 6.1 shows the results obtained in this way
from SFitter: the likelihood is first computed as a function of 4 free parameters in the
Lagrangian of Eq. (6.10)

{m̃V , g̃M , g̃H , g̃l} , (6.17)

setting other parameters g̃q, g̃V H to zero. We then project them onto the 7 parameters
for the rotated Lagrangian of Eq. (6.15),

{mV , gH , gl, gq, gV H , g3V , g2VW } . (6.18)

At this stage, we fix the matching scale to Q = mV = 4 TeV. For each of the couplings we
see that, as expected, the range of allowed values increases as m−1

V → 0. It is worth noting
that the rate at which this happens varies between the g-parameters. This is due to the
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Figure 6.1: Decoupling pattern for the vector triplet model. Global fit with all
measurements at their SM values and to the 4 free parameters m̃V , g̃M , g̃H , g̃l,
and subsequently projected onto the 7 parameters of the unmixed Lagrangian
of Eq. (6.15).

fact that the matching expressions do not scale homogeneously with g2
i /m

2
V , but generally

have a more complex polynomial structure. The degeneracy between gi and 1/mV in
these expressions is also broken by the V −W interactions proportional to the weak
gauge coupling. The homogeneity of the yellow regions indicates that there the likelihood
is flat and no point is preferred. Setting all measurements to their actual measured
values, which generally depart from the SM predictions, has the effect of introducing a
substructure in the likelihood, thereby identifying a more restricted preferred region. This
is shown, for a subset of panels, in Fig. 6.2. Here, for instance, the best fit point moves
to finite mV and prefers non-vanishing values of gH . Note that, to good approximation,
the entire region highlighted in green is allowed at 68%CL. The yellow points simply
identify a best-fit region and should not be interpreted as statistically significant. Finally,
the reduced number of parameters in the Lagrangian Eq. (6.10) as compared to the
setup without kinetic mixing induces strong correlations through g̃M , as illustrated in
the g2VW − g3V plane of Fig. 6.2.

As the matching procedure highlighted in Sec. 6.2.1 requires a separation between light
and heavy degrees of freedom, defining the decoupling limit in the notation of Eq. (6.10)
requires some more care, due to the explicit kinetic mixing between the heavy triplet
and the SM gauge fields.

From Eq. (6.16), we see that mV → ∞ can be achieved for m̃V → ∞ or for |g̃M | → 1.
However, the condition |g̃M | = 1 does not lead to a well-defined decoupling condition,
because in this limit Ṽ A

µ become auxiliary fields, i.e. the theory loses three dynamical
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Figure 6.2: Results of the same global analysis as in Fig. 6.1, but with measure-
ments set to their actual values.

degrees of freedom. This is not sufficient for a proper decoupling in the EFT sense
because even as an auxiliary field Ṽ A

µ still induces mass-suppressed vertices that enter
correlation functions and we enter a strongly interacting regime where our perturbative
approach fails.

To see the impact of g̃M we resum insertions of gauge mixing into the W̃A
µ and Ṽ A

µ

propagators. The corrected propagators of these fields become

D̂Ṽ
µν = − i

p2 − m̃2
V − g̃2

Mp
2

(
gµν − (1− g̃2

M )pµpν
m̃2
V

)

D̂W̃
µν = − i

p2

(
gµν − (1− ξ)pµpν

p2

)
− ig̃2

M

p2 − m̃2
V − g̃2

Mp
2

(
gµν −

pµpν
p2

)
. (6.19)

It is easy to see that for |g̃M | = 1 the resummed Ṽ A
µ propagator loses its momentum

dependence, which is indicative of the field becoming auxiliary. For |g̃M | > 1, Ṽ A
µ

becomes tachyonic while, for |g̃M | < 1, Ṽ A
µ is a dynamical degree of freedom. In this

case its propagator has a physical pole at p2 = m2
V as defined in Eq. (6.16), and it

can be expanded in p2/m2
V � 1. The resummed W̃A

µ propagator includes a term with
a pole at p2 = m2

V , contaminating W̃A
µ with a contribution from Ṽ A

µ . Therefore this
field cannot be directly identified with the SM weak bosons. However, in the tree-level
matching procedure, once the 1LPI effective action is expanded in p2/m2

V , the component
associated with the Ṽ A

µ pole is shifted from the propagators to the interaction terms,
which are unambiguously fixed at this order by the matching condition of Eq. (6.2). At
one loop, the fact that the EFT is the low-energy limit of the UV model is manifest in the
fact that only the “hard” region of the momentum integral contributes to the functional
trace in the matching formula of Eq. (6.6). As a consequence, the first term of the W̃A

µ

propagator cancels against the corresponding EFT contributions, while the second term
genuinely contributes to the matching in the hard region. Equivalently, one can match in
the shifted basis directly identifying WA

µ in the UV model with the corresponding weak
bosons in the SMEFT.

In the top (bottom) panels of Fig. 6.3 we again show the results of a global analysis
where all measurements are set to their SM prediction (to their actual values), this time
projected onto a subset of the g̃-parameters and onto the combination g̃M/

√
1− g̃2

M that
drives most g̃ − g relations, see Eq. (6.16). For reference, the right panels also show lines
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Figure 6.3: Results of the same global analyses as in Fig. 6.1 (upper) and Fig. 6.2
(lower), projected on m̃V , g̃H , g̃l and the combination g̃M/

√
1− g̃2

M .

of constant mV , such that the decoupling limit mV →∞ flows orthogonally to the lines.
Consistent with the results in the unmixed basis (Fig. 6.1), the expected likelihood is
mostly flat in the entire preferred region, while the observed one exhibits a substructure
that identifies a best-fit region where g̃H 6= 0 and both mV and m̃V are finite. The reason
can be identified in a few EWPO measurements that exhibit small (< 1σ) deviations
from the SM expectation: Al(SLD) and mW .

For |g̃M | → 1 the theory becomes strongly interacting and some perturbative unitarity
considerations are therefore pertinent. Requiring the couplings of the unmixed UV theory
to remain perturbative, the most stringent constraints on g̃M stem from g2VW

g2VW ≈
g2g̃

2
M

1− g̃2
M

< 4π ⇔ |g̃M | < 0.975 . (6.20)

Therefore for all our fits we require |g̃M | < 0.975.

6.3.2 Matching scale

In perturbative predictions of LHC observables, at least two unphysical scales are known
to reflect a theory uncertainty, the factorization scale and the renormalization scale. Both
arise from a separation of an observable into different regimes with different perturbative
expansions, and the scale dependence would vanish if we would include all orders in
all predictions. For a calculation at finite perturbative order we instead use the scale
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variation as one measure of a theory uncertainty and treat it as an unphysical nuisance
parameter in theory predictions [246,257].

One unphysical scale is the renormalization scale, which in the context of dimensional
regularization appears as a free parameter. In more physical terms, the renormalization
scale is the energy scale associated with those observables that we select for defining
the numerical parameters of the theory, the renormalization conditions. Whenever
scale choices are arbitrary, we often identify them with each other and a typical energy
scale of the scattering process to avoid large logarithms. Clearly, this does not work if
renormalization conditions involve widely distinct energy scales, such as in the relation
of UV-model parameters to the low-energy observables of the SM.

The renormalization group equation apparently solves this problem. It relates observables
at different scales, properly resumming logarithms and absorbing them into running
parameters. However, it works only in the absence of mass thresholds. This strongly
suggests to match a UV model with a heavy mass M to a low-energy EFT even if the
algebraic simplifications of the latter are not essential for a specific calculation.

In a one-loop matching calculation that uses dimensional regularization, the matching scale
enters as an additional parameter. However, in contrast to the original renormalization
scale this parameter is not entirely arbitrary. If we want to avoid large logarithms, its
reasonable range is bounded from above and below. In line with the generic discussion
of one-loop matching above, we illustrate this property in the following section. We
consider examples of increasing complexity, starting from the QCD coupling, turning
next to the SM extended by a scalar singlet and finally returning to the vector triplet
model of Sec. 6.2.3.

Running strong coupling

We can illustrate the appearance of the matching scale using the simple example of
the running strong coupling. It provides the key ingredients to understanding the EFT
matching scale: the separation of low-energy and UV regimes and contributions beyond
tree level. In general, the relation between the bare coupling and the renormalized
coupling in the MS scheme is

αbares = αs(p2)
[
1− αsb0

(
1
ε̄

+ log µ
2
R

p2

)]
with b

(nf )
0 = 1

4π

(11
3 Nc −

2
3nf

)
.

(6.21)

Here, p2 is the energy scale of the scattering, µ2
R is introduced by dimensional regulariza-

tion, and 1/ε̄ = 1/ε − γE + log 4π. We identify our UV-regime as momenta above the
top mass, with six propagating quark flavors, and the low-energy regime as described by
five propagating quark flavors. The running of αs in the two regimes is described by the
beta function with five or six flavors, respectively. The UV-divergences in the low-energy
and full UV-theories arise from five or six propagating flavors, so the renormalization
prescription Eq. (6.21) is different in the two regimes.

The low-energy and UV-regimes are separated by a matching scale Q, which we choose
to be of the order of the top mass to avoid large logarithms or inconsistent symmetry
structures. Matching conditions guarantee that the two predictions for any observable
are the same at least at this scale. Instead of looking at a full set of amplitudes or
correlation functions, we limit ourselves to the quasi-observable αs. Following Eq. (6.21),
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the definitions of αs(p2) in relation to the bare parameter are different, but they have to
agree when evaluated at the matching scale. This defines a threshold correction

1− αsb
(6)
0

4π

(
1
ε̄

+ log µ
2
R

p2

) ∣∣∣∣∣
Q2

= 1− αsb
(5)
0

4π

(
1
ε̄

+ log µ
2
R

p2

) ∣∣∣∣∣
Q2

+ αs
6π log µ

2
R

Q2 . (6.22)

The relation of the threshold correction to loop effects is reflected in the logarithmic form
logµ2

R/Q
2. Together with the five-flavor MS counter term it defines αs in the low-energy

regime as

αbares = αs(p2)
[
1− αsb

(5)
0

4π

(
1
ε̄

+ log µ
2
R

p2

)
+ αs

6π log µ
2
R

Q2

]
. (6.23)

This definition includes three scales for a given scattering process, the physical scale
p2, the renormalization scale µ2

R, and the matching scale Q2. In simple problems, the
renormalization scale and the physical scale can be identified to avoid potentially large
logarithms. The matching scale is usually set to the mass of the decoupled particle,
Q = m2

t , leading to a threshold correction that is non-zero in general.

From our toy example we can immediately see the role of the threshold correction at
the matching scale and the renormalization group running. If we start from the UV, all
parameters of the theory evolve based on the full particle spectrum. In the low-energy
theory part of the spectrum decouples also from the running, which can even break the
underlying symmetries [258], and we will follow a completely different renormalization
group flow. The matching corrections adjust for this effect. They move us to the same
flow line in the EFT, independent of the choice of matching scale and with all the caveats
of maintaining perturbative control, accounting for changes of the spectrum, changing
symmetries, etc.

Singlet extension

When we interpret a SMEFT calculation for an LHC process as a low-energy approxima-
tion to a UV-prediction, we again break the phase space of the scattering process into
two parts. We first illustrate SMEFT matching using the singlet-extended SM [259,260],

L ⊃ 1
2 (∂µS) (∂µS)− 1

2M
2S2 −A|φ|2S − κ

2 |φ|
2S2 − µ

3!S
3 − λS

4! S
4 . (6.24)

The singlet mass is given by M2
S = M2 +O(v2); we integrate it out under the condition

MS ∼M � v, ensuring a consistent expansion in v/M [240]. As a simplification, we also
assume A to be of the order of M . The leading term in v/M is defined by v = 0 and can
be obtained by matching in the unbroken phase. In the broken phase the Higgs VEV
enters via the masses of the SM-particles which properly belong to the EFT Lagrangian,
below the matching scale. Matching in the broken phase would allow us to include partial
higher-order corrections in the EFT expansion [194]. Since the mass scales in question
are not widely separated, it depends on the detailed numerics which setup yields a more
reliable approximation. The SMEFT Lagrangian reads

LSMEFT = LSM +
∑
i

fi(p/µR)Oi , (6.25)
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S

Figure 6.4: Feynman diagrams contributing to f (1)
φ,2. Left: Diagram yielding a

κ2-contribution. Right: Diagram yielding a A2λS/M
2-contribution. The dashed

line corresponds to the Higgs field, whereas the solid line corresponds to the
singlet.

where the Wilson coefficients are scale dependent. Specifically, we want to define these
coefficients such that the SMEFT reproduces all low-energy observables of the UV-theory
up to O(v3/M3

S). As matching condition we use Eq. (6.1). In the functional approach we
compute this once and for all using functional traces. To illustrate some features related
to the matching scale, we compute some contributions to the Wilson coefficient fφ,2 of the
operator Oφ,2 = ∂µ(φ†φ)∂µ(φ†φ)/2 diagrammatically. As discussed in Appendix B.1, it is
related to Qφ� = |φ|2�|φ|2 as cφ� ≈ −fφ,2/2, modulo fermionic operators. The operator
contributes to the correlation function with two external fields φ and two external fields
φ† and depends on p2, so we fix it by requiring

∂p2ΓSMEFT(φ†, φ†, φ, φ)
∣∣∣∣∣
p2=0

= ∂p2ΓL,UV(φ†, φ†, φ, φ)
∣∣∣∣∣
p2=0

, (6.26)

order by order in the coupling. With some abuse of notation we also denote specific
correlation functions by Γ, arguments indicating the external fields. Since both sides of
the equation involve running parameters, the matching has to be imposed at a given
scale,

S
∂p2( + t-channel + SM)=∂p2( + SM) at p2 = 0 .

The SM-contributions contain the same diagrams on both sides, with appropriately
adjusted parameters through the matching conditions, so their contributions cancel. Only
diagrams with at least one heavy propagator actually contribute to the matching, so
Eq. (6.26) becomes

∂p2

(
8p2f

(0)
φ,2

) ∣∣∣∣∣
p2=0

= ∂p2
2A2

4p2 −M2

∣∣∣∣∣
p2=0

⇒ f
(0)
φ,2 = A2

M4 . (6.27)

At tree level, the scale dependence only appears implicitly for A and for f (0)
φ,2.

Next, we compute the κ2-contribution to f (1)
φ,2 at one loop. This contribution is induced

by the diagram on the left in Fig. 6.4, where the external particles are as specified in
Eq. (6.26). We again set all external scales to p2 and find for the diagram

κ2µ4−d
R

∫
ddq

(2π)d
1

((2p+ q)2 −M2)(q2 −M2) = κ2 i

16π2B0(4p2,M,M)

with B0(4p2,M,M) = 1
ε̄
− log M

2

µ2
R

+ 2p2

3M2 +O
(
p4

M4

)
. (6.28)
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Figure 6.5: Wilson coefficient fφ2 as a function of g̃H at different values of the
matching scale Q for fixed mV = 4 TeV and all other UV couplings set to zero.
The dashed lines include approximate RG running.

In the full expression the renormalization scale appears, but taking the derivative in the
matching condition for this contribution to fφ,2 removes it,

∂p2B0(4p2,M,M)
∣∣∣∣∣
p2=0

= 2
3M2 ⇒ f

(1)
φ,2 ⊃

1
16π2

κ2

12M2 . (6.29)

Just as at tree level, the matching scale does not appear explicitly.

Finally, we compute the A2λS/M
2-contribution to f (1)

φ,2 to illustrate the appearance of
matching scale logarithms. This contribution arises from the diagram on the right in
Fig. 6.4. The diagram is not 1PI, but is 1LPI and therefore has to be included in the
matching. With all external scales again set to p2 this diagram gives

− λSA
2

(4p2 −M2)2µ
4−d
R

∫ ddq
(2π)d

1
q2 −M2 = −λSA

2

16π2
M2

(4p2 −M2)2

(
1
ε̄

+ 1− log M
2

µ2
R

)
.

(6.30)

Taking the derivative with respect to p2 and evaluating it at p2 = 0 we find the one-loop
matching condition

f
(1)
φ,2 ⊃ −

1
16π2

λSA
2

M4

(
−1 + log M

2

Q2

)
, (6.31)

where the Wilson coefficient explicitly depends on the matching scale. This scale depen-
dence is expected since the corresponding correlation function is divergent. As mentioned
before, in models with one new mass scale, we can of course avoid these logarithms by
identifying Q = M .
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Figure 6.6: The impact of the variation of the matching scale Q at a mass of
mV = 4 TeV for a reduced model with free g̃M , g̃H , g̃l, expressed in the unmixed
Lagrangian Eq. (6.15) with actual measurements.

