Motivation	Parton showers	ME corrections	NLO matching	LO merging	

Higher orders in simulation

Frank Krauss

IPPP Durham

Heidelberg, 25.2.2009

<ロ> (日) (日) (日) (日) (日)

2

IPPP

F. Krauss Higher orders in simulation

Motivation	Parton showers	ME corrections	NLO matching	LO merging	

Outline

- Why do we care about this?
- 2 Reminder: Parton showers
- 3 Correcting the parton shower to LO
- Matching the parton shower with NLO ME's
- 5 Merging the parton shower with LO ME's
- 6 Conclusion & outlook

Motiva	tion	Parton showers	ME corrections	NLO matching	LO merging	
	Wha	t Monte Ca	arlo's are go	od for		
				and what	at not	
		_				
	•	o my unders	tanding, Mont	e Carlo's are i	ndispensible	to
		e	ktrapolate from	n a control re	gion	
		to the a	ignal region of	f a backgroup	d process	
		to the s		i a backgioun	u process.	
	• A	Any discovery	, that is solely	based on Mc	onte Carlo's,	or
	n	navbe worse.	its fine details	. will most lik	elv not be	
	+	ructod		,		
	L	iusteu.				

・ロン ・回 と ・ ヨン ・ ヨン …

Motivation	Parton showers	ME corrections	NLO matching	LO merging	
Spe	cifving highe	er-order corr	rections: γ^*	\rightarrow hadron	S

- In general: $N^n LO \leftrightarrow \mathcal{O}(\alpha_s^n)$
- But: only for inclusive quantities

(e.g.: total xsecs like $\gamma^* \rightarrow hadrons$).

Counter-example: thrust distribution

- In general, distributions are HO.
- Distinguish real & virtual emissions: Real emissions → mainly distributions, virtual emissions → mainly normalization.

Motivatio	n Parton showers	ME corrections	NLO matching	LO merging	
A	Anatomy of HC	calculation	s: Virtual a	nd real	
С	orrections				
	$LO: \left \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	>>> + Virtual →>>) Real con	rections: $\mathcal{O}(\alpha)$ corrections	s) = extra loo = extra leg	ps s
	• UV-divergence	es in virtual gra	aphs o renor	malization	

 But also: IR-divergences in real & virtual contributions Must cancel each other, non-trivial to see: N vs. N + 1 particle FS, divergence in PS vs. loop

< 17 ▶

-

Motivation	Parton showers	ME corrections	NLO matching	LO merging	
Cance	elling the IR	divergences	: Subtractic	on method	

- Total NLO xsec: $\sigma_{\rm NLO} = \sigma_{\rm Born} + \int d^D k |\mathcal{M}|_V^2 + \int d^4 k |\mathcal{M}|_R^2$
- IR div. in real piece \rightarrow regularize: $\int d^4k |\mathcal{M}|_R^2 \rightarrow \int d^Dk |\mathcal{M}|_R^2$
- Construct subtraction term with same IR structure: $\int d^{D}k \left(|\mathcal{M}|_{R}^{2} - |\mathcal{M}|_{S}^{2} \right) = \int d^{4}k |\mathcal{M}|_{RS}^{2} = \text{finite.}$ Possible: $\int d^{D}k |\mathcal{M}|_{S}^{2} = \sigma_{\text{Born}} \int d^{D}k |\tilde{\mathcal{S}}|^{2}, \text{ universal } |\tilde{\mathcal{S}}|^{2}.$
- $\int d^D k |\mathcal{M}|_V^2 + \sigma_{Born} \int d^D k |\tilde{\mathcal{S}}|^2 = finite (analytical)$

Motiv	ation	Parton showers	ME corrections	NLO matching	LO merging	Summary
	-					
	State	e-of-the-art	NLO calcul	lations: Ge	neral strate	gy 📗
	• (Construct Bor	n+1st order	terms		
	• 5	Subtraction te	erm: Born terr	m $ imes$ (analytic	al) divergence	es
			Evaluate	loop term analytically -	perform cancellation	

• Monte Carlo separately over subtracted real emission and virtual+subtraction term

Limitations

 $\bullet\,$ So far only loops with ≤ 5 propagators under full control

 \implies in general, only 2 \rightarrow 3 processes at NLO

But exiting new methods start hitting the market!

• • • • • • • • • • • •

• Soft/collinear corners maybe still badly described

Motivation	Parton showers	ME corrections	NLO matching	LO merging	

글▶ ★ 글▶

F. Krauss Higher orders in simulation IPPP

2

Motivation	Parton showers	ME corrections	NLO matching	LO merging	

Parton showers

• Universal pattern of soft & collinear radiation:

$$\mathrm{d}\sigma_{N+1} \sim \mathrm{d}\sigma_N \sum_{a \in N} \frac{\mathrm{d}t_a}{t_a} \alpha_s \,\mathrm{d}z \, P_{a \to bc}(z) \,.$$

- Introduce "resolution of partons" (e.g. p_{\perp}^{\min}) \implies Large logarithms at each emission.
- Resummation of soft & collinear logs in Sudakov form factor:

$$\Delta_a(t, t_0) = \exp\left[-\int_{t_0}^t \frac{\mathrm{d}t'}{t'} \int_{z_-}^{z_+} \mathrm{d}z \,\alpha_s \, P_{a \to bc}(z)\right]$$

• Interpretation: No-emission probability (\rightarrow simulation).

(日) (同) (三) (三)

Motivation	Parton showers	ME corrections	NLO matching	LO merging	

n-jet rates @ NLL

S.Catani et al. Phys. Lett. B269 (1991) 432

Example: NLL-jet rates in $\gamma^* \rightarrow$ jets

3

<ロト <回ト < 回ト < 回ト

Motivation	Parton showers	ME corrections	NLO matching	LO merging	

ME vs. PS

- Matrix elements good for: hard, large-angle emissions; take care of interferences.
- Parton shower good for: soft, collinear emissions; resums large logarithms.
- Want to combine both! Avoid double-counting.

< (T) > <

∃ >

3 N 3

Motivation	Parton showers	ME corrections	NLO matching	LO merging	

Motivation	Parton showers	ME corrections	NLO matching	LO merging	

Practicalities of ME-corrections

- Obviously, ME < PS is not always fulfilled.
- Could enhance *PS* expression by a (large) factor. Question: Efficiency of the approach?
- Therefore: realized in few processes only: Best-known: $ee \rightarrow q\bar{q}, q\bar{q} \rightarrow V, t \rightarrow bW$

• Beware of "power-showers".

Motiva	otivation Parton showers ME corrections NLO matching LO merging Sur							
	MC@	NLO						
				S.Frixione, B.R.Wel	ober, JHEP 0206 (2002	.) 029		
			S.F	rixione, P.Nason, B.R.We	ebber, JHEP 0308 (200	3) 007		
	• Want:							
	 NLO-Normalisation and first (hard) emission correct, 							
	 Soft emissions correctly resummed in PS. 							
	• Method:							
	 Modify subtraction terms for real infrared divergences. 							
		use first or	der parton showe	er-expression,	0			
		this is proc	ess-dependent!	,				

• In practise much more complicated.

• Implemented for DY, W-pairs, $gg \rightarrow H$, Q-pairs.

2

<ロト <回ト < 回ト < 回ト

< 🗗 >

Motivation	Parton showers	ME corrections	NLO matching	LO merging	

F. Krauss Higher orders in simulation IPPP

2

・ロト ・回ト ・ヨト ・ヨト

Motivation	Parton showers	ME corrections	NLO matching	LO merging	

PowHEG

S.Frixione, P.Nason, C.Oleari, JHEP 0711 (2007) 070

(日) (同) (三) (三)

- Occurrence of negative weights in MC@NLO.
- Improved matching scheme avoiding negative weights:
 - Generate process with LO kinematics and NLO weight
 - Generate hardest emission according to real-emission ME: $\sim \exp \left[-\int d\Phi_1 \sigma_{n+1}(\Phi_{n+1})/\sigma_n(\Phi_n)\right]$
 - Effect: Replacing the approximation (splitting function) with exact result
- Reproduces rate and first emission at NLO accuracy.
- Shower-independent: The method of choice.

Motivation

PowHEG vs. MC@NLO (stolen from C.Oleari) Higgs boson rapidity distribution at Tevatron and LHC 1.00 - LHC 0.0200 Tevatron OWHEG+HERWIC M_=120 GeV m_H=400 GeV MC@NLO 0.70 0.0100 0.50 0.0050 0.30 0.0020 0.20 POWHEG+HERWIG 0.0010 POWHEG+PYTHIA 0.0005 MCONLO 0.10 siscone HERWIG pr >10 0.0002 cone algo Er > 10 GeV 0.07 80 Gel 0.0001 -2 2 y_{jet} - y_H $y_{jet} - y_H$ Dip inherited from the even-deeper dip of HERWIG. MC@NLO fills partially the dip. The dip in the MC@NLO result is compatible with an effect beyond NLO. F. Krauss IPPP