Vector triplet

Moving to the triplet model defined by the Lagrangian of Eq. (6.10), we will not attempt
to show analytic results and instead illustrate the matching scale dependence for one finite
coupling g̃H and a mass term m̃V numerically. In this simplified setup, mV = m̃V . Among
the various Wilson coefficients, it is instructive to consider fφ,2, as its dependence on the
matching scale exhibits interesting features. Including both tree and loop contributions,
the matching expression has the form

fφ,2
Λ2 '

1
m2
V

[
g4

2

(
c0 + c1 log mV

Q

)
+ g̃2

H

(
c2 + c3 log mV

Q

)
+ g̃4

H

(
c4 + c5 log mV

Q

)]
,

(6.32)

where c0 = c1/2 emerges from 1-loop diagrams inducing the operator structure (DµW
µν)2,

which maps to Oφ,2 via the equations of motion. Of the additional constants, the g̃2
H -

coefficient is dominated by the tree-level contribution to c2, while the g̃4
H -coefficient is

completely determined by the one-loop matching. Numerically, we find

c0 = c1
2 = 3

128π2 = 0.0024 ,

c2 = 0.75 , c3 = 0.0069 , c4 = 0.019 , c5 = −0.045 . (6.33)

In Fig. 6.5 we show the numerical dependence of fφ,2 on g̃H for different choices of Q. For
Q = mV = 4 TeV the Wilson coefficient has a simple power dependence on g̃H driven by
c4. For Q ≈ 0.66mV = 2.6 TeV the g̃4

H -term cancels exactly. For Q below this threshold,
the coefficient in front of g̃4

H becomes negative, which flips the sign of fφ,2 at g̃H � 1 and
allows a solution of fφ,2 = 0 for g̃H 6= 0. For Q . 2.4 TeV the solution is within the range
|g̃H | < 4π and leads to visible effects in our global analysis.

Figure 6.6 shows the results of the same global analysis as in Sec. 6.3.1, where now we
fix mV = 4 TeV. The free parameters are

{g̃H , g̃l, g̃M , Q} , (6.34)

where the matching scale is varied in the range Q = 500 GeV ... 4 TeV. The left panel
shows a central allowed region for |g̃H | . 4 that is independent of Q. In addition, a
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beautiful fleur-de-lis shape arises in g̃H vs Q for Q < 2.4 TeV. It roughly follows the
curves along which fφ,2 = 0 marked in red. The Wilson coefficients ft, fb, fτ have a
similar behavior and vanish approximately in the same region, because they are induced
by the same or similar loop contributions. As these are the operators that dominate the
constraint on g̃H , the fleur-de-lis feature persists in the full global fit, see Sec. 6.4. When
we profile over Q as a nuisance parameter, this correlation broadens the 1-dimensional
and 2-dimensional profile likelihood in g̃H by roughly a factor 2. As shown in the second
and third panels of Fig. 6.6, the broadening affects significantly only the constraints in
the g̃H direction, while those on g̃l are essentially unchanged compared to when Q = mV .
Although not shown, this is also verified for g̃M .

We emphasize that the tree-loop cancellations that drive this effect are only very slightly
affected by the renormalization group evolution of fφ,2, as illustrated by the dashed lines
including approximate RGE contributions in Fig. 6.5. They really correspond to a choice
of the unphysical matching scale, which cannot be compensated by the well-defined
change of renormalization scale of the low-energy SMEFT description. Adding higher
orders in the loop expansion to the matching decreases the sensitivity to the matching
scale. Similar effects, but with a much smaller numerical impact have been observed in
Ref. [259].

6.4 SMEFT global analysis

In this section we discuss the results of the SMEFT global analysis, mapped to the
parameter space of the heavy vector triplet model defined in Sec. 6.2.3 using 1-loop
matching relations. We derive constraints on the UV-parameters {g̃H , g̃q, g̃l, g̃M , g̃V H}
defined by the Lagrangian in Eq. (6.10) for fixed values of the heavy vector triplet mass.
We consider two benchmark values: mV = 4 TeV, to be compared with direct resonance
searches by the ATLAS Collaboration, and mV = 8 TeV for a consistent SMEFT analysis
safely below any on-shell pole.

6.4.1 Resonance searches at high invariant masses

As mentioned in Sec. 6.2.4, in addition to more standard Higgs measurements, the global
analysis includes constraints from searches for exotic particles in the WH and WW
channels by the ATLAS Collaboration. In particular, two of these analyses [252, 253]
have been newly implemented in SFitter.

WH search

We consider the mWH invariant mass distribution measured in Ref. [252] in the WH
1-tag category, and we compare it to a WH signal including dimension-6 corrections.
This kinematic distribution extends up to mWH = 5 TeV and the strongest constraints on
BSM effects stem from the region around mWH = 2− 2.5 TeV, where the measurement
exhibits large under-fluctuations. A detailed description of the implementation of this
analysis will be provided in a future work [5].

For equal values of the Wilson coefficients, the largest correction to the mWH spectrum
is induced by the operator O(3)

φQ [254, 261–266], that contributes via corrections to the
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Figure 6.7: 2D fits of the WH resonance search of Ref. [252] only. We fix
mV = 4 TeV and g̃M = g̃V H = 0. Left: tree-level matching. Right: Loop-level
matching. Top: with g̃l = g̃q = g̃f . Bottom: with g̃l = 0. In the top (bottom)
row, red contours indicate fW = ±4 (f (3)

φQ = ±0.8) with Λ = 1 TeV and white
contours indicate ∆χ2 = 5.991.

qqV vertex and via a 4-point qqV H interaction. The latter exhibits an enhancement
at large partonic energies due to the missing s-channel propagator and is therefore
dominant in the high-invariant-mass regime. Further significant corrections, albeit less
momentum-enhanced, are induced by OW . All other SMEFT operators in the HISZ basis
do not contribute significantly to WH production in the high-energy regime.

Figure 6.7 shows the results from a 2D-analysis of the mWH distribution alone, fixing the
matching scale Q = mV = 4 TeV and considering only two g̃-couplings at a time. The
top row in Fig. 6.7 shows g̃f ≡ g̃q = g̃l vs g̃H , which matches the benchmark considered
in the ATLAS analysis [252]. In this limit, the matching contribution to f (3)

φQ cancels
exactly, both at tree and loop levels. As a consequence, the constraints are driven by fW ,
whose matching expressions reduce to

fW
Λ2 = 4.76 g̃H g̃l

m2
V

(tree)

fW
Λ2 ' g̃lg̃H

4.71 + 0.019 g̃lg̃H − 0.023 g̃2
l − 0.057 g̃2

H

m2
V

(tree+loop). (6.35)

The red contours in the plots indicate fW /Λ2 = ±4 TeV−2, which is representative of the
2σ boundariesfW /Λ2 ∈ [−3.6, 4.4] TeV−2 found in a 1D fit to the SMEFT parameters.
In a slight abuse of language, here and in the following the ∆χ2 ≤ 1 (2.3) and ∆χ2 ≤
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3.841 (5.991) regions in 1D (2D) fits are sometimes referred to as 1σ and 2σ intervals,
respectively. The fact that these lines coincide to a very good approximation with the 2σ
contours (indicated in white) in Fig. 6.7 shows that the constraint on fW is indeed the
leading one. The bottom row shows g̃q vs g̃H for g̃l = 0. In this case the cancellation in
f

(3)
φQ is spoiled and the constraints are dominated by this Wilson coefficient. Numerically,
the matching expression is

f
(3)
φQ

Λ2 = g̃H(g̃l − g̃q)
m2
V

(tree)

f
(3)
φQ

Λ2 ' 0.99 g̃H(g̃l − g̃q)
m2
V

(tree+loop), (6.36)

and the bottom panels in Fig. 6.7 show contours for f (3)
φQ/Λ2 = ±0.8 TeV−2, which is

representative of the 2σ interval f (3)
φQ/Λ2 ∈ [−0.90, 0.76] TeV−2 obtained in a 1D fit.

Finally, comparing the left and right panels in Fig. 6.7, it is worth noting that the impact
of loop contributions to the matching is negligible in the case g̃l = 0, but significant
for g̃l = g̃q. This is a direct consequence of the form of the matching expression in the
particular model considered. Loop terms only induce a very minor overall rescaling in the
expression of f (3)

φQ, Eq. (6.36), but they introduce a series of new terms in the expression
of fW , Eq. (6.35). Although numerically subdominant, the latter have a strong impact
on the likelihood structure.

WW search

We consider the mWW distribution measured in Ref. [253] in the WW 1-lepton category
and ggF/DY merged, high-purity signal region, that targets neutral resonances decaying
to W±W∓ pairs and covers invariant masses up to mWW = 4 TeV. We compare the
measured distribution to a W±W∓ production signal including SMEFT corrections.
Again, we postpone a detailed discussion of the implementation to a later paper.

The W±W∓ production process exhibits a greater complexity in the SMEFT compared
to W±H in the high-energy limit. We find that, fixing all Wilson coefficients to the same
numerical value, the largest corrections are induced by the operators Oφu,Oφd,O

(1)
φQ,O

(3)
φQ

at quadratic level, that exhibit a large enhancement ∝ m2
WW . The origin of this behavior

can be identified as a qqφφ contact interaction between two quarks and two Goldstone
bosons induced by these operators, that dominates at high energies due to the equivalence
theorem [267]. Effects induced by OW ,OB, and OWWW have a weaker momentum-
enhancement and are roughly two orders of magnitude smaller. Nevertheless, they were
retained in the fit, as they are relevant for the global analysis in terms of both SMEFT
and UV model parameters. In the former case, this measurement contributes significantly
to improving the constraints on fW , by roughly a factor two [5]. In the latter, it is
important to stress that the matching expressions for a given UV model generally do not
give homogeneous values for the Wilson coefficients. Therefore a suppression of two orders
of magnitude in the SMEFT predictions can be easily compensated in the matching, and
the corresponding contributions to the signal may lead to significant constraints on the
UV model parameters. In fact, for the WW analysis implemented here we find that the
constraints projected on the g̃q − g̃H and g̃f − g̃H planes are entirely dominated by the
contributions of fW and f (3)

φQ, the same two operators that lead in the WH case.
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Figure 6.8: 2D fits of the WW resonance search of Ref. [253] only. We fix
mV = 4 TeV and g̃M = g̃V H = 0. Left: tree-level matching. Right: Loop-level
matching. Top: with g̃l = g̃q = g̃f . Bottom: with g̃l = 0. In the top (bottom)
row, red contours indicate fW = ±0.7 (f (3)

φQ = 0.2 or f (3)
φQ = −0.3) with Λ = 1 TeV

and white contours indicate ∆χ2 = 5.991.

Figure 6.8 shows the results from a 2D-analysis of the mWW distribution alone, fixing
Q = mV = 4 TeV and considering the same benchmarks as in Fig. 6.7. The red curves in
Fig. 6.8 are again given by Eqs. (6.35) and (6.36), but for different values of fW and f (3)

φQ,
namely fW /Λ2 = ±0.7 TeV−2 and f (3)

φQ/Λ2 = −0.27,+0.23 TeV−2. Again, these values
correspond to the 2σ-boundaries identified in 1D fits.

This analysis yields stronger bounds compared to WH because in this particular case
the constraints are dominated by the tail of the distribution, in the region around
mWW = 2.5− 4 TeV, which exhibits under-fluctuations. Again, the effect of introducing
loop contributions to the matching expressions is only visible in the scenario dominated
by fW , for the same reasons as described above.

6.4.2 Global analysis results

Figure 6.9 shows the results of our global analysis, including the full data set described in
Sec. 6.2.4 as well as the resonance searches discussed in Sec. 6.4.1, for a fixed value of the
heavy vector triplet mass mV = 4 TeV. The analysis is performed varying g̃M and g̃V H
within the physical region g̃M = −1 ... 1, g̃V H > 0 and all other coupling parameters in
the perturbative range g̃ = −4π ... 4π.
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Figure 6.9: 5-parameter global fit of the full data set to the model parameters
from Eq. (6.10) for fixed mV = 4 TeV. Profiled ∆χ2 = 2.3 (∆χ2 = 5.991)
contours are shown as solid (dashed) lines. Red (orange) curves indicate the
results obtained with tree (1-loop) matching onto the SMEFT and a fixed
matching scale Q = mV . The light blue region shows the results from 1-loop
matching, profiled over Q = 500 GeV ... mV .

Fixed matching scale

For a fixed matching scale Q = mV (red and orange lines in Fig. 6.9), we find that the
SMEFT fit constrains significantly g̃l and g̃H , while g̃M , g̃q, and g̃V H are essentially
unconstrained. The striking difference between the constraints on the vector triplet
couplings to leptons and to quarks is largely due to the fact that the SMEFT fit is
dominated by EWPO constraints extracted at LEP, on which the leptonic interactions
have a much stronger impact. We have verified that, indeed, removing EWPO constraints
from the fit relaxes significantly the constraint on g̃l.

The 2D projections show that g̃l is also anti-correlated to g̃M . The reason is that, at
tree-level, g̃l enters the matching expressions only in the combination g̃l + g2g̃M , where g2
is the SU(2) coupling constant. Specifically, we find that the constraints in the g̃M − g̃l
plane are dominated by the constraint on fLLLL, whose tree-level matching expression is
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Figure 6.10: Heat map of the profiled ∆χ2 distribution from the same fit as in
Fig. 6.9, with 1-loop matching and profiling over the matching scale. The red
contours indicate fLLLL/Λ2 = −0.014,+0.017 TeV−2 and the white contours
indicate ∆χ2 = 5.991.

quadratic in the relevant combination

fLLLL
Λ2 = −(g̃l + g2g̃M )2

4m̃2
V

. (6.37)

Therefore, for most values of g̃M and g̃l, the constraints are driven by the limit for
negative values of this Wilson coefficient. At 1-loop, the matching expression is more
complex and allows for positive values of fLLLL in a region close to |g̃M | ' 1 and |g̃l| ' 1.
The right panel in Fig. 6.10 shows that the 2σ boundary from the 5D likelihood (in
white) matches very well the contours for fLLLL/Λ2 = −0.014,+0.017 TeV−2 (in red),
corresponding to the 2σ interval derived from a 2D fit of fLLLL and fBW . Here a 2D fit
is necessary owing to the strong correlation between fLLLL and fBW . A 1D fit would
lead to an over-estimation of the constraints.

There are no major differences between tree and loop level matching when keeping the
matching scale fixed Q = mV . Only slight differences can be observed in the limits on g̃M
and g̃H . The effect on g̃H is completely washed out once the matching scale is allowed to
vary, as we discuss below. Although less visible due to the different scales, an analogous
anti-correlation is present in the g̃M − g̃H plane, as g̃H also enters tree-level matching
expressions exclusively in the combination g̃H + g2g̃M . Because g̃H enters many Wilson
coefficients, both at tree and loop level, in this case it is not possible to identify one
particular SMEFT parameter, or combination thereof, that drives the global bounds.

The constraint on g̃q, on the other hand, is driven by that on f
(3)
φQ, whose matching

expression is given in Eq. (6.36). This is consistent with the fact that g̃q only shows a
non-trivial interplay with g̃H . The cross-like shape emerging in the (g̃q, g̃H) panel results
from the superposition of the hyperbola-like shape expected from the f3

φQ matching
expression, and of additional constraints on g̃H that introduce extra suppressions away
from the two axes. Finally, g̃V H does not contribute to any dimension-6 operator at
tree-level, so, in this limit, the likelihood is exactly flat in the corresponding direction.
At 1-loop g̃V H gives contributions to fW , fWW , fφ2, ft,b,τ and f

(3)
φQ. Among these, the

dominant constraint stems from fφ2, leading to the orange contours in the g̃V H − g̃M and
g̃V H − g̃H planes.
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Figure 6.11: Impact of the high-energy kinematic distributions [251–253] on
the global 5-parameter SMEFT fit for fixed mV = 4 TeV. The solid regions
include the full data set (same as Fig. 6.9), while the dark blue lines exclude the
high-energy kinematic distributions. Solid (dashed) lines mark the ∆χ2 = 2.3
(∆χ2 = 5.991) contours.

Variable matching scale

Varying the matching scale as Q = 500 GeV ... mV = 4 TeV, as shown as light blue region
in Fig. 6.9, affects the constraints on g̃H , while for the other parameters the dependence
is negligible. This is what we expect from the toy results in Sec. 6.3.2 and Fig. 6.6, and
we have verified that extending the range to Q & mV does not add any significant feature
to the results. As for the 5-parameter fit, the main consequence of variable Q is that,
for Q . 2.4 TeV, the matching expressions of fφ2 and ft,b,τ acquire a new zero. Because
these operators are the dominant source of constraints on g̃H , this results in a broader
allowed region for this parameter, which is largest close to the Q ' 2.4 TeV threshold.
This effect washes out the correlation between g̃H and g̃M mentioned above.

At Q ' 2.4 TeV, the most constraining Wilson coefficient is fφ2, which is responsible for
the outermost region of the 2σ contours for g̃H in Fig. 6.9. The inner structure of the
likelihood, including the 1σ contour, cannot be explained in terms of a single Wilson
coefficient. It is the result of a non-trivial interplay between several effects, including g̃H
entering a large number of Wilson coefficients and profiling over the matching scale.

It is also interesting to look at the finer structure of the profiled likelihood. In Fig. 6.10
we show ∆χ2 for the same 2D projections as before. We can see that the best-fit points
are focused in regions where |g̃M | > 0.5. This effect emerges in the 5-parameter fit
with 1-loop matching, irrespective of whether the matching scale is fixed or varied. It
is the same effect as observed for the 3-parameter fit varying the heavy vector mass
in Fig. 6.3, and it is due to the EWPO preferring a best-fit point away from the SM.
In particular, we have checked that the observed substructures are entirely dominated
by less than 1σ deviations in Al(SLD) and mW . In addition, the measurements of
σ0
h, R

0
l , A

0,l
FB, Ac reinforce the deviation through correlations. If future measurements

with reduced uncertainties confirmed the present deviations from the SM, this would
lead to exclusion limits with intricate patterns.
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Figure 6.12: Left: Z ′ prediction for mV = 4 TeV, g̃H = 2, g̃f = 0.5 (shown by
a star in the right panel) for the WW search [253], compared to the SMEFT
prediction. Right: SMEFT limits (∆χ2 = 5.991) for mV = 4 TeV and profiled
over the matching scale, for the WW and WH distributions alone and the full
dataset. We also show the 95%CL exclusion from theWH resonance search [252].
The gray box marks the ATLAS search region, the narrow-width is shaded in
pink.

Impact of high energy measurements

It is well known [178] that kinematic distributions probing high invariant masses have
significant impact on global fits to the SMEFT parameters. In our analysis, we confirm
this behavior for the two analyses described in Sec. 6.4.1, which are found to constrain
significantly fW , fφd and fWWW . Unfortunately, once the SMEFT is mapped onto the
heavy vector triplet model, the constraining power of these measurements is diminished.
This is shown in Fig. 6.11, where the results of Fig. 6.9 are compared to those from
a 5-parameter fit where the three analyses of Refs. [251–253] are removed (dark blue
line). The lack of visible impact of the high-energy kinematic distributions is very much
due to the specific model and the corresponding numerical behavior of the matching
formulae. As discussed above, the main constraints on the vector triplet parameter space
are dominantly associated to those on fLLLL, fφ2 and f3

φQ, which are only marginally
improved by these searches.

SMEFT vs direct searches

A key question we would like to address in this work is whether a global SMEFT
analysis can be competitive with direct searches in constraining a given UV model.
Figure 6.12 compares the constraints in the (g̃f , g̃H) plane obtained in the direct search
of WH resonances by ATLAS, Ref. [252], and from 2D SMEFT fits to different sets of
observables. In particular, the light green line indicates the SMEFT constraints obtained
from the same distribution as in the direct search. For all lines in this plot, the heavy
triplet mass is fixed to mV = 4 TeV, the maximum value accessible by the resonance
search. Strictly speaking, the direct and indirect constraints extracted from the same
measurement apply to complementary regions of the parameter space: the former are
valid for masses mV . 4 TeV and for narrow vector triplets within the pink-shaded region
of Fig. 6.12, while the latter hold for mV � 4 TeV irrespective of the resonance width.
Obviously, a comparison should be taken with a grain of salt.
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Nevertheless, it can be instructive to examine the interplay between the signals produced
by a heavy resonance and by its corresponding SMEFT approximation. The left panel
of Fig. 6.12 shows the mWW resonant distribution obtained for a benchmark point at
mV = 4 TeV, g̃H = 2, g̃f ≡ g̃l = g̃q = 0.5, compared to the ATLAS measurement [252]
(black data points) and the SMEFT signal matched to this benchmark model at dimension
six. This point is indicated by a cross in Fig. 6.12 (right), and it is excluded at 95%CL
by both the ATLAS WH and WW searches, but falls within the 2σ-allowed region of
our SMEFT global analysis. This discrepancy is obvious from the high-energy mWW

tail, where aside from the mass peak the dimension-6 SMEFT also misses the initial rise
of the distribution. Among the Wilson coefficients that contribute to WW production,
only fW /Λ2 = 0.28 TeV−2 takes a value above the permille level, while f (3)

φQ = 0 because
g̃q = g̃l. This results in SMEFT signals of only a few percent across the entire mWW

distribution, which are always well within the uncertainties. It is worth pointing out that
in such a situation the best place to look for the SMEFT signal might not just be the
bins where the energy enhancement is largest, but rather those where the uncertainties
are smallest.

While not surprising, these conclusions do not extend to arbitrary BSM scenarios.
One characteristic of the case examined here is that the resonance is narrow. As a
consequence, the effect in mWW is only visible close to mV , where the SMEFT expansion
immediately breaks down. The situation improves when we include higher-dimensional
operators [193, 268]. At dimension six, the matching to our specific model suppresses
all energy-enhanced SMEFT contributions to WW production, so the signal is under-
estimated across the emWW distribution. This does not have to be the case in other BSM
models. For instance, it is possible that the dimension-6 approximation over-estimates
the model predictions, in which case the dimension-8 contributions need to be large and
negative, and the truncated SMEFT constraints appear more stringent than those from
direct searches.

Going beyond the comparison of resonance searches and SMEFT analyses for one
measurement, the true power of the SMEFT approach is that it allows to combine a
large number of different measurements. This will always improve the sensitivity of the
SMEFT analyses and, on the other hand, it allows to derive more general conclusions, by
constraining all model parameters simultaneously, as shown in Fig. 6.9. The light blue
lines in Fig. 6.12 show the constraints from a 2-parameter SMEFT fit to the entire dataset
employed in this work. Consistent with the discussions above, these limits are dominated
by EWPO, for which the SMEFT expansion is valid. In particular, the constraint on g̃f
is dominated by the leptonic component g̃l, which in turn is mostly associated to the
fLLLL Wilson coefficient. Comparing these limits to those from the ATLAS WH-search,
we find that the latter are slightly stronger for |g̃H | & 1 (with the caveat that they are
only valid in the narrow width regime), while the former dominate for |g̃H | . 1. Here,
the WH search has an unconstrained direction along the g̃H = 0 axis, that is broken by
the EWPO in the SMEFT fit [196].

Heavy vector results

One of the main motivations for the SMEFT formalism is that it allows us to derive
constraints on new particles with masses beyond the reach of direct searches. In this
spirit, we can extend our SMEFT constraints on the g̃ parameters for a heavy triplet
mass to mV = 8 TeV. Now, the dimension-6 SMEFT approximation is valid all over the
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Figure 6.13: 5-parameter fit to the full data set for the model parameters in
Eq. (6.10) for fixedmV = 8 TeV. Each panel shows profiled ∆χ2 = 2.3 (solid) and
∆χ2 = 5.991 (dashed) contours. Red curves correspond to tree-level matching,
the light blue region to 1-loop matching, profiled over three g̃ parameters plus
the matching scale Q = 500 GeV ... mV . The panels for g̃M − g̃q g̃V H − g̃q and
g̃V H − g̃M are not shown as they are unconstrained in the explored ranges.

kinematic measurements discussed above. The corresponding results in Fig. 6.13 can be
directly compared to those in Fig. 6.9 for mV = 4 TeV. As expected, all the bounds on
the model parameters are weaker for heavier values of mV (see also Fig. 6.3). However, a
notable feature is that the limits do not simply scale with a factor proportional to mV , as
one would naively expect from the SMEFT analysis at dimension six. The reason is that
the matching expressions that relate the Wilson coefficients to the model parameters
are generally non-trivial and do not scale universally with (g̃i/mV ), as can be seen for
instance in Eq. (6.32). Moreover, as we are considering a BSM state that is not a singlet
under SU(2), the EW gauge coupling g2 contributes to the matching independently of
the g̃ parameters. The result is that the degeneracy between g̃i and mV is largely broken
in the matching, leading to a complex likelihood structure that changes significantly with
mV .

6.5 Outlook

We have presented a global analysis of a Standard Model extension with a gauge-triplet
vector resonance in terms of the dimension-6 SMEFT Lagrangian. We have performed a
global SFitter analysis including electroweak precision observables, Higgs and di-boson
measurements as well as resonance searches at the LHC, and have compared our results
with limits obtained from direct searches. To relate the full model and the SMEFT we
have employed one-loop matching with a focus on the theory uncertainties from the
choice of the matching scale.

First, we have shown that the theory uncertainty due to the choice of the matching scale
can have a large effect on the global analysis. In particular, the bounds on the coupling of
the new vector to the SM-Higgs are significantly weakened once we profile over a variable
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matching scale, illustrating how all theory uncertainties need to be taken into account at
least once we translate SMEFT results back into models.

Comparing the SMEFT results with direct searches reveals an intriguing complementarity.
Direct and SMEFT searches are reliable in different parameter regions; while direct
searches are sensitive to narrow resonances with kinematically accessible masses, SMEFT
searches apply to energies sufficiently below the resonance mass. The SMEFT analysis
can be sensitive to the onset of the resonance, but a reliable description of this region
requires a tower of higher-dimensional operators. Specifically for the vector-triplet model,
the SMEFT model for the high-energy tail of kinematic distributions turned out less
sensitive than the resonance search, and therefore provided conservative constraints.
On the other hand, the SMEFT analysis can probe vector masses beyond the reach of
resonance searches. Here, we found that the one-loop matching dampens the sensitivity
decrease of the SMEFT analysis compared to the naively expected scaling.

While SMEFT analyses cannot replace model-specific searches for new physics, they
add valuable constraints from a large variety of measurements and are sensitive to new
physics scales beyond the reach of resonance searches. Only this complementarity of
direct and indirect searches allows us to make best use of current and future LHC data.
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Chapter 7
To profile or to marginalize?
– a SMEFT case study

The research presented in this chapter has been published in Ref. [5]. Most of the figures,
tables and text are completely identical to the content of this publication.

7.1 Introduction

Higgs physics at the LHC [174] perfectly illustrates a deep tension in contemporary
particle physics: on the one hand, the existence of a fundamental Higgs boson is a direct
consequence of describing the electroweak gauge sector in terms of a quantum field theory,
specifically a renormalizable gauge theory. It looks like Nature chose the simplest possible
realization of the Higgs mechanism, with one light scalar particle and an electroweak
vacuum expectation value (VEV) of unknown origin. On the other hand, puzzles like
dark matter or baryogenesis seem to point to non-minimal Higgs sectors for convincing
solutions based on renormalizable quantum field theory, but without any LHC hint in
these directions. The main goal of the LHC Higgs program is to understand if Nature
really took the opportunity of a minimal electroweak and Higgs sector solving as many
problems as possible, or why she skipped this opportunity in favor of theoretically less
attractive alternatives. Or, more practically speaking, we need to study as many Higgs
properties as precisely as possible.

Given the vast LHC dataset already after Run 2 and our fundamental ignorance of the
correct UV-completion of the Standard Model (SM), we need to measure Higgs-related
observables and express them in a consistent, fundamental, and comprehensive theory
framework. To provide the necessary precision, this framework has to be defined beyond
leading order in perturbation theory, it needs to incorporate kinematic information,
and it should allow us to combine as many LHC observables as possible. The EFT
extension of the Standard Model (SMEFT) [175] fulfills precisely these three requirements
and defines a theoretical path to understanding the entire LHC dataset in terms of
a fundamental Lagrangian. Its main shortcoming is the necessary truncation in the
operator dimensionality. The truncated SMEFT approximation will hardly describe new
physics appropriately, so SMEFT should really be viewed as a systematic, conservative
limit-setting tool. Of course, this practical aspect does not cut into the fundamental
attractiveness of an effective quantum field theory description of all LHC data.

While ATLAS and CMS have not published properly global SMEFT analyses of the
Higgs-electroweak or top sector, there exists a range of phenomenological Higgs-gauge
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analyses [178,180–183,269], top analyses [246,270,271], combinations of the two [184,272],
and combinations with parton densities [273]. These analyses are typically based on
experimentally preprocessed information, including the full range of uncertainties. Given
that by assumption any SMEFT analysis will be centered around the renormalizable
SM-Lagrangian, the main focus of all global analyses is the uncertainty treatment and
the correlations between the different operators. Technically, these two tasks tend to
collide. We can choose a conservative uncertainty treatment based on profile likelihoods
and nuisance parameters, but it is much more computing-efficient to treat correlations
through covariance matrices of marginalized Gaussian likelihoods [274]. The SFitter
framework [178,242,243,245,246,257] is unique in the sense that it has mostly been used
for profile likelihood analyses, but can provide marginalized limits equally well [257, 275].

We make use of this flexibility and study, for the first time, the difference between profiled
and marginalized likelihoods of the same global Run 2 dataset. In Sec. 7.3 we find that for
the Higgs-electroweak dimension-6 operators and the given dataset the two approaches
agree well, so we can use the marginalized setup to treat correlated measurements and
uncertainties efficiently. Based on these results, we include a range of recent Run 2
measurements from Higgs studies as well as from exotics resonance searches, again with a
focus on a comprehensive and conservative uncertainty treatment, in Sec. 7.4. Finally, we
study the impact of these new measurements and the inputs from a global top analysis
in Sec. 7.5 and find interesting differences between the profiling and marginalization
methods.

7.2 SMEFT Lagrangian

The SMEFT Lagrangian is based on the same field content, global, and gauge symmetries
as the SM. It includes interactions with canonical dimension larger than four, organized
in a systematic expansion in the inverse powers of a new physics scale [42, 276, 277].
Neglecting lepton number violation at dimension five, the leading beyond-SM effects stem
from dimension-six terms,

L =
∑
x

fx
Λ2 Ox . (7.1)

There are 59 baryon-number conserving operators, barring flavor structure [278–282].
We use the operator basis of Refs. [178, 283], starting with a set of P -even and C-
even operators and then using the equations of motion to define a basis without blind
directions in the electroweak precision data. We neglect operators that cannot be studied
at the LHC yet, like those changing the triple-Higgs vertex [284–288]. We also neglect
operators which are too strongly constrained from other LHC measurements to affect the
Higgs-electroweak analysis, like the ubiquitous triple-gluon operator

OG = fABCG
ρ
AνG

ν
BλG

λ
Cρ , (7.2)

which is strongly constrained from multi-jet production [289]. In the bosonic sector the
relevant operators then are

OGG = φ†φ GaµνG
aµν OWW = φ† ŴµνŴ

µν φ OBB = φ† B̂µνB̂
µν φ

OW = (Dµφ)†Ŵµν(Dνφ) OB = (Dµφ)†B̂µν(Dνφ)OBW = φ† B̂µνŴ
µν φ

90



7 To profile or to marginalize?– a SMEFT case study

Oφ1 = (Dµφ)† φφ† (Dµφ) Oφ2 = 1
2∂

µ(φ†φ)∂µ(φ†φ)

O3W = Tr
(
ŴµνŴ

νρŴµ
ρ

)
, (7.3)

where B̂µν = ig′Bµν/2 and Ŵµν = igσaW a
µν/2. The covariant derivative acting on the

Higgs doublet is Dµ = ∂µ + ig′Bµ/2 + igσaW
a
µ/2.

In addition to the purely bosonic operators, we also need to include single-current
operators modifying the Yukawa couplings,

Oeφ,22 = φ†φ L̄2φeR,2 Oeφ,33 = φ†φ L̄3φeR,3

Ouφ,33 = φ†φ Q̄3φ̃uR,3 Odφ,33 = φ†φ Q̄3φdR,3 , (7.4)

The main difference to earlier SFitter analyses is that we treat the correction to the
muon Yukawa feφ,22 as an independent parameter, while previously it was tied to feφ,33
via an approximate flavor symmetry. As LHC Run 2 found experimental evidence for
the Higgs coupling to muons, this approximation can now be dropped. However, when
including the observed branching ratio to muons, we will not be sensitive to the sign of
the muon Yukawa, except for the fact that such a sign flip is not consistent with the
SMEFT assumptions.

Other single-current operators modify gauge and gauge-Higgs (HV ff) couplings [179,
180,261–266],

O(1)
φu = φ†(i

↔
Dµφ)(ūRγµuR) O(1)

φQ = φ†(i
↔
Dµφ)(Q̄γµQ)

O(1)
φd = φ†(i

↔
Dµφ)(d̄RγµdR) O(3)

φQ = φ†(i
↔
Da

µφ)
(
Q̄γµ

σa
2 Q

)
O(1)
φe = φ†(i

↔
Dµφ)(ēRγµeR) . (7.5)

The four-lepton operator

O4L = (L̄1γµL2) (L̄2γ
µL1) (7.6)

induces a shift in the Fermi constant. For the operators in Eq. (7.5), we maintain for
simplicity a flavor symmetry, and all currents are implicitly defined with diagonal flavor
indices. In this limit, the operators O(1)

φL,O
(3)
φL, analogous to O(1)

φQ,O
(3)
φQ, are redundant

with the bosonic set of Eq. (7.3) via equations of motion [178,283].