Higher orders in simulation

Motivation

PowHEG vs. MC@NLO (stolen from C.Oleari)

F. Krauss Higher orders in simulation

F. Krauss Higher orders in simulation

Motiva	tion Parton showers	ME corrections	NLO matching	LO merging		
	C 111 ME		N.4 .			
	Combining MES	6 & PS: LO-	IVIerging			
		S.Catani, F.K.,	R.Kuhn and B.R.Webber	JHEP 0111 (2001) 063		
			F.K.	JHEP 0208 (2002) 015		
	• Want:					
	• All jet emissions correct at tree level $+$ LL.					
	 Soft emissions correctly resummed in PS 					
		one concerty rea				
	Method:					

- Separate Jet-production/evolution by $Q_{\rm jet}$ (k_{\perp} algorithm).
- Produce jets according to LO matrix elements
- re-weight with Sudakov form factor + running α_s weights,
- veto jet production in parton shower.
- Process-independent implementation.

Motivation	Parton showers	ME corrections	NLO matching	LO merging	

S.Catani et al. Phys. Lett. B269 (1991) 432

At NLL-Accuracy

$$\mathcal{R}_2(Q_{\text{jet}}) = \left[\Delta_q(E_{\text{c.m.}}, Q_{\text{jet}})\right]^2$$

$$\begin{aligned} \mathcal{R}_{3}(Q_{jet}) &= \Delta_{q}(E_{c.m.}, Q_{jet}) \\ &\cdot \int \mathrm{d}q \left[2\alpha_{s}(q) \Gamma_{q}(E_{c.m.}, q) \frac{\Delta_{q}(E_{c.m.}, Q_{jet})}{\Delta_{q}(q, Q_{jet})} \right] \\ &\Delta_{q}(q, Q_{jet}) \Delta_{g}(q, Q_{jet}) \right] \end{aligned}$$

IPPP

E. Krauss

ng LO merging Summary	NLO matching	ME corrections	Parton showers	Motivation

Algorithm as scale-setting prescription

- Example: p_{\perp} distribution of jets @ Tevatron
- Consider exclusive W + 1- and W + 2-jet production

Comparison with MCFM; J.Campbell and R.K.Ellis, Phys. Rev. D 65 (2002) 113007 in : F.K., A.Schälicke, S.Schumann and G.Soff, Phys. Rev. D 70 (2004) 114009

э

<ロト <回ト < 回ト < 回ト

Motivation	Parton showers	ME corrections	NLO matching	LO merging	

《曰》《聞》《臣》《臣》 [] 臣

э

Comparison with data from Tevatron

p_{\perp} of Z-bosons बे∂ ~_ 위문 de Se · 비미 미미 10 CDR CDE 10 1 10 10 n 20 160 180 200 n 5 10 15 20 25 30 35 45 50 40 80 100 120 140 P_{1Z}/GeV P_{IZ}/GeV

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

IPPP

F. Krauss

IPPP

F. Krauss

IPPP

Motivation	Parton showers	ME corrections	NLO matching	LO merging	
Other	^r prescripti	ions			
• C	KKW-L		L.Lönnblad	1, JHEP 0205 (2002) 04	46
 Start with ME, jets d Cluster backwards wit Use "PS-history" to f Use first trial emissio Run shower below jet 			and with k_{\perp} alg shower-specific starting condition oreject/accept ale.	orithm, k_{\perp} , ons for shower event	,
• M	ILM		M.Mangano <i>et al.</i> , Nu	cl. Phys. B632 (2002) 3	43
	 Start with Feed conf Match co 	n ME, jets defin figuration into s	ed with cones, shower, through	LHA interfac	e,

 Match cone jets before hadronisation with partons, reject event in case of mismatch.

• Theory: CKKW and CKKW-L equivalent, MLM not.