Dipole operators and O(1)
φud,ij = φ̃†(iDµφ)(ūR,iγµdR,j) are neglected for two reasons: the

approximate flavor symmetry requires them to scale with the SM Yukawa couplings and
their interference with the SM is always proportional to the fermion masses. Both factors
suppress their effects except for the top quark. The three dipole moments of the top
quark — electric, magnetic and chromomagnetic — are not suppressed, so in this work
we choose to retain the chromomagnetic operator [180,290–292]

OtG = igs(Q̄3σ
µνTAuR,3) φ̃GAµν . (7.7)

It affects the Higgs observables at the LHC significantly through the loop-induced
production process [184,272,293–295].
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Our SMEFT Lagrangian is then defined as

Leff = LSM −
αs
8π

fGG
Λ2 OGG + fWW

Λ2 OWW + fBB
Λ2 OBB + fBW

Λ2 OBW

+ fW
Λ2 OW + fB

Λ2OB + fφ1
Λ2 Oφ1 + fφ2

Λ2 Oφ2 + f3W
Λ2 O3W

+ fµmµ

vΛ2 Oeφ,22 + fτmτ

vΛ2 Oeφ,33 + fbmb

vΛ2 Odφ,33 + ftmt

vΛ2 Ouφ,33

+
f

(1)
φQ

Λ2 O
(1)
φQ +

f
(1)
φd

Λ2 O
(1)
φd +

f
(1)
φu

Λ2 O
(1)
φu +

f
(1)
φe

Λ2 O
(1)
φe +

f
(3)
φQ

Λ2 O
(3)
φQ + f4L

Λ2 O4L

+ ftG
Λ2 OtG + invisible decays . (7.8)

It contains 20 independent Wilson coefficients. The branching ratio of the Higgs to
invisible final states, BRinv, is treated as a free parameter, to account for potential Higgs
decays to a dark matter agent. For the global analysis it is convenient to work with the
two orthogonal combinations

O± = OWW ±OBB
2 ⇒ f± = fWW ± fBB . (7.9)

The rotation is defined such that only O+ contributes to the Hγγ vertex.

If we base our calculation on the Lagrangian like that given in Eq. (7.8), we strictly
speaking need to supplement it with a renormalization scheme or a renormalization
condition. For each process, a reasonable assumption is that all Lagrangian parameters,
including the Wilson coefficients, are evaluated at the same renormalization scale µR.
For the processes entering our global analysis, an appropriate central scale choice is
µR ' mH/2 ... mH . To improve the precision beyond leading order, one should even-
tually account for the renormalization group evolution [296], and evaluate the SMEFT
predictions at the energy scale appropriate for each process. This scale can vary for
instance across bins of a kinematic distribution. In this work, all SMEFT predictions are
calculated at leading order, so we postpone an in-depth analysis of renormalization group
effects to a future work, together with a systematic study of the impact of higher-order
corrections to inclusive Higgs production and decay rates.

The truncated Lagrangian of Eq. (7.8) as our fundamental theory hypothesis needs to be
put into context. The hypothesis based on a truncated Lagrangian is, strictly speaking,
not well defined once we include higher multiplicities of the dimension-6 operators in
the amplitude. Therefore, the SMEFT analysis should be interpreted as representing
classes of models [297,298], and the validity of the SMEFT approach rests on the process-
dependent assumption that in the corresponding models no new particle is produced
on its mass shell [186]. While SMEFT is an excellent framework to interpret global
LHC analysis, possible anomalies need to be interpreted by matching it to UV-complete
models [187,188,191,299], where for instance WBS signatures of corresponding models
might eventually require us to go beyond dimension-6 operators [300].

If global SMEFT analyses should be interpreted as representing classes of UV-complete
models for a limited set of observables, we need to consider the interplay between the
SMEFT hypothesis and more fundamental models. Given the precision of the SMEFT
analysis and its field-theoretical advantages over the naive coupling analysis we can and
should perform this matching beyond leading order [185,209,210,212,215,301], accounting
for matching scale uncertainties [3, 183], rather than ignoring them at leading order.
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While this scale uncertainty clearly does not cover all uncertainties induced by matching
SMEFT limits to UV-complete models, it also illustrates that such uncertainties exist
and have to be taken into account.

7.3 Bayesian SFitter setup

Global SMEFT analyses are a key ingredient to a more general analysis strategy at the
LHC, which is to test theory predictions based on perturbative quantum field theory using
the full kinematic range of the complete set of LHC measurements. It is worth stressing
that SMEFT analyses are currently the only way to systematically probe kinematic
LHC measurements beyond resonance searches. They come with two assumptions which
greatly simplify the actual analyses

1. experimentally, we know that our SMEFT analysis is not confronted with established
anomalies; those should be discussed using properly defined BSM models;

2. theoretically, SMEFT can only describe small deviations from the Standard model,
otherwise the dimensional expansion in Eq. (7.1) is not valid.

While global SMEFT analyses with a truncated Lagrangian can translate kinematic
measurements into fundamental parameters, these two aspects imply that their outcome
will be limit-setting. For our analysis this means that we already know that the global
maximum of the SMEFT likelihood lies around the SM-limit fx/Λ2 → 0. The exact
position of the most likely parameter point is of limited interest, the main task of the
global analysis is to determine the uncertainty on the values of the Wilson coefficients or,
more in general, the finite preferred region in the multi-dimensional SMEFT parameter
space.

In this spirit, the goal of the SFitter framework is to enable an independent interpretation
of experimental inputs, without relying on pre-processed information and including a
comprehensive treatment of statistical, systematic, and theory uncertainties [242,243,257].
The SFitter methodology relies on the construction of a likelihood function in which
these uncertainties can be described by nuisance parameters. In all previous SFitter
analyses, nuisance parameters are profiled over. The resulting profile likelihood is then
profiled over the parameters of interest, to extract one- and two-dimensional limits on the
Wilson coefficients. An alternative, Bayesian treatment is based on marginalizing over
nuisance parameters and parameters of interest. It has been adopted in several SMEFT
analyses [274,302–305] and simplifies greatly the treatment of correlated uncertainties.
The goal of this work is to perform an apples-to-apples comparison between a profiled
and a marginalized likelihood, employing exactly the same data and uncertainties inputs
in both cases.

Marginal likelihood

Since marginalization is new in SFitter, we provide a brief description of the main features.
The corresponding profile likelihood treatment is discussed in detail in Refs. [178,242,
245,246,257]. The first step of a global analysis is the construction of the fully exclusive
likelihood Lexcl, which is a function of the parameters of interest fx and of a set of nuisance
parameters θi. This Lexcl is defined with the following uncertainty treatment: (i) statistical
uncertainties are included via a Poisson distribution, in some cases approximated using a
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Gaussian whenever this stabilizes the numerical evaluation; (ii) systematic uncertainties
are assumed to be Gaussian, organized in 31 categories, such that uncertainties within
the same category are fully correlated through a covariance matrix or through nuisance
parameters. Systematics which do not fit into any of the 31 categories are assumed to
be uncorrelated; (iii) theory uncertainties are modelled as flat distributions. Whenever
theory uncertainties need to be correlated we use an explicit nuisance parameter.

For a Bayesian analysis we first marginalize over or integrate out the nuisance parame-
ters. This yields the marginal likelihood Lmarg, for one counting measurement and one
parameter illustrated by

Lmarg(fx) =
∫
dθLexcl(fx, θ) =

∫
dθ Pois(d|m(fx, θ)) p(θ) . (7.10)

Here d stands for the measured number of events, m is the model (theory) prediction,
θ is a nuisance parameter and p(θ) the distribution over the nuisance parameter which,
in the Bayesian context, defines the prior. In SFitter, nuisance priors are either Gaussian
or flat. Computing Lmarg in SFitter starts with the marginalization procedure over the
nuisance parameters, so we omit the dependence on fx for now.

SFitter provides several options to define the statistical model of a measurement, in-
cluding a simplified Gaussian likelihood where uncertainties add in quadrature. A more
sophisticated and reliable framework starts with a typical LHC measurement as an inde-
pendent counting experiment, which is modelled by a Poisson distribution. Systematic
uncertainties or theory uncertainties then define the completely exclusive likelihood for
one measurement

Lexcl(θ) = Pois(d|m(θ1, θ2, ..., b)) p(b)
∏
i

p(θi) . (7.11)

Here d is the measured number of events, b the background estimate, and m the model
prediction, that is a function of the nuisance parameters θi. The distributions p(b) and
p(θi) incorporate our knowledge about these quantities. In general, they can be extracted
from auxiliary measurements, simulations, or other possible sources. However, because
tracking hundreds of different reference measurements is beyond the scope of SFitter, we
simply assume p(θi) to be Gaussian for systematic uncertainties and flat or uniform for
theory uncertainties,

p(θi) =
{
N0,σi(θsyst,i) systematics
F0,σi(θtheo,i) theory .

(7.12)

In this step we assume that all prior distributions for θsyst and θtheo are centered around
zero, with given half-widths σ.

For p(b), SFitter provides several choices: for measurements where b is extracted from a
single control region (CR) measurement we use

p(b) = Pois(bCR|bk) , (7.13)

where k is an interpolation factor between CR and signal region, bCR is the measured
number of events in the control region, and b is the expected number of background events
in the signal region. For measurements with several control regions or with simulated
backgrounds we assume the combined p(b) to be a Gaussian. Systematic uncertainties on
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the background measurement can also be included, and are assumed to be fully correlated
with the uncertainties on the signal region within the same category.

Typically, the dependence of the theory prediction m on the nuisance parameters in
Eq. (7.11) is not spelled out or extremely complex to determine. To simplify this task,
we assume a leading linear dependence on assumed-to-be small uncertainties

m ≈ s+ b+ θtheo,1 + θtheo,2 + · · ·+ θsyst,1 + θsyst,2 + · · · ≡ s+ b+ θtot . (7.14)

where s is the expected number of signal events. The exclusive likelihood of Eq. (7.11)
can then be written as

Lexcl(θ) ≈ Pois(d|s+ b+ Σθtheo,j + Σθsyst,i) p(b)
∏
j

F0,σj (θtheo,j)
∏
i

N0,σi(θsyst,i) ,

(7.15)

The marginal likelihood for a single measurement is then constructed by integrating over
all nuisance parameters,

Lmarg =
∫ ∏

j

dθtheo,j

∫ ∏
i

dθsyst,i

∫
db Lexcl(θ)

=
∫ ∏

j

dθtheo,jF0,σj (θtheo,j)
∫ ∏

i

dθsyst,iN0,σi(θsyst,i)

×
∫
db Pois(d|s+ b+ Σθtheo,j + Σθsyst,i) p(b) .

(7.16)

The integration over b can be performed analytically if p(b) is a Poisson distribution. In
this case, the convolution P(d|s+ θtot) of p(b) and Pois(d|m) gives a so-called Poisson-
Gamma model, as Eq. (7.13) is a special case of the Gamma distribution,

Lmarg =
∫ ∏

j

dθtheo,jF0,σj (θtheo,j)
∫ ∏

i

dθsyst,iN0,σi(θsyst,i)× P(d|s+ θtot) . (7.17)

We use θtot as defined in Eq. (7.14). To solve the remaining integrals over the nuisance
parameters we replace one of the integrals, for instance θsyst,1 with (θtot − Σi 6=1θsyst,i),

Lmarg =
∫
dθtot P(d|s+ θtot)

×
∫ ∏

j

dθtheo,jF0,σj (θtheo,j)
∫ ∏

i 6=1
dθsyst,iN0,σi(θsyst,i)N0,σ1(θsyst,1)

︸ ︷︷ ︸
solved analytically

.

(7.18)

Assuming only Gaussian plus at most three flat priors, all θ-convolutions except for one can
be performed analytically. The corresponding closed formulas are implemented in SFitter,
speeding up the marginalization (see Appendix B.2). The remaining 1-dimensional
integral in Eq. (7.18) is solved numerically with Simpson’s method.

Marginalizing over nuisance parameters and profiling over them will not give the same
marginalized likelihood. Only for statistical uncertainties described by Poisson statistics
and Gaussian systematics, the two lead to the same marginalized result in the limit of
large enough statistics. Differences appear when we use flat theory uncertainties. For a
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Figure 7.1: Marginalized and profiled likelihoods from the convolution of a
Gaussian distribution with one (left) and three (right) flat ones. The orange
curve shows, for comparison, the Gaussian obtained adding half-widths in
quadrature.

Bayesian marginalization the central limit theorem ensures that the final posterior will
be approximately Gaussian. Using a profile likelihood, two uncorrelated flat uncertainties
add linearly, while a combination of flat and Gaussian uncertainties give the well-known
RFit prescription [248]. Figure 7.1 shows, as an illustration, the distributions obtained
combining one Gaussian with one (left) or three (right) flat nuisance parameters. We see
that the profile likelihood or RFit result maintains a flat core and is independent of the
number of theory nuisances, while the marginalized result varies and is very close to a
Gaussian in the right panel.

Combining channels

Unlike probabilities, likelihoods of a set of measurements can simply be multiplied. This
means we can generalize Eqs. (7.11) and (7.15) to a set of N measurements by replacing

Pois(d|m)p(b) −→
∏
k

Pois(dk|mk)p(bk)

N0,σi(θsyst,i) −→ N~0,Σi
(~θsyst,i)

F0,σj (θtheo,j) −→
∏
k

F0,σkj
(θtheo,kj) , (7.19)

with

mk ≈ sk + bk +
∑
i

θsyst,ki +
∑
j

θtheo,kj ≡ sk + bk + θtot,k . (7.20)

Here we assume that the theory uncertainties are uncorrelated, while the systematics can
be correlated, so we need to introduce an N -dimensional Gaussian with the covariance
matrices Σi encoding the correlations between uncertainties of category i entering different
measurements k. We use either uncorrelated or fully correlated systematics.

When we compute the marginal likelihood in analogy to Eq. (7.16) the only non-trivial as-
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pect are the correlated systematic uncertainties including the covariance matrix. However,
the convolution of N -dimensional Gaussians still leads to one N -dimensional Gaussian,
where the combined covariance matrix is the sum of the individual covariance matrices.
This means, in the last step of Eq. (7.18) we are now left with an N -dimensional integral
over θtot,k, correlated through the covariance matrix appearing in the distribution of the
systematic nuisance parameters.

In SFitter, this integral is solved by approximating it with the Laplace method. This
is computationally efficient and works well for cases where most of the probability is
concentrated around one mode. This is the case when the nuisance parameters are
Gaussians or flat. We can then write∫

dxnf(x) =
∫
dxnelog f(x) , (7.21)

and assume that f(x) has a maximum at x = x0. Then one can expand log f(x) up to
second order around x0 as

log f(x) ≈ log f(x0) + ∂

∂x
log f(x0)︸ ︷︷ ︸

=0

(x− x0) + ∂2

∂xixj
log f(x0)︸ ︷︷ ︸

=Fij(x0)

(x− x0)i (x− x0)j + ...

(7.22)

such that the integral is approximated by

∫
dxnf(x) ≈ f(x0)

√
(2π)n

detF (x0) . (7.23)

Note that f(x) is given by the exclusive likelihood, with the maximum at f(x0) kept
through profiling but not through marginalization. The matrix F (x0) is the Hessian
of the log-likelihood at the maximum, i.e. the Fisher information matrix in the space
of the nuisance parameters. In SFitter, x0 is extracted with an analytic expression,
approximating the Poisson distribution in Eq. (7.11) with a Gaussian. The resulting error
is compensated by keeping a finite first derivative in Eq. (7.22), which in turn requires us
to modify Eq. (7.23) by introducing an additional term depending on the first derivative
of the log-likelihood. Both the first and second derivatives can be computed numerically.
All these approximations in evaluating the exclusive and marginal likelihoods have been
checked by evaluating the exclusive likelihood using Markov chains.

Validation

We can validate the implementation of the Bayesian marginalization over nuisance
parameters and Wilson coefficients starting from the fully exclusive likelihood using the
operator basis and dataset of Ref. [178]. The SMEFT Lagrangian is given in Eq. (7.8),
but without the muon Yukawa, the top-gluon coupling OtG, and the invisible branching
ratio of the Higgs. For the direct comparison we construct the marginal likelihood by
profiling or marginalizing over all nuisance parameters and Wilson coefficients. We then
extract the posterior probability and 68% and 95% confidence intervals. Unless otherwise
specified, we assume flat, wide priors for all Wilson coefficients. This choice minimizes
the impact of the prior on the final result, and we have verified that our priors on the
Wilson coefficients indeed fulfill this condition. In Fig. 7.2, we show the 68% and 95%CL
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Figure 7.2: 68% and 95% confidence intervals from profile likelihoods and
Bayesian marginalization. The dataset is the same as in Ref. [178].

limits from the corresponding 18-dimensional operator analysis. We see that the results
of the two methods are in excellent agreement.