<ロ> <同> <同> < 回> < 回>

Motivation

IPPP

Comparison with other merging algorithms: MLM

J.Alwall et al. Eur. Phys. J. C53 (2008) 473

Jet rates in inclusive W+jets at Tevatron

F. Krauss

Higher orders in simulation

F. Krauss Higher orders in simulation

F. Krauss Higher orders in simulation IPPP

 Motivation
 Parton showers
 ME corrections
 NLO matching
 LO merging
 S

 Comparison with other merging algorithms:
 MLM

 J.Alwall et al. Eur. Phys. J. C53 (2008) 473

 Jet rates in inclusive W+jets at LHC

F. Krauss

Higher orders in simulation

- ▲日本 ▲園本 ▲国本 ▲国本 - 目 - ろんの

F. Krauss Higher orders in simulation

F. Krauss Higher orders in simulation

V+ jets at Tevatron: Experimental Matching (stolen from G.Brooijmans)

Matching

- <u>The</u> problem for "matrix element" (i.e. LO 2→n, n<9) generators:
 - If generate e.g. W+0j, W+1j, W+2j, W+3j, W+4j separately, then run parton shower, can get double counting of jets from parton shower and matrix element
 - So need to remove/suppress the extra events, two procedures
 - MLM (kind of ad-hoc)
 - CKKW (state of the art, but new & ~hard to use)
- Matching is, at this point, an art rather than a science
 - Will hopefully be ~solved by 2009

Gustaaf Brooijmans

19

F Krauss

- * ロ > * @ > * 注 > * 注 > - 注 - のへで

Proble	ms in matching (stolen from G.Brooijmans)
	Why Is This Bad?
	• Experimentally, we determine contribution to "W+jets" from QCD multijet, Z+jets, top,
	• But if we lack the necessary precision in understanding the shape of the actual W+jets contribution, we can't*
	 Measure WW → ℓvjj
	• Search for $H \rightarrow WW \rightarrow \ell v j j$
	 Search for qq → Wγqq → Wqq (the <u>only</u> VBF process accessible at the Tevatron)
	• 'Can't is a strong word, we can rewrite by assign a systematic uncertainty of the same size as the effect

LO merging

▲口→ ▲圖→ ▲注→ ▲注→

Problems in matching (stolen from G.Brooijma	ans)
 How Important Is This? The understanding of W+jets (i.e. the discrepancy between data and alpgen, and between various generators) is currently one of the major difficulties in many Tevatron analyses 	
• Comparisons between the other generators and data will hopefully be available soon	
• Based on the plots, I believe/hope the problem can be	
• Understood, and	
• <u>Solved</u> \Rightarrow "Mega-W precision"	
• IMHO it would be a mistake to postpone this to LHC	
• It will probably be harder, + no need to delay	
Gustaaf Brooijmans Simulation & Experiment 31	

æ

LO merging

イロン イヨン イヨン イヨン

Motivation	Parton showers	ME corrections	NLO matching	LO merging	

Motivation	Parton showers	ME corrections	NLO matching	LO merging	

Motivation	Parton showers	ME corrections	NLO matching	LO merging	

Motivation	Parton showers	ME corrections	NLO matching	LO merging	

Interesting features: summary (stolen from G.Brooijmans)

Motivation	Parton showers	ME corrections	NLO matching	LO merging	Summary

Conclusion

- Astonishing change of paradigm in MC generators: Pushing towards precision (matching and merging)
- Sociological: Field is becoming playground of QCD-theorists
 - \implies new ideas, new technology (NLO)
- Practical: Development of better tools.
- Extremely powerful if used together!
- But: Validation and training needed

Motivation	Parton showers	ME corrections	NLO matching	LO merging	Summary

Outlook

• Work started to push for NLO merging:

- Calculate exclusive NLO for exactly n jets
- Select configuration according to this rate and NLO-ME.
- Reject with modified Sudakov form factor (expand to first order in α, and subtract)
- Generate hardest emission with ME (like PowHEG).
- Also: better control due to better showers.
- Time scale for e^+e^- : first half of 2009.
- Similar effort in CKKW-L (Ariadne), published recently.

.∃ ▶ . ∢

Motiva	tion Parton showers	ME corrections	NLO matching	LO merging	Summary
	Implementing	CSW recursion	relations:	A snaphot	

F.Cachazo, P.Svrcek and E.Witten, JHEP **0409** (2004) 006 R.Britto, F.Cachazo, B.Feng PRL**94** (2005) 181602

- Obtained summing over colours and helicities, sampling much better
- But: old-fashioned Berends-Giele methods superior

F.A.Berends, W.T.Giele NPB306 (1988) 759

▲ @ ▶ < ∃ ▶</p>

C.Duhr, S.Hoeche, F.Maltoni, JHEP 0608 (2006) 062

• $2 \rightarrow n$ gluons, 10^4 phase space points

n	BG, CO	BG, CD	CSW, CO	CSW, CD	BCF, CO	BCF, CD
2	0.24	0.28	0.31	0.26	0.28	0.33
4	1.2	1.04	1.63	1.75	0.84	1.32
6	14.2	7.19	27.8	30.6	11.9	59.1
8	276	82.1	919	1890	597	8690
10	7960	864	48900	-	64000	