Going beyond confidence intervals, we can look at the distributions of the 1-dimensional
profile likelihoods or marginalized probabilities. We show three examples in Fig. 7.3.
Because the analysis relies on actual LHC data, the central values are not at zero Wilson
coefficients. The well-measured Wilson coefficient fW shows no difference between the
profile and the marginalized results. For fGG, we see a slight deviation in the central
values, within one standard deviation and therefore not statistically significant. This
effect points to the theory and pdf uncertainties, which we assume to be flat, and which
therefore allow the central value to move freely for the profile likelihood approach, while
the marginalization leads to a well-defined maximum when combining two individually
flat likelihood distributions. In Fig. 7.2 we see that this difference only has a slight effect
on the lower boundary when we extract 95%CL limits on fGG. Finally, we see a similar
effect for f−, even though this measurement depends on several different LHC channels.
According to Fig. 7.2 this is one of the largest and still not significant differences between
the two methods.

The source of the differences in Fig. 7.3 can be traced back to whether the uncertainty-
related nuisance parameters are marginalized or profiled. Fig. 7.4 shows that, once
the uncertainty treatment is fixed, the results are independent of whether the Wilson
coefficients are marginalized or profiled over.

Next, we check 2-dimensional profiled and marginalized likelihoods. Figure 7.5 shows
three examples involving the same Wilson coefficients as in Fig. 7.3. First, we see
that there exists an anti-correlation between fGG and ft, the modified top Yukawa also
affecting the loop-induced production process gg → H. This suggests that a slightly
high rate measurement can be accommodated by adjusting either of the two Wilson
coefficients. Because the uncertainty on this measurement includes sizable theory and
pdf contributions, the same difference between the two methods can be seen for each of
the two Wilson coefficients individually and for their correlation. Another instructive
example is the correlation between fW , determined from kinematic distributions, and
fφ2 leading to a shift in the Higgs wave function. Here the difference only appears in fφ2,
the parameter extracted from total rates and especially sensitive to theory uncertainties.
Finally, we show the correlation between f− and f (3)

φQ and observe the usual correlation
from the sizable range of kinematic di-boson measurements [254].
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Figure 7.3: Profile likelihoods vs marginalized likelihood for a set of Wilson
coefficients. The two curves are scaled such that the maximum values are at
Lscaled = 1.

Finally, we can check for alternative maxima in the likelihood and find that f+ is the
only Wilson coefficient exhibiting a non-trivial second mode. This can be understood
from the f+ vs f− plane. By a numerical accident, the SMEFT corrections to all Higgs
production and decay processes vanish in the SM-maximum and also close to the point
f−/Λ2 = −3 and f+/Λ2 = 2.7. The only measurement which breaks this degeneracy is
H → Zγ, with limited statistical power. In the f+ axis, the position of the maximum
is fully determined by H → γγ, which is measured precisely enough to resolve the two
modes, while in the f− axis the constraints cannot distinguish the second maximum from
the SM point.

Given the consistency condition of the SMEFT approach, we should not compare the two
modes at face value, even though the Bayesian setup would allow for this. On the other
hand, we need to confirm that this choice of modes does not affect other parameters in a
significant manner once it is embedded in the 18-dimensional space. In Fig. 7.6 we show
what happens if we restrict our parameter analysis to either the SM-mode or the second
mode. To this end we run Markov chains mapping out both modes and then separate
the samples through the condition f+/Λ2 ≶ 2. We see that choosing the second mode in
f+ has a small effect on f−, pushing the best-fit closer to f− = −3, but none of the other
Wilson coefficients is affected. We also confirmed that both modes are of equal height by
choosing a Breit-Wigner proposal function, which ensures that the Markov chains can
move large distances, helping each individual chain to jump between both modes.
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Figure 7.4: Likelihoods profiled vs marginalized over the Wilson coefficients fx,
but always marginalized over all nuisance parameters θ. We show the same
Wilson coefficients as in Fig. 7.3.
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Figure 7.5: Comparison of 2-dimensional correlations of profiled and marginalized
likelihoods.

Uncertainties and correlations

After confirming that the slight differences between the profile and marginalization
approaches are related to the treatment of uncertainties, we can check the impact of
the SFitter-specific uncertainty treatment. By default, and as explained earlier, we
construct the exclusive likelihood with flat theory uncertainties and Gaussian systematics.
By switching all uncertainties to Gaussian distributions we construct the completely
Gaussian likelihood shown in Fig. 7.7. If we marginalize over the different uncertainties,
the central limit theorem guarantees that for enough different uncertainties the results will
be identical. The exact level of agreement between different uncertainty models depends
on the dataset and the size of the individual uncertainties and cannot be generalized. For
instance, sizable differences will appear when an outlier measurement generates a tension
in the global analysis. Such a tension can be accommodated more easily using a single
flat uncertainty with its reduced cost in the likelihood value.

Because the main difference between profiling and marginalizing over uncertainties
appears for the flat theory uncertainties, the results from Fig. 7.7 motivate the question
how relevant the theory uncertainties really are for the Run 2 dataset analyzed in
Ref. [178]. We show three 1-dimensional likelihoods in Fig. 7.8 and indeed find that after
marginalizing over all nuisance parameters and over all other Wilson coefficients the
theory uncertainties do not play any visible role. Obviously, this statement is dependent
on a given dataset, on the operators we are looking at, and on the assumed uncertainties,
and it clearly does not generalize to all global Run 2 analyses.

The last effect we need to study is the impact of correlations between the different
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Figure 7.6: Marginalized likelihoods for the SM-like and the second mode in f+,
again for the 18-dimensional analysis.
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Figure 7.7: Marginalized likelihoods for different uncertainty modeling. The
SFitter default is a Poisson likelihood with flat theory uncertainties and Gaussian
systematics (blue dot-dashed).

uncertainties. In Fig. 7.9 we show what happens with the 1-dimensional marginalized
likelihoods when we switch off all correlations between systematic uncertainties of the
same kind. We see that the correlations have a much larger impact than anything else we
have studied in this section. While the size of the uncertainties do not change much, the
central values essentially vary freely within one standard deviation. An analogous effect
was observed in Ref. [274]. We cannot emphasize enough that all statements about the
validity of different approximations do not generalize to new, incoming measurements, as
we will see in the following section. However, something that will not change is the key
relevance of correlations as indicated by Fig. 7.9.

7.4 Updated dataset

After the detailed comparison of a profile likelihood and Bayesian SFitter approach we
can, in principle, apply the numerically simpler Bayesian approach to update the SMEFT
analysis of the Higgs-electroweak sector with a series of new Run 2 results. As a first
step, we introduce the set of new kinematic measurements entering the updated SFitter
analysis. We focus on an improved treatment of correlated uncertainties.

7.4.1 WW resonance search

Once we notice that especially boosted kinematics with large momentum transfer through
Higgs interactions play a key role in SMEFT analyses [254, 306], it is clear that the
reinterpretation of V H and V V resonance searches should be extremely useful for a
global SMEFT analysis [178, 245]. To the best of our knowledge, SFitter is currently the
only global analysis framework which includes these kinds of signatures.
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Figure 7.8: Marginalized likelihoods with and without theory uncertainties.
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Figure 7.9: Marginalized likelihoods with and without correlations between
systematic uncertainties of the same category.

First, we add the ATLAS search for resonances in the semi-leptonic V V final state [253],
as briefly discussed in Ref. [3]. We only use the WW 1-lepton category in the merged
Drell-Yan and gluon-fusion high-purity signal region,

pp→W+W− → `+ν` jj + `−ν̄` jj . (7.24)

Our signal consists of W+W− production modified by SMEFT operators. We neglect
SMEFT effects in the leading W+jets and tt̄ backgrounds. We include all other W`νVjj
and Z``Vjj channels as SM-backgrounds and verified that SMEFT corrections to the
other di-boson channels are sufficiently suppressed by the analysis setup.

The signal is simulated using Madgraph [161], Pythia [110], FastJet [307], and Delphes [111]
with the standard ATLAS card at leading order and in the SM and requiring the lepton
pair to come from an intermediate on-shell W±. The hadronic W -decay is simulated
using Pythia. Fat jets are identified using the default categorization in Delphes and
ignoring the cut on the D2 variable. The complete SM-rate is compared to the left
panel of Fig. 7.10, taken from Ref. [253]. We reproduce the event selection based on the
analysis cuts listed in Tab. 2 of Ref. [253]. No re-calibration of energy scales or fat-jet
invariant mass windows is required, but we adjust the histogram entries by a factor
1.606 to match the ATLAS normalization of the di-boson background and accommodate
efficiencies and higher-order corrections [308]. In the right panel of Fig. 7.10 we show the
final mWW distribution obtained with this procedure. Finally, we extract the statistical
and systematic uncertainty from the ATLAS analysis, as shown in the lower panel in
Fig. 7.10. Whenever backgrounds are estimated from control regions, the Gaussian
systematic uncertainties are smaller than the Poisson-shaped statistical uncertainties in
the signal region.

To include the V V channel in our SMEFT analysis we re-bin the original distribution such
that we have a minimum of five observed events per bin. The kinematic distribution we
use in SFitter is shown in the left panel of Fig. 7.11. Here all statistical uncertainties are
treated as uncorrelated and added in quadrature, the same for the systematic background
uncertainties linked to Monte Carlo statistics, while other systematic uncertainties are
conservatively treated as fully correlated and consequently added linearly. Finally, we
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Figure 7.10: Left: measured mV V distribution [253]. Right: comparison between
ATLAS results and our SM background estimate. The orange band shows the
statistical uncertainty from the Monte Carlo generation.

add a 80% theory uncertainty on the signal predictions in all bins and assuming no
correlation among them. Of this 70% account for the uncertainties in our SMEFT Monte
Carlo predictions and 10% for V+jets and single-top modeling.

In the right panel of Fig. 7.11 we show the limit in terms of the Gauss-equivalent

∆χ2 = χ2 − χ2
min = −2 logL+ 2 logLmax , (7.25)

extracted from different bins of the measured mWW distribution. We see that the
likelihood maximum slightly deviates from the SM point f (3)

φQ = 0, and the last bin
completely dominates the likelihood distribution. This is expected for momentum-
enhanced operators which modify the tails of momentum distributions, as systematically
analyzed in Ref. [254]. We will discuss the effect of the under-fluctuation in the last bin
in more detail in Sec. 7.5.1.

7.4.2 WH resonance search

Complementing the dataset of Ref. [178] we include two new resonance searches, one
described in Ref. [3] and another ATLAS analysis looking for

pp→WH → `ν̄` bb̄ (7.26)

at high invariant masses [309]. We focus on WH production with one b-tag, because it
includes the best kinematic measurement at high mV H . This analysis applies cuts on the
WH topology and requires exactly one single-b-tagged fat jet. In the merged category
the b-tags are part of a fat jet.

We generate di-boson events for the combined di-boson channels with lepton-hadron
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analysis implemented in SFitter. We show the complete continuum background,
including statistical and systematic uncertainties, and the effect of a finite Wilson
coefficient f (3)

φQ. Right: toy analysis for the same Wilson coefficient using different
numbers of bins.

decays

pp→W`νWjj , W`νZjj , Z``Wjj , Z``Zjj , (7.27)

again using the Madgraph-Pythia-FastJet-Delphes chain with the standard ATLAS
card at leading order. They can be compared to the grey di-boson background in the
left panel of Fig. 7.12, including the b-tagging and corresponding mis-tagging. After
adjusting the mWH-independent efficiency factor we find the agreement illustrated in
the right panel of Fig. 7.12. We apply the same efficiency factor for the WH signal
and then use the reweighting module in Madgraph to estimate the SMEFT rates. The
W -decay to electrons or muons is included through Madgraph, while the Higgs decay to
bb̄ pairs is simulated by Pythia. We neglect SMEFT corrections to the tt̄ and W/Z+jets
backgrounds, assuming that the targeted phase space region favors the Higgs signal.
Having to make this assumption is unfortunate, but we emphasize that the number
of experimental measurements should prevent us from falling for SMEFT corrections
canceling between the different signals and backgrounds.

To define a meaningful measurement for our global analysis we have to merge bins of the
original distribution such that at least three observed events appear per bin. In Fig. 7.13,
we show the actually implemented distribution for the complete SM background and
including a finite Wilson coefficient f (3)

φQ. For each bin we include a statistical uncertainty
following a Poisson distribution and a Gaussian systematic uncertainty, as reported by
ATLAS. In addition, we include a 13% theory uncertainty also reported by ATLAS and
a theory uncertainty between 1% and 4% per bin from our SMEFT predictions, but
neglecting correlation between various bins.

We can check some of our assumptions on the way we model theory uncertainties from
a three-parameter analysis with f (3)

φQ, fW and fWW . Neglecting the correlations in the
theory uncertainties is justified by the left panel of Fig. 7.14. It shows the Gauss-equivalent
∆χ2 for varying the theory uncertainties with different correlations; the orange and green
lines represent a 10% and 30% theory uncertainty, fully correlated. The green line
shows results without theory uncertainty, and the red line assumes our SMEFT theory
uncertainty without correlations. These results are very close to each other, so we can
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Figure 7.12: Left: measured mWH distribution [309]. Right: comparison between
the the ATLAS results and our SM background estimate. The orange band
shows the statistical uncertainty from the Monte Carlo generation.

ignore correlations in the theory uncertainties from the EFT prediction.

The central panel compares constraints from the 3-parameter analysis from the entire
mWH distribution and only including one bin at a time. The limit improves sharply when
the 4th and 5th bins are included. This can be understood from Fig. 7.13, where both of
these bins show significant under-fluctuations. In the right panel of Fig. 7.14 we show
that by removing under-fluctuations from the global analysis by setting all measured
values to the number of events expected from the SM we lose constraining power. Again,
demonstrating that our analysis strongly benefits from under-fluctuations.
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Figure 7.13: Re-binned mWH distribution implemented in SFitter, including
statistical and systematic uncertainties. We show the complete continuum
background and the effect of a finite Wilson coefficient f (3)

φQ.
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φQ. We vary the theory uncertainties and their correlation
(left), the number of bins included with uncorrelated theory uncertainties for a
1-dimensional analysis (center), and the treatment of under-fluctuations (right).

7.4.3 ZH resonance search

The second boosted V H analysis we re-interpret in terms of SMEFT is a CMS resonance
search in the process [310]

pp→ ZH → e+e− bb̄ . (7.28)

We include the non-VBF category with ≤1 b-tags and with two b-tags. We find that the
two-b category is more constraining than the ≤ 1b category. This can happens because
the relative size of the SMEFT correction prefers this category. To determine the number
of b-tags in an event, we look at the corresponding fat jet and the number of b-quarks
inside the jet.

We validate our analysis simulating events for Z ′ peak in the heavy vector triplet model
(HVT), that is used by CMS to illustrate a possible signal,

pp→ Z ′ → Z``Hbb . (7.29)

This signal has the advantage that it is localized in mZH and simulated at leading
order using Madgraph, which means it is easier to use for calibration than a continuum
background. Again, we use Madgraph, Pythia, FastJet, and Delphes with the standard
CMS card at leading order. The combined sample is then compared to the HVT peak
shown in Fig. 7.15. We extract the experimental efficiencies after scaling the invariant
mass by the same factor 1.05 for both categories. The right panels in Fig. 7.15 show the
simulated Z ′ signal for the two categories, compared with the quoted CMS distributions.

The SMEFT signal in the ZH channels is then computed using the same efficiencies
and the reweighting module in Madgraph. The Z-decays are included in the Madgraph
simulation, while the Higgs decays are simulated in Pythia. As before, we ignore SMEFT
effects on the tt̄ background.

Also for the CMS ZH channel we need to re-bin the mZH distribution to define a
meaningful set of measurements, now with at least two events per bin and separately
for the two categories. The results are shown in Fig. 7.16. For each bin we include
the systematic and statistical uncertainties from Ref [310]. In addition, we include
different theory uncertainties per bin from the SMEFT prediction and event generation in
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Figure 7.15: Left: measured mZH distributions for the two b-tagging cate-
gories [310]. Right: comparison between the Z ′ signal quoted by CMS and our
estimate. The orange bands show the statistical uncertainty from the Monte
Carlo generation.

Madgraph. As discussed in detail for the ATLASWH analysis, we neglect the correlation
between bins.

7.4.4 Boosted Higgs production

Boosted Higgs production, in association with one or more hard jets,

pp→ Hj(j) , (7.30)

has been known to distinguish between a top-induced Higgs-gluon-gluon coupling and
the corresponding dimension-6 operator for a long time [312,313]. It has therefore been
suggested as a channel to measure the dimension-6 Wilson coefficient fGG in the presence
of a modified top Yukawa coupling ft [314–317], where it competes with channels like
the off-shell Higgs production [318,319]. In the SFitter Higgs analysis it can be added
to the set of measurements to provide complementary information to the total Higgs
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Figure 7.16: Re-binned mZH distributions for the 2b category (left) and the
≤ 1b category implemented in SFitter, including statistical and systematic
uncertainties. We show the complete continuum background and the effect of a
finite Wilson coefficient f (3)

φQ.

production rate. We take the measurement of the Higgs pT distribution in the γγ channel
by ATLAS [311].

The main contribution to boosted Higgs production comes from the partonic channel
gg → Hg, with subleading corrections from gg → Hgg. This allows us to include SMEFT
corrections to gg → Hg only. They can be separated into rescalings of the top Yukawa
coupling, for instance via Ouφ,33, corrections to the top-gluon coupling from OtG, and
the effective Higgs-gluon interaction induced by OGG.

Because these effective vertices enter also tt̄H production, these operators lead to a
non-trivial interplay in the global analysis. Moreover, as discussed in Sec. 7.4.5 below,
ftG is well-constrained by top pair production pp→ tt̄. In fact, it constitutes the most
significant contact between global top and Higgs analyses [184,272].

We calibrate the boosted Higgs analysis simulating the SM signal for the partonic
sub-channels gg → Hg and gg → Hgg using Madgraph. The gluon-initiated channels
are simulated at 1-loop, while the quark-initiated one at tree level. For the one-loop
simulation we use a fixed renormalization scale µR = mH . This setup is also used for
the SMEFT simulations. Figure 7.17 shows the comparison between our simulation and
the SM signal estimate provided by ATLAS. We use the same binning as in the original
distribution, but omit the bins with pT,γγ < 45 GeV.

The simulation of SMEFT effects is tackled with different methods. The effect of a shifted
top Yukawa is just a rescaling of the SM cross section, that can be easily computed
analytically,

σSMEFT
σSM

=
(

1− ft√
2
v2

Λ2

)2

. (7.31)

Second, OtG also enters the top loops, but induces a different Lorentz structure com-
pared to the SM amplitude. Its contributions are simulated independently using
SMEFT@NLO [320] in Madgraph. In the event generation, the EFT operator is renor-
malized at µEFT = µR = mH .
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Figure 7.17: Left: measured dσfid/dpγγT distribution [311]. Right: comparison
between the the ATLAS distribution and our SM estimate summing contributions
from gg → Hg and gg → Hgg.

Finally, OGG enters at the tree level. Because the pure interference between tree and
loop diagrams cannot be generated directly in Madgraph, we choose to simulate both
the linear and the squared term with a modified loop_sm UFO model, where the point-
like Higgs-gluon vertices are mimicked by sending the bottom quark mass and Yukawa
coupling to 15 TeV. We verified that any value larger than 10 TeV gives equivalent
results. This way the simulation is formally at one loop for all terms. The results of this
approximation were cross-checked against the analytic results in Refs. [312,313] for the
interference and against the tree-level simulation for the pure square.

The mixed quadratic terms, i.e. the interferences between two operators, can be computed
analytically for the combination of OtG or OGG with a shifted Yukawa coupling. The
combination of ftG and fGG needs to be simulated independently, in our case using using
SMEFT@NLO and the reweighting module in Madgraph.

In Fig. 7.18 we show the impact of four relevant SMEFT coefficients on the kinematic
distribution we implement in SFitter. For each bin we include the systematic and
statistical uncertainties from Ref [311], as well as an additional 20% theory uncertainty
reflecting the scale uncertainty on the SMEFT prediction.

7.4.5 From the top

From the combined top-Higgs analyses [184,272] we know that the Higgs-gauge sector
and the top sector cannot be treated completely independently. The two operators

Ouφ,33 = φ†φ Q̄3φ̃uR,3 and OtG = igs(Q̄3σ
µνTAuR,3) φ̃GAµν (7.32)

contribute to top pair and associated tt̄H production and are, at the same time, crucial
to interpret gluon-fusion Higgs production, together with the Higgs-related operator OGG,
as discussed above. By the definition of top-sector and Higgs-sector SMEFT analyses in
SFitter, OtG is covered by the top analysis, while we keep Ouφ,33 as part of the Higgs
analysis, together with a complete treatment of tt̄H production. This means we can
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Figure 7.18: Reconstructed pT,H distribution implemented in SFitter, including
statistical and systematic uncertainties as well as additional uncertainties on our
prediction. We show the complete continuum of signal and background and the
effect of three finite Wilson coefficients ft, ftG and fGG. The negative values
are represented by dashed lines and the positive values by solid lines.

include the limits on ftG from the dedicated SFitter analysis of the top sector [246]
using its 1-dimensional profile likelihood. We implement these constraints as an external
measurement or prior. The corresponding profile likelihood is shown in Fig. 7.19. It
consists of 100 data points which are dense enough that we can linearly interpolate
between them.

We choose the range in ftG to cover extremely small log-likelihoods, to avoid numerical
issues in the combined analysis. Still, while it is very unlikely to occur, we also want to
describe points outside of this range, so we extrapolate the log-likelihood further with two
quadratic fits; one fitted to negative Wilson coefficients and one fitted to positive Wilson
coefficient. A quadratic fit in this context means exponentially suppressed Gaussian tails.

7.4.6 Rates and signal strengths

In addition to the new kinematic measurements above, we update the set of Higgs rate
measurements of Ref. [178], adding those listed in Tab. 7.1. The two H → ττ and
three out of four H → inv measurements are completely new constraints, while the
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Figure 7.19: Profile likelihood for ftG from the SFitter top-sector analysis [246].
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others update results included in our previous analysis. The first column indicates which
production channels were implemented in SFitter. We do not always use all the channels
covered in a given ATLAS or CMS paper, if some of them are clearly subleading or some
of them appear impossible to implement in the necessary details. Production channels in
parentheses are numerically subleading, but were retained nevertheless.

The systematic and statistical uncertainties of the new measurements are typically smaller
compared to the older ones. On the other hand, we attempt a more comprehensive and
conservative estimate of the theory uncertainties, given the available information. In
Ref. [178] we typically discarded many theory uncertainties on the signal quoted in the
actual papers and replaced them with the leading uncertainty on the complete signal
prediction from the HXSWG [332–334], added linearly as expected for uncorrelated flat
uncertainties combined by profiling. In our new, comprehensive treatment, all theory
uncertainties quoted by the analyses are retained. We include them separately and
combine them. In addition, we include the uncertainties reported by the HXSWG [332–
334] as the uncertainty on our SFitter prediction, again split by contribution and ready
to be profiled over or marginalized.

We illustrate the implementation procedure in some more detail only for the recent Run-2
H → WW analysis by CMS [329]. Among the results presented, we implement the
four signal strength measurements. Because they are reported for individual production
modes (and not only in the STXS binning), they can be directly compared to the known
expressions for Higgs production rates in the SMEFT, without re-deriving. These have
been long implemented in SFitter for the main Higgs production channels (ggF, VBF,
WH, ZH, ttH) and decays (bb̄, WW , gg, ττ , ZZ, γγ, Zγ, µµ). A re-derivation of the
SMEFT expression can also be avoided in cases where the final results are not given for
specific production channels, but the expected signal contribution from each production
channel is provided.

The key ingredient to SFitter is a detailed breakdown of all uncertainties. This is crucial
in order to obtain the best possible approximation of the full experimental likelihood.
For Ref. [329] we consider different uncertainties for each production channel, that are
reported in the paper and in the corresponding HepData entry.

Production Decay ATLAS CMS

All H → γγ [321] [322]
ZH H → inv [323] [324]

VBF (ggF, V H) H → inv [325]
VBF (ggF, ZH, tt̄H) H → inv [326]

All H → ττ [327]
V H H → ττ [328]

ggF, VBF H →WW [309]
ggF, VBF, V H H →WW [329]
WH, ZH H → bb̄ [330]

ggF, VBF (V H, ttH) H → µµ [331]

Table 7.1: List of the new Run 2 Higgs measurements included in this analysis,
we denote V = W,Z.
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The statistical uncertainty is taken from the experimental paper, symmetrized and im-
plemented as Poisson or Gaussian distribution. For experimental systematics, SFitter
provides 31 predefined categories of Gaussian uncertainties, correlated across measure-
ments and, where appropriate, across experiments. All uncertainties belonging to the
same category are added in quadrature. The categories used to implement the CMS
analysis cover luminosity, detector effects, lepton reconstruction, and b-tagging. De-
tector effects combine the jet energy scale and resolution uncertainties, as well as the
missing transverse momentum scale uncertainty. Whenever the experimental papers
quote significant uncertainties that do not fit any predefined category, we add them as
an uncorrelated Gaussians, but this is not the case for the analysis of Ref. [329].

Theoretical uncertainties are typically implemented with flat uncorrelated likelihoods.
One exception is the Monte Carlo statistics uncertainty, which we usually treat as an
uncorrelated Gaussian. The CMS analysis quotes five theoretical uncertainties, that are
all introduced independently. In addition, we have six theoretical uncertainties on the
SFitter prediction: three on the production rate and three on the decay branching ratio,
following the HXSWG prescription [332–334].

As a final step we compare the systematic uncertainties quoted on the final result with
the sum of the uncertainties implemented in SFitter. If we are missing information
for example on the correlations, our implementation might not be conservative, so we
introduce an additional uncorrelated Gaussian uncertainty to compensate. This happens
for the CMS reference analysis in the ZH channel. For this measurement we implement
two uncorrelated Gaussian uncertainties, three correlated Gaussian uncertainties, plus
the eleven flat uncertainties.

7.5 Global SFitter analysis

After validating the marginalization technique in SFitter and introducing a set of promising
new observables, we can provide the final global analysis of the Higgs and electroweak
sector after Run 2, including the leading link to the top sector. To be conservative, we
will compare all our results with a profile likelihood treatment. We will find and explain
differences of the two methods facing the same extended dataset.

7.5.1 Marginalization vs profiling complications

While in Sec. 7.3 we have found that for the dataset of Ref. [178] the marginalization
and profiling approaches lead to, essentially, identical results, one analysis implemented
in SFitter as part of Ref. [3] actually leads to significant differences. The data driving
this separation of profiling and marginalization is the mWW distribution measured by
ATLAS [252], shown in the left panel of Fig. 7.11. It has the unique feature of a sizable
under-fluctuation in the last bin.

Such an under-fluctuation is challenging to accommodate in the SMEFT. First, under-
fluctuations can only be explained by operators with large interference terms, where the
Wilson coefficients have to be carefully tuned to be large enough to explain a sizable effect
and small enough to not be dominated by dimension-6 squared contributions. Second, a
localized under-fluctuation in only one bin of one kinematic distribution requires a subtle
balance of several Wilson coefficients, to control all other bins in all other di-boson and
V H channels.
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Figure 7.20: SFitter analysis with different SMEFT models describing the full
Run 2 dataset, including the boosted WW production.

In Fig. 7.20 we show low-dimensional analyses of the full Run 2 dataset including the
WW kinematics shown in Fig. 7.11, constraining three, five and seven Wilson coefficients.
For the three parameters {fB, f (1)

φu , fW } we see that the maximum of the likelihood is
perfectly compatible with the SM. The reason is that the SMEFT model is not flexible
enough to accommodate the under-fluctuation, so we only encounter the issue when
we look at the value of the likelihood in the maximum. Adding first {f (1)

φQ, f
(3)
φQ} and

then {f (1)
φd , f3W } to the SMEFT model allows us to accommodate the under-fluctuation,

leading to a second likelihood maximum.

When we compare the two likelihood maxima, differences between the profiling and the
marginalization appear. This is not surprising, given that the two methods ask different
questions. By definition, the profile likelihood identifies the most likely parameter point,
which according to Fig. 7.20 is close to the SM point, fB ≈ 0 ≈ f

(1)
φu . This does

not change when we increase the operator basis or expressivity of the SMEFT model.
The marginalization adds volume effects in the space of Wilson coefficients, and they
increasingly prefer the non-SM maximum once the SMEFT model is flexible enough
to explain the under-fluctuation. Consequently, the marginalized analysis proceeds to
challenge the SM in favor of an alternative SMEFT parameter point.

7.5.2 Full analysis

After identifying and understanding the issue with marginalized likelihoods for the
updated dataset we now perform the full, 21-dimensional parameters analysis on all
available data. The theory framework is defined by the Lagrangian in Eq. (7.8). The
dataset consists of all measurements from Ref. [178], combined with the new and updated
channels described in Sec. 7.4. We will discuss the standard profile likelihood results
below, in a first step we focus on the marginalization. In Fig. 7.21 we show a set of
1-dimensional marginalized likelihoods. In the first row we show three Wilson coefficients
affected by the under-fluctuation in mWW , as discussed in the previous Sec. 7.5.1. While
the marginalized likelihood for fW follows a standard single-mode distribution, those
for fB and f

(1)
φu , for example, show two distinct modes accommodating the observed

under-fluctuation.

In the second row we show the alternative maximum in f+ we already observed for
the dataset from Ref. [178] and which we discuss in Fig. 7.6 of Sec. 7.3. For the final
SFitter result we will remove the second maximum as an expansion around the wrong
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Figure 7.21: Set of marginalized likelihoods for the 21-dimensional SFitter
analysis including the full set of measurements.

SMEFT limit. We also see that the invisible Higgs width is strongly constrained, even
after we account for a modified Higgs production process rather than assuming SM Higgs
production combined with the exotic invisible Higgs decay.

In the last row we show the effect of including OtG in the Higgs analysis. Comparing the
limit on ftG to its prior in Fig. 7.19 we see that this parameter gains essentially nothing
from the Higgs measurements, but it will broaden the limits on the correlated parameter
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Figure 7.22: Set of marginalized correlations for the 21-dimensional SFitter
analysis including the full set of measurements. The solid and dashed lines show
∆χ2 = 2 and 7 respectively.
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Figure 7.23: Set of marginalized likelihoods for the 21-dimensional SFitter
analysis with and without the ATLAS WW resonance search altogether.

fGG affecting gluon-fusion Higgs production.

To follow up on the discussion of Fig. 7.20 we show a more complete set of 2-dimensional
marginalized likelihoods related to the mWW under-fluctuation in Fig. 7.22. In the full
analysis the correlation does not just affect f (1)

φu , but the full range of gauge-fermion
operators. This is expected from the argument that we need to carefully tune many
Wilson coefficients to accommodate a deviation in a single di-boson process in a single
bin of the high-invariant-mass distribution. As mentioned before, the apparent signal for
physics beyond the Standard Model is an artifact of the marginalization and its volume
effects, and cannot be reproduced with the profile likelihood. Note that this does not
mean the marginalization is wrong or wrongly done, this difference just reflects the two
methods asking different questions.

To study the impact of the critical WW -resonance analysis on our global analysis we
show a set of marginalized likelihoods with and without this analysis, i.e. with and
without the entire mWW distribution. Obviously, removing this distribution also removes
the secondary maximum structure, as we immediately see in Fig. 7.23. Removing the
entire distribution replaces the marginalized likelihoods for fB and f (1)

φu by their broad
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Figure 7.24: Set of marginalized and profiled likelihoods for the 21-dimensional
SFitter analysis with the ATLAS WW resonance search.
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Figure 7.25: Set of marginalized likelihoods for the 21-dimensional SFitter
analysis with and without the boosted Higgs analysis.

envelopes, still correlated, but without the distinctive maxima. For fW the additional
observable has limited impact, for f (1)

φd is leads to a smaller uncertainties combined with
a shifted maximum, and for f3W the non-anomalous bins of the WW -analysis provide
key information.

Finally, in Fig. 7.24 we compare the 1-dimensional marginalized likelihoods with the
corresponding profile likelihoods for a set of Wilson coefficients. For fB and f (1)

φu we see
the difference in the treatment of the secondary likelihood maximum, while fW serves as
an example for the many parameters where the two methods give the same results, as
discussed in detail in Sec. 7.3 and Fig. 7.2. Indeed, the results from the two methods
only disagree when the likelihoods develop secondary maxima.