Motivation	Parton showers	ME corrections	NLO matching	LO merging	Summary

COMIX - a new matrix element generator for Sherpa

T.Gleisberg & S.Hoeche, JHEP 0812 (2008) 039

- Colour-dressed Berends-Giele amplitudes in the SM
- Fully recursive phase space generation
- Example results (cross sections):

		$gg \rightarrow$	ng		Cross section [pb]				
		n		8	9	10	11	12	
		\sqrt{s} [G	ieV]	1500	2000	2500	3500	5000	
		Comix	1	0.755(3)	0.305(2)	0.101(7)	0.057(5)	0.019(2)	
		Malto	ni (2002)	0.70(4)	0.30(2)	0.097(6)			
		Alpger	ı	0.719(19)					
	$\sigma \; [\mu b]$				N	umber of jet	ts		
	$b\bar{b} + QCI$	D jets	0	1	2	3	4	5	6
[Comix		4.780(5)	8.83(2)	1.826(8)	0.459(2)	0.1500(8)	0.0544(6)	0.023(2)
	ALPGEN		4760(6)	8.83(1)	1.822(9)	0.459(2)	0.150(2)	0.053(1)	0.0215(8)
	AMEGIC-	++	4730(4)	8.84(2)	1.817(6)				

IPPF

Motivation	Parton showers	ME corrections	NLO matching	LO merging	Summary

COMIX - a new matrix element generator for Sherpa

T.Gleisberg & S.Hoeche, JHEP 0812 (2008) 039

- Colour-dressed Berends-Giele amplitudes in the SM
- Fully recursive phase space generation
- Example results (phase space performance):

Motivation	Parton showers	ME corrections	NLO matching	LO merging	Summary

Further performance tests

T.Gleisberg, S.Hoche and F.K., arXiv:0808.3672 [hep-ph]

- All numbers on 2.53 GHz Intel Core Duo T9400 CPU
- List time for reaching the stat. error.

$pp \rightarrow n$ jets					
gluons only	n = 2	<i>n</i> = 3	<i>n</i> = 4	<i>n</i> = 5	<i>n</i> = 6
$\delta\sigma$	0.1%	0.1%	0.2%	0.5%	1%
σ _{MC} [pb]	$8.915 \cdot 10^7$	$5.454 \cdot 10^6$	$1.150 \cdot 10^6$	$2.757 \cdot 10^5$	$7.95 \cdot 10^4$
CSW (HAAG)	4	165	1681	12800	$2 \cdot 10^6$
CSW (CSI)	-	480	6500	11900	197000
AMEGIC (HAAG)	6	492	41400	-	-
COMIX (RPG)	159	5050	33000	38000	74000
COMIX (CSI)	-	780	6930	6800	12400

F Krauss

Motivation	Parton showers	ME corrections	NLO matching	LO merging	Summary

Further performance tests

T.Gleisberg, S.Hoche and F.K., arXiv:0808.3672 [hep-ph]

- All numbers on 2.53 GHz Intel Core Duo T9400 CPU
- List time for reaching the stat. error.

pp ightarrow n jets					
<i>le</i> 1 quark line	<i>n</i> = 2	<i>n</i> = 3	<i>n</i> = 4	<i>n</i> = 5	<i>n</i> = 6
$\delta\sigma$	0.1%	0.1%	0.2%	0.5%	1%
σ_{MC} [pb]	$1.456 \cdot 10^8$	$1.051 \cdot 10^7$	$2.490\cdot 10^6$	$6.75 \cdot 10^5$	$2.14 \cdot 10^5$
CSW (HAAG)	10	354	6980	60000	$9\cdot 10^6$
AMEGIC (HAAG)	13	930	73000	-	-
COMIX (RPG)	254	5370	15900	36800	64100
\leq 2 quark lines	n = 2	<i>n</i> = 3	<i>n</i> = 4	<i>n</i> = 5	<i>n</i> = 6
σ_{MC} [pb]	$1.5129 \cdot 10^8$	$1.1198 \cdot 10^7$	$2.831 \cdot 10^6$	$8.12 \cdot 10^5$	$2.71 \cdot 10^5$
CSW (HAAG)	16	730	12300	120000	$2 \cdot 10^7$
AMEGIC (HAAG)	19	1530	78000	-	-
COMIX (RPG)	525	10800	25600	59000	113000

Motivation	Parton showers	ME corrections	NLO matching	LO merging	Summary

Further performance tests

T.Gleisberg, S.Hoche and F.K., arXiv:0808.3672 [hep-ph]

- All numbers on 2.53 GHz Intel Core Duo T9400 CPU
- List time for reaching the stat. error.
- Note: With Comix can easily go up to ≤ 6 jets.