Moving on with the effects observed in Fig. 7.21 we can look at the top-Higgs sector
with fGG, ft, and the added ftG. These three Wilson coefficients are constrained by
the Higgs production in gluon fusion, associated top-Higgs production, and top pair
production through the prior shown in Fig. 7.19. We have already seen that this prior
is practically identical to the final outcome in Fig. 7.21. Nevertheless, we can ask what
the impact of the boosted Higgs production process is, given that it should provide a
second measurement of the three Wilson coefficients with different relative weights. In
Fig. 7.25 we show the results of the 21-dimensional SFitter analysis with and without the
new boosted Higgs measurement introduced in Sec. 7.4.4. Unfortunately, the likelihood
distributions are essentially identical, corresponding to our expectation from the limited
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Figure 7.26: Left: marginalized likelihoods for the SFitter analysis with and
without ftG, using the same dataset; Right: marginalized correlation for the
21-dimensional SFitter analysis.
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Figure 7.27: Comparison of 21- dimensional SFitter analysis with all updated
measurements included. We show the 68% and 95%CL error bars from consistent
marginalization and profile likelihood treatments of all nuisance parameters and
Wilson coefficients. For the numerical values see Appendix B.3.

statistics of this measurements and the limited range in pT,H , where significant differences
can only be expected for pT,H > 250 GeV [318], and even for this kinematic range it is
not clear how well the measurement separates effects from fGG and ftG, while the ft
measurement is completely dominated by tt̄H production.

Even though completely justified, the only visible effect of including ftG in the Higgs
analysis is to wash out the limit on fGG. In Fig. 7.26 we first show the change on
the 1-dimensional marginalized likelihood of fGG when we remove ftG from the SFitter
analysis. Indeed, the measurement of fGG becomes much better. This is explained by
the strong correlation between fGG and ftG shown in the right panel.

After the in-depth discussion of all features we show the 68% and 95%CL limits from the
21-dimensional SFitter analysis with the full updated dataset in Fig. 7.27. To extract
these limits we start with the respective 1-dimensional marginal or profile likelihood,
identify the maximum, and move outward keeping the likelihood values on the left and the
right border of the integral the same. If there exists an additional peak, we compute the
integral under the likelihood for the part of the curve above a given likelihood threshold.
The 68% and 95%CL error bars are then defined the same way for the marginal and
profile likelihood.

The profile likelihood results in Fig. 7.27 provide an update of the limits shown in
Fig. 7.2 [178]. We emphasize that this update does not automatically mean an improve-
ment of the limits, because of our more comprehensive uncertainty treatment, the added
operator OtG, and the now measured Yukawa coupling fµ. Computing the uncertainties
on the Wilson coefficients which are all in agreement with the Standard Model at least
for the profile likelihood approach, we remove modes around non-SM likelihood maxima.
Those appear through sign flips in Yukawa couplings and in f+ and would require order-
one effects from new physics. We safely assume that new physics with this kind of effects
would have been observed somewhere already.

In Fig. 7.27 we see that all results from the marginalization and profiling approach are
consistent with each other. The only kind-of-significant deviation appears in fB and
the correlated gauge-fermion operators like f (1)

φu . The reason for this discrepancy can be

117



7 To profile or to marginalize?– a SMEFT case study

traced back to an under-fluctuation in the mWW measurement and actual differences
between the likelihood and Bayesian approaches.

7.6 Outlook

Global SMEFT analyses are the first step into the direction of interpreting all LHC
data on hard scattering process in a common framework. They allow us to combine
rate and kinematic measurements from the Higgs-gauge sector, the top sector, jet
production, exotics searches, even including parton densities and flavor physics. They
can be considered an improved bin-wise analyses of LHC measurements, but with a
consistent effective theory framework. This framework allows us to provide precision
predictions matching the precision of the data we analyze, and it ensures that their result
is relevant fundamental physics. Because any realistic effective theory description involves
a truncation in dimensionality, SMEFT results always have to be considered in relation
to the fundamental physics models they represent.

From a brief look at the analyzed data we know that our SMEFT analysis of the
electroweak gauge and Higgs sector will not describe established anomalies, but serve as
a consistent, global limit-setting tool. This makes it even more important to treat all
uncertainties, statistical, systematic, and theory, completely and consistently. Technically,
this leads us directly to the question if we want to use a profile likelihood or a Bayesian
marginalization treatment. Because the two methods ask different questions, it is not
at all clear that technically correct analyses following the two approaches lead to the
same results. We have shown, for a first time, what the current challenges in global LHC
analyses are and how the two methods do turn up slight differences.

We have started with an in-depth discussion of the current challenges in the Higgs and
electroweak data and the corresponding validation of the marginalization in SFitter, in
comparison to our classic profile likelihoods. Using the established dataset of Ref. [178] we
have shown that the two methods give extremely similar results. We have also found that
for this dataset the exact treatment of the theory uncertainties is not a leading problem,
while a correct treatment of correlations of the measurements and the uncertainties is
crucial.

Next, we have updated this dataset, including a set of kinematic di-boson measurements
and boosted Higgs production. These measurements allow us to constrain operators
with a modified Lorentz structure especially well. Kinematic distributions from di-boson
resonance searches probe the largest momentum transfers of our SFitter dataset, but
their interpretation in terms of SMEFT operators requires significant effort. A systematic
publication of the corresponding likelihood by ATLAS and CMS would fundamentally
change the appreciation for these analyses, from failed resonance searches to the most
exciting SMEFT results.

Accidentally, the updated dataset also lead to differences in the marginalization and
profiling treatments of the same exclusive likelihood. The measurement driving this
difference is an under-fluctuation in the tail of the kinematic mWW distribution. Under-
fluctuations are difficult to reconcile with SMEFT analyses, because they require a
balance between linear and squared operator contributions. To complicate things, a
sizable number of kinematic distributions probes large momentum transfer, all consistent
with the Standard Model. For a small number of Wilson coefficients one under-fluctuation
will just lead to a poor log-likelihood value in the SM-like likelihood maximum. A larger
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7 To profile or to marginalize?– a SMEFT case study

number of Wilson coefficients defines a powerful model which accommodated this deviation.
For the final result, the complex correlations between Wilson coefficients lead to volume
effects in the marginalization, which, expectedly, separated the final profile likelihood
and marginalized results.
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Chapter 8
Summary and outlook

The first part of this thesis was dedicated to BNNs and how to utilize these networks
for LHC physics. In Chap. 3 we have trained a BNN on the task of jet calibration,
illustrating how to understand and make use of the uncertainty estimates provided by a
BNN. We have shown how one of the two uncertainties captures the limitations arising
from a finite amount of training data, while the other one incorporates inherent noise
of the dataset. By smearing the training data correspondingly, we have demonstrated
how additional systematic uncertainties can be added. Furthermore, we went beyond a
simple Gaussian likelihood by introducing a more flexible parameterization in form of a
Gaussian mixture model, demonstrating how to describe non-Gaussian features.

In Chaps. 4 and 5, we discussed how to use BNNs to estimate uncertainties in the context
of event generation. If classical Monte Carlo simulations based on first principles are
replaced by generative models, an additional source of uncertainty is inserted. In Chap. 4,
we demonstrated on simple toy examples how the uncertainty estimate of a BINN is
directly related to the functional form of the true distribution by deriving and comparing
to analytic expressions, demonstrating that the predicted bin-wise uncertainties are highly
correlated. Furthermore, we validated the set up on the Drell-Yan process. While the
process is rather simple, it can be seen as a first step in the direction of adding necessary
uncertainty estimates when replacing Monte Carlo simulations with generative models.

In Chap. 5, we discussed a slightly different idea. Instead of training a generative model
to sample directly from the physical distributions, we shifted the focus to only one part of
the event generation chain: the computation of the matrix element. The matrix element
is computationally expensive in cases of high multiplicity. The advantage of this is that
the problem is turned into a much simpler regression task which has allowed us to use
the same uncertainty treatment as the one discussed in Chap. 3. To utilize the predicted
uncertainties further, we have introduced a feedback training by focusing the networks
attention on events with large uncertainties, forcing the network to learn problematic
amplitudes of divergent phase space regions.

All in all, we were able to demonstrate on these three different applications how LHC
physics can benefit from machine learning in general and in particular from BNNs. While
it is clear that they cannot replace the careful analysis of statistical, systematic and
theory uncertainties, the predicted uncertainties of a BNN provide an additional handle to
understand or improve neural network predictions – clearing the way to further integrate
modern machine learning methods into current and future LHC analysis.

The second part of this thesis was dedicated to the global analysis of dimension-6 SMEFT
operators including Higgs and di-boson measurements, as well as electroweak precision
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8 Summary and outlook

observables. In Chap. 6 we investigated a gauge-triplet vector resonance model and
derived the matching expressions to the SMEFT Lagrangian. We showed that the theory
uncertainty due to the choice of the matching scale has significant impact on the bounds of
the parameter space, revealing the importance of carefully taking all theory uncertainties
into account. Furthermore, we highlighted the difference between direct searches and a
SMEFT search. While the former is sensitive to a narrow resonance, a SMEFT analysis
can only be used in searches sufficiently below the resonance mass. It turns out that the
results obtained from the SMEFT parameterization lead to more conservative constraints
compared to the direct search. This revealed that SMEFT analysis cannot replace all
model-specific searches. Instead, both should be used to take full advantage of all LHC
measurements.

In Chap. 7 we investigated different statistical approaches and uncertainty treatments.
If we want to use the SMEFT framework to establish global limits on new physics,
it is crucial to have a consistent and accurate uncertainty treatment. We found that
correlations between measurements have a strong influence on our parameter bounds.
Furthermore, we compared a profiled likelihood based approach with a Bayesian analysis.
While both procedures answer different questions, on our established dataset of Ref. [178]
we only encountered mild differences between both statistical treatments. However, after
including new measurements we found a significant difference when adding the invariant
mass distribution, mWW , published by ATLAS in Ref. [252]. When fitting many Wilson
coefficients all at once, the model is complex enough to accommodate the observed
under-fluctuations. This produces a large part in the parameter space preferred by the
measurements but away from the SM. When integrating over this space, the marginal
likelihood collects a large amount of volume, resulting in a disfavored SM point. In
contrast, the profiled likelihood does not encounter the same volume effect, leading to a
significant difference between both statistical approaches.

The two studies revealed how important a careful uncertainty treatment in a global
SMEFT analysis is. If we want to get accurate constraints on the space of new physics, we
have to carefully think about all sources of theoretical uncertainties and model correlations
between measurements as preciously as possible.
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Chapter A
Appendix:
Bayesian neural network studies

A.1 Jet calibration – comparison to smeared data

A slight modification of this appendix appeared in Ref. [1]. The text and figures are
mostly identical to the ones presented in this publication.

To further validate the proposed approach of Chap. 3, Fig. A.1 compares the performance
of the BNN approach with a more traditional smearing of the input objects. For smearing
the objects we use a Bayesian neural network trained on data without smearing and
evaluate this network on a test dataset with modified inputs. Each jet in the test sample
is smeared once up and once down, then the difference of the two network outputs is
evaluated and divided by two. We then show the average in the given pT,j-range. The
BNN prediction is in good agreement with modified inputs, giving additional confidence
in uncertainty predicted by the Bayesian network.

0 20 40 60 80 100 120
smear [GeV]

0

20

40

60

80

100

120

 [G
eV

]

pT, j = 600...620 GeV

smearing input
BNN cal

Figure A.1: Comparison of the Bayesian approach, taken from Fig. 3.9 (blue),
and smearing of input data (orange). When smearing the input data, we train
a Bayesian network on nominal events and test it on inputs modified up and
down by σsmear.
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A Appendix: Bayesian neural network studies

A.2 Event generation – (2→ 4)-process

A slight modification of this appendix appeared in Ref. [4]. The text and figures are
mostly identical to the ones presented in this publication.

To further validate the Bayesian network approach of Chap. 5, we tested our set up on
the (2→ 4)-process

gg → γγgg . (A.1)

We know that that increasing the number of particles in the final state leads to a significant
drop in network performance [108,121,123,167,168]

For this process we use a network with seven hidden layers, 24 kinematic input dimensions,
{32, 64, 256, 512, 128, 64, 32} nodes, and two output dimensions corresponding to the
amplitude and its uncertainty. This larger network has around 600k parameters. The
training dataset contains around 90k amplitudes. Aside from these changes, we apply the
same basic BNN training with two levels of loss boosting and process-specific performance
boosting.

As for the (2 → 3)-process we first show the performance of the network training in
Fig. A.2. While the overall scale of the agreement has increased for the sub-percent level
to the percent level, we still see that the network has learned the largest amplitudes
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Figure A.2: Performance of the basic (upper) and performance-boosted (lower)
BNNs for the (2→ 4)-process in terms of the precision of the generated ampli-
tudes, Eq. (5.3), evaluated on the training (left) and test datasets (right).
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Figure A.3: Pulls of the loss-boosted (left), and performance-boosted (right)
BNN for the (2→ 4)-process, defined in Eq. (5.6) and evaluated on the training
and test data.

extremely well after process boosting. Unlike for the standard BNN, there is a certain
amount of overtraining after performance-boosting, indicating the shift from a fit-like
network training to an interpolation-like training.

Next, we check the consistency of the network output by looking at the ω-dependent
pull distribution defined Eq. (5.6). We see that especially for large amplitudes the
loss-boosting guarantees a well-behaved, consistent network, while the additional process
boosting reverses some of the beneficial effects of the loss-boosting. This effect was
already observed for the (2→ 3)-process.

Finally, we show the 1-dimensional kinematic distributions for the basic BNN and for the
performance-boosted BNN. As for the (2→ 3)-process the boosting step has a spectacular
effect on the training data in the poorly learned kinematic tails. After integrating over the
additional phase space directions this improvement translates well into the test dataset,
but at the expense of the uncertainty estimate on the training data.
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Figure A.4: Kinematic distribution for the (2 → 4)-process without boosting
(upper), after loss boosting (center), and after process boosting (lower). The grey
error bars in the lower panels indicate the statistical limitation of the training
and test data.
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Chapter B
Appendix:
global SMEFT analysis

B.1 Operator basis of Chapter 6

A slight modification of this appendix appeared in Ref. [3]. The text is mostly identical
to the one presented in this publication.

In Chap. 6 we consider the dimension-6 SMEFT Lagrangian

LSMEFT ⊃−
αs
8π

fGG
Λ2 OGG + fWW

Λ2 OWW + fBB
Λ2 OBB + fBW

Λ2 OBW + fW
Λ2 OW + fB

Λ2OB

+ fWWW

Λ2 OWWW + fφ1
Λ2 Oφ1 + fφ2

Λ2 Oφ2 + fτmτ

vΛ2 Oτ + fbmb

vΛ2 Ob + ftmt

vΛ2 Ot+

+ fLLLL
Λ2 OLLLL + fφe

Λ2 Oφe + fφd
Λ2 Oφd + fφu

Λ2 Oφu +
f

(1)
φQ

Λ2 O
(1)
φQ +

f
(3)
φQ

Λ2 O
(3)
φQ ,

(B.1)

OGG = φ†φGaµνG
aµν OBW = φ†B̂µνŴ

µνφ

OBB = φ†B̂µνB̂
µνφ OWW = φ†ŴµνŴ

µνφ

OB = (Dµφ)† B̂µν (Dνφ) OW = (Dµφ)† Ŵµν (Dνφ)

OWWW = Tr
(
ŴµνŴ

νρŴ µ
ρ

)
Oφ1 = (Dµφ)† φφ† (Dµφ) Oφ2 = 1

2∂
µ
(
φ†φ

)
∂µ
(
φ†φ

)
Ob = (φ†φ) q̄3φd3 Oτ = (φ†φ) l̄3φe3

Ot = (φ†φ) q̄3φ̃u3

OLLLL =
(
l̄1γµl2

) (
l̄2γ

µl1
)

Oφe = (φ†i←→D µφ) (ēiγµej) δij

Oφd = (φ†i←→D µφ)
(
d̄iγ

µdj
)
δij Oφu = (φ†i←→D µφ) (ūiγµuj) δij

O(1)
φQ = (φ†i←→D µφ) (q̄iγµqj) δij O(3)

φQ = (φ†i
←→
DA
µ φ)

(
q̄iγ

µtAqj
)
δij

Table B.1: Basis of dimension-6 SMEFT operators adopted in our global analysis.
Flavor indices are denoted by i, j and are implicitly contracted when repeated.
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where the Wilson coefficients are denoted by fi. We use the dimension-6 operator basis
of Ref. [178], which is based on the HISZ set [249] and defined in Tab. B.1. We adopt
the “+” convention for the covariant derivatives, e.g. Dµφ = (∂µ + ig′Bµ/2 + igtAWA

µ )φ,
where tA = σA/2 are the SU(2) generators and σA the Pauli matrices. We have also
defined (φ†i←→D µφ) = iφ†(Dµφ)− i(Dµφ

†)φ , (φ†i←→D I
µφ) = iφ†tA(Dµφ)− i(Dµφ

†)tAφ and
the dual Higgs field φ̃ = iσ2φ?. The field strengths are normalized as B̂µν = ig′Bµν/2
and Ŵµν = igtAWA

µν . Finally, the operators O(1),(3)
φQ ,Oφu,Oφd,Oφe are defined in a

U(3)5-invariant flavor structure, while for OLLLL we only retain the (1221) contraction,
that is relevant for the definition of the Fermi constant, and for Ob,Ot,Oτ we only
consider the 3rd fermion generation. The latter choice is justified considering that, in a
U(3)5-symmetric scenario, these operators are weighted by a Yukawa coupling insertion,
that acts as a suppression for the first two families.

The matching to the UV models described in Sec. 6.2.1 is automated for the Warsaw
basis of SMEFT operators [281], in the general flavor case. The results obtained are
provided on github at [250] and we give explicit expressions for the tree-level matching in
Appendix B.1. In order to interface them to SFitter, the matching results are mapped
onto the basis of Tab. B.1. In the following we denote the operators in the Warsaw basis,
defined as in Ref. [281], by Qk and the associated Wilson coefficients by Ck, such that
the SMEFT Lagrangian in this basis has the form

LWarsaw ⊃
1

Λ2

∑
k

∑
ij

Ck,ij Qk,ij , (B.2)

where k runs over the operators labels and i, j are flavor indices, that are present for
fermionic operators. The relations between the two operator bases are

OGG = QφG , OWWW = g3

4 QW ,

OBB = −g
′2

4 QφB , OWW = −g
2

4 QφW , OBW = −gg
′

4 QφWB ,

Oφ1 = QφD , Oφ2 = −1
2Qφ� , Oφ = Qφ ,

Oτ = Qeφ,33 , Ot = Quφ,33 , Ob = Qdφ,33 ,

Oφe = Qφe,ij δ
ij , Oφu = Qφu,ij δ

ij , Oφd = Qφd,ij δ
ij ,

O(1)
φQ = Q

(1)
φq,ij δ

ij , O(3)
φQ = 1

4Q
(3)
φq,ij δ

ij , OLLLL = Qll,1221 , (B.3)

and

OW = g2

8 QφW + g′g

8 QφWB −
3g2

8 Qφ� + g2m2
h

4 (φ†φ)2 − g2λ

2 Qφ

− g2

4 [(Ye)ijQeφ,ij + (Yu)ijQuφ,ij + (Yd)ijQdφ,ij + h.c.]− g2

8
(
Q

(3)
φq,ij +Q

(3)
φl,ij

)
δij

OB = g′2

8 QφB + gg′

8 QφWB −
g′2

2 QφD −
g′2

8 Qφ�

− g′2

4

(1
6Q

(1)
φq,ij −

1
2Q

(1)
φl,ij + 2

3Qφu,ij −
1
3Qφd,ij −Qφe,ij

)
δij , (B.4)

where all repeated flavor indices are implicitly summed over, and λ is the quartic coupling
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in the Higgs potential, normalized such that

V (φ) = −m
2
h

2 φ†φ+ λ

2 (φ†φ)2 . (B.5)

As the vector triplet model we are interested in is defined in a flavor-symmetric limit, after
the matching procedure the Wilson coefficients of the Warsaw basis operators Qφe,φu,φd
and Q(1),(3)

φl,φq will have the form

Cφψ,ij = C̄φψ δij , (B.6)

while

Cll,ijkl = C̄llδijδkl + C̄ ′llδilδkj . (B.7)

Using this notation, the mapping in terms of Wilson coefficients is

fB = 8
g′2
C̄

(1)
φl −αs8πfGG = CφG

fW = − 8
g2 C̄

(3)
φl fWWW = 4

g3CW

fBB = − 4
g′2

[
CφB − C̄

(1)
φl

]
fφ1 = CφD + 4C̄(1)

φl

fWW = − 4
g2

[
CφW + C̄

(3)
φl

]
fφ2 = −2Cφ� − 2C̄(1)

φl + 6C̄(3)
φl

fBW = 4

−CφWB

gg′
−
C̄

(3)
φl

g2 +
C̄

(1)
φl

g′2

 fφ = Cφ − 4λC̄(3)
φl (B.8)

and for the fermionic ones
mτ

v
fτ = Ceφ,33 − 2(Ye)33C̄

(3)
φl fφe = C̄φe − 2C̄(1)

φl

mt

v
ft = Cuφ,33 − 2(Yu)33C̄

(3)
φl fφu = C̄φu + 4

3 C̄
(1)
φl

mb

v
fb = Cdφ,33 − 2(Yd)33C̄

(3)
φl fφd = C̄φd −

2
3 C̄

(1)
φl

f
(1)
φQ = C̄

(1)
φq + 1

3 C̄
(1)
φl f

(3)
φQ = 4

[
C̄

(3)
φq − C̄

(3)
φl

]
fLLLL = C̄ ′ll . (B.9)

In addition, the Higgs quartic coupling gets redefined as

λHISZ = λWarsaw + 4m2
h

Λ2 C̄
(3)
φl . (B.10)

This translates into corrections to the cubic and quartic Higgs self-couplings, which do
not contribute to any of the observables in our fit.
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Matching expressions at tree-level

Matching the heavy vector triplet model defined in Sec. 6.2.3 at tree level onto the
Warsaw basis, we obtain

Cφ2 = −3
8

(g̃H + g2g̃M )2

m̃2
V

C
(3)
φl,ij = C̄

(3)
φl δij = −1

4
(g̃l + g2g̃M )(g̃H + g2g̃M )

m̃2
V

δij

C
(3)
φQ,ij = C̄

(3)
φq δij = −1

4
(g̃q + g2g̃M )(g̃H + g2g̃M )

m̃2
V

δij

Cll,ijkl = C̄llδijδkl + C̄ ′llδilδkj = 1
8

(g̃l + g2g̃M )2

m̃2
V

(δijδkl − 2δilδkj)

Cfφ,ij = −(Yf )ij
4

(g̃H + g2g̃M )2

m̃2
V

(f = e, u, d). (B.11)

These results were also derived e.g. in Refs. [185,195,198,335]. The full expressions for
the 1-loop matching are derived here for the first time and are provided at Ref. [250].

B.2 Collection of analytic expressions for marginal likelihood

In Chap. 7, we introduced the Bayesian SFitter framework. To speed up the computations
for the marginal likelihood, we derived several analytic expressions which are listed in
the following subsections.

Poisson-Gamma model

The Poisson-Gamma model arises if we model the measurement in the signal region
as a Poisson distribution and assume a Poisson-like prior for the number of expected
background events b:

p(b) ∼ Pois(bCR|b k) , (B.12)

where bCR is the measured value in the CR and k is an interpolation factor between CR
and signal region.

If we introduce the notation:

bCR = bSR k , (B.13)

the marginal likelihood is given by:

Ppp(d|s, bSR, k) =
∫
d(bk) Pois(d|s+ b) Pois(bSRk|bk)

=
∫
db

k

Γ(d+ 1)Γ(bSRk + 1)e
−(s+b)(s+ b)de−kb(bk)bSRk (B.14)

for which an analytic expression can be derived by using the binomial theorem and
identifying one of the integral representation of the gamma function. The final result can
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be expressed as a weighted sum of Poisson distributions:

Ppp(d|s, bSR, k) =
d∑
i=0

C(i, k, bSR) Pois(d− i|s)

with C(i, k, bSR) = Γ(i+ kbSR + 1)
Γ(i+ 1)Γ(bSRk + 1)

(
k

1 + k

)kbSR ( 1
1 + k

)i+1
k (B.15)

Flat-Flat distribution

If we have more than one flat theory uncertainty, the marginal likelihood contains a
convolution of two flat distributions. We can write the probability density of a flat
distributions as:

F (x|µ, σ) = 1
2σΘ[x− (µ− σ)]Θ[(µ+ σ)− x] (B.16)

where σ is the half-width of the flat distribution and µ its central value.

The convolution of two flat distributions is then given by the integral expression:

p2(x|p, σ1, σ2) =
∫
dx1 F (x1|p, σ1)F (x|x1, σ2)

=
∫ p+σ1

p−σ1
dx1 F (x− x1|0, σ2) . (B.17)

Performing the integration for the case of σ1 > σ2, leads to the expression:

p2(x) = 1
4σ1σ2


x− p+ σ1 + σ2 for p− σ1 − σ2 < x < p− σ1 + σ2

2σ2 for p− σ1 + σ2 < x < p+ σ1 − σ2

−x+ p+ σ1 + σ2 for p+ σ1 − σ2 < x < p+ σ1 + σ2

0 otherwise

. (B.18)

The result for σ2 > σ1 is given by the same formula but σ1 is exchanged with σ2.

Flat-Flat-Flat distribution

The convolution of three flat distributions is given by:

p3(x) =
∫
dx1 dx2 F (x1|p, σ1)F (x2 − x1|0, σ2)F (x− x2|0, σ3)

=
∫
dx2 p2(x2)F (x− x2|0, σ3) , (B.19)

where p2 is defined in Eq. (B.18).

We can think of the integral given in Eq. (B.19) as moving a box with the width 2σ3
over the distribution p2. The integration corresponds to the area below p2 inside of the
box. Depending on the parameters of the flat distributions and x, the integral is given
by the area of a triangle, a trapezoid, rectangle or a combination of these shapes. Let’s
assume σ1 > σ2 > σ3. There are a two distinct cases:

(1) : σ1 − σ2 ≥ σ3
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(2) : σ1 − σ2 < σ3 (B.20)

σ1 − σ2 is the length of central flat region of p2. Depending whether this length is larger
than σ3 or smaller alters the result. The integration splits up into several regions. The
boundaries of these regions are given by:

b1 = p− σ1 − σ2 − σ3

b2 = p− σ1 − σ2 + σ3

b3 = p− σ1 + σ2 − σ3

b4 = p− σ1 + σ2 + σ3

b5 = p+ σ1 − σ2 − σ3

b6 = p+ σ1 − σ2 + σ3

b7 = p+ σ1 + σ2 − σ3

b8 = p+ σ1 + σ2 + σ3 . (B.21)

Performing the computation for case (1), leads to the expression:

p3(x) =



(x− b1)2 /2 for b1 < x ≤ b2
2σ3 (x− (b1 + b2)/2) for b2 < x ≤ b3
2s2 (x− b3) + (b4 − x) ((b3 + x)/2− (b1 + b2)/2) for b3 < x ≤ b4
4σ2σ3 for b4 < x ≤ b5
2s2(b6 − x) + (x− b5) ((b7 + b8)/2− (x+ b6)/2) for b5 < x ≤ b6
2σ3 ((b7 + b8)/2− x) for b6 < x ≤ b7
(b8 − x)2 /2 for b7 < x ≤ b8

. (B.22)

For case (2), we can derive a similar expression. The key difference is the order of the
boundaries b4 and b5 and the central expression:

p3(x) =



(x− b1)2 /2 for b1 < x ≤ b2
2σ3 (x− (b1 + b2)/2) for b2 < x ≤ b3
2s2 (x− b3) + (b4 − x) ((b3 + x)/2− (b1 + b2)/2) for b3 < x ≤ b5
(b4 − x) ((b3 + x)/2− (b1 + b2)/2)

+ (x− b5) ((b7 + b8)/2− (x+ b6)/2)
+ 4σ2(σ1 − σ2) for b5 < x ≤ b4

2s2(b6 − x) + (x− b5) ((b7 + b8)/2− (x+ b6)/2) for b4 < x ≤ b6
2σ3 ((b7 + b8)/2− x) for b6 < x ≤ b7
(b8 − x)2 /2 for b7 < x ≤ b8

. (B.23)

Flat-Gauss distribution

The convolution of a flat distribution and a Gaussian is given by:

GF (d|p, σGauss,, σFlat) =
∫
dpG(d|p̃, σGauss)F (p̃|p, σFlat)

= 1
2σFlat

∫ p+σFlat

p−σFlat
dp̃G(d|p̃, σGauss)
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= 1
4σFlat

(
erf
(
p+ σFlat − d√

2σGauss

)
− erf

(
p− σFlat − d√

2σGauss

))
, (B.24)

where σGauss is the width of the Gaussian distribution, σFlat is the half-width of the flat
distribution, p is the central value of the resulting distribution and d is its argument.

Flat-Flat-Gauss distribution

The convolution of two flat distributions and one Gaussian distribution is given by:

GFF(d|p, σFlat,1, σFlat,2, σGauss) =
∫
dp̃G(d|p̃, σGauss) p2(p̃|p, σFlat,1, σFlat,2) , (B.25)

where p2 is defined in Eq. (B.18). Because p2 contains several distinct regions, it makes
sense to define the following boundaries:

b1 = p− σFlat,1 − σFlat,2

b2 = p− σFlat,1 + σFlat,2

b3 = p+ σFlat,1 − σFlat,2

b4 = p+ σFlat,1 + σFlat,2 , (B.26)

where we assumed σFlat,1 > σFlat,2. The final expression becomes:

GFF(d|p, σFlat,1, σFlat,2, σGauss) = 1
4σFlat,1σFlat,2

(
F2(b1, b2)− b1 F1(b1, b2)

+ 2σFlat,2 F1(b2, b3) + b4 F1(b3, b4)− F2(b3, b4)
)
,

(B.27)

where F1 and F2 are defined as:

F1(a, b;µ, σ) =
∫ b

a
dxG(x|µ, σ)

=1
2

(
erf
(
b− µ√

2σ

)
− erf

(
a− µ√

2σ

))
, (B.28)

and

F2(a, b;µ, σ) =
∫ b

a
dxxG(x|µ, σ)

=σ2 [G(a|µ, σ)−G(b|µ, σ)] + µF1(a, b;µ, σ) . (B.29)

In Eq. (B.27), we suppressed the dependency on µ and σ.

B.3 Numerical results

Table B.2 reports the numerical values of the boundaries of the 68% and 95% CL intervals
shown in Fig. 7.27. It was taken from the appendix of Ref. [5].

132



B Appendix: global SMEFT analysis

Marginalised Profiled

Coefficient 68% CL 95% CL 68% CL 95% CL

fGG [1.19, 6.65] [-1.75, 8.33] [3.79, 8.28] [-1.09, 9.50]

fB [-5.81, -2.47] [-7.66, 8.94] [-6.49, 5.79] [-8.69, 10.08]

[0.23, 7.96]

fφ2 [-0.96, 2.98] [-3.11, 4.77] [-2.07, 3.68] [-4.59, 6.55]

fµ [-3.79, 8.43] [-7.45, 20.66] [-3.79, 9.66] [-8.68, 21.88]

ft [-0.51, 3.51] [-2.19, 5.86] [-0.80, 3.68] [-3.56, 5.75]

fb [-0.62, 2.33] [-2.23, 3.68] [-0.60, 3.44] [-3.03, 5.33]

fτ [-0.38, 1.77] [-1.46, 2.84] [-1.88, 1.00] [-3.66, 2.55]

f− [-5.65, -0.49] [-7.03, 2.95] [-5.34, 2.28] [-7.75, 5.09]

f+ × 10 [1.07, 8.93] [-3.21, 12.50] [0.36, 8.93] [-3.93, 13.93]

ftG × 10 [1.72, 6.28] [-0.85, 7.14] [3.53, 7.12] [-0.36, 8.02]

fW × 10 [2.64, 16.28] [-4.19, 23.11] [1.25, 21.80] [-8.35, 30.03]

fBW × 10 [0.82, 8.34] [-3.47, 12.10] [1.57, 9.82] [-2.83, 14.22]

f3W × 10 [-3.74, 3.41] [-7.31, 6.48] [-5.31, 6.89] [-10.19, 9.94]

f
(3)
φQ × 100 [-9.56, 13.13] [-17.12, 25.24] [-1.99, 23.60] [-13.19, 34.80]

f
(1)
φu × 100 [-13.5, -7.6] [-17.23, -2.20] [-15.70, -0.90] [-22.00, 15.80]

[4.6, 13.60] [1.10 16.00] [2.70, 10.20]

f
(1)
φd × 100 [-7.23, 2.17] [-11.57, 7.24] [-8.64, 6.07] [-14.69, 12.13]

fφ1 × 100 [-0.38, 7.32] [-4.77, 11.17] [-0.37, 7.88] [-4.22, 12.83]

f4L × 100 [-2.70, -0.46] [-3.82, 0.82] [-2.86, -0.46] [-4.14, 0.82]

f
(1)
φQ × 100 [1.19, 7.19] [-2.40, 8.78] [-1.20, 5.60] [-4.00, 8.40]

f
(1)
φe × 100 [-4.58, -0.98] [-6.50, 0.70] [-5.06, -1.46] [-6.98, 0.67]

BRinv [0, 1.12] [0, 1.76] [0, 2.40] [0, 3.36]

Table B.2: Numerical values for the results shown in Fig. 7.27.
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