			<u> </u>		<u> </u>
$pp \rightarrow Z + n$ jets					
gluons only	<i>n</i> = 0	n = 1	<i>n</i> = 2	<i>n</i> = 3	<i>n</i> = 4
σ _{MC} [pb]	1080.8	121.67	54.67	23.59	11.22
$\delta\sigma$	0.1%	0.1%	0.1%	0.2%	0.5%
CSW (MC)	12	210	4100	57000	1500000
AMEGIC (MC)	7	98	1060	10400	310000
COMIX (RPG)	15	364	6400	16400	54000

E. Krauss

Dipole showers

Implemented in Ariadne (L.Lonnblad, Comput. Phys. Commun. 71, 15 (1992)).

Upshot Expansion around soft logs, particles always on-shell $\mathrm{d}\sigma = \sigma_0 \frac{C_F \alpha_s(k_\perp^2)}{2\pi} \frac{\mathrm{d}k_\perp^2}{k_\perp^2} \mathrm{d}y.$ Always color-connected partners (recoil of emission) \implies emission: 1 dipole \rightarrow 2 dipoles. Quantum coherence on similar grounds for angular and k_{τ} -ordering. A (1) > A (1) > A

Motivation	Parton showers	ME corrections	NLO matching	LO merging	Summary

IS Radiation

• There is none! (in Ariadne) Treat radiation in DIS as FS radiation between

Treat radiation in DIS as FS radiation between remnant & quark

Thus, no real Dipole Shower for pp collisions.

<ロト <回ト < 回ト < 回ト

• Cut FS phase space of remnants:

3

Motivation	Parton showers	ME corrections	NLO matching	LO merging	Summary

Initial state dipole showers

J.Winter & F.K., JHEP 0807, 040 (2008)

- Complete perturbative formulation.
- Dipoles and their radiation associated to IS-IS, IS-FS and FS-FS colour lines.
- Beam remnants kept outside evolution.
- Onshell kinematics, evolution in k_{\perp} .

A new parton shower approach

Using Catani-Seymour splitting kernels

First discussed in: Z.Nagy and D.E.Soper, JHEP 0510 (2005) 024;

Implemented by M.Dinsdale, M.Ternick, S.Weinzierl Phys.Rev.D76 (2007) 094003,

and S.Schumann& F.K., JHEP 0803 (2008) 038.

- Catani-Seymour dipole subtraction terms as universal framework for QCD NLO calculations.
- Factorization formulae for real emission process:
- Full phase space coverage & good approx. to ME.

Example: final-state final-state dipoles

$$\begin{array}{l} \mbox{splitting:} \ \tilde{p}_{ij} + \tilde{p}_k \rightarrow p_i + p_j + p_k \\ \mbox{variables:} \ y_{ij,k} = \frac{p_i p_j}{p_i p_j + p_i p_k + p_j p_k} \ , \quad z_i = \frac{p_i p_k}{p_i p_k + p_j p_k} \\ \mbox{consider} \ \mathbf{q}_{ij} \rightarrow \mathbf{q}_i \mathbf{g}_j: \ \langle \mathbf{V}_{\mathbf{q}_i \mathbf{g}_j, k}(\tilde{z}_i, y_{ij,k}) \rangle = C_F \left\{ \frac{2}{1 - \tilde{z}_i + \tilde{z}_i y_{ij,k}} - (1 + \tilde{z}_i) \right\} \end{array}$$

IPPF

F. Krauss

Higher orders in simulation

Motivation	Parton showers	ME corrections	NLO matching	LO merging	Summary
Res	ults in e^+e^-	collisions a	t LEP1		
		0.001		(2000) 020	

Motiva	tion Parto	1E corrections	NLO matching	LO merging	Summary

F. Krauss

E. Krauss

Motivation	Parton showers	ME corrections	NLO matching	LO merging	Summary

CS-Shower: Results in $p\bar{p}$ collisions

S.Schumann& F.K., JHEP 0803 (2008) 038.

2

IPPP

Motivation	Parton showers	ME corrections	NLO matching	LO merging	Summary
CS-	Shower: Res	sults in <i>pp</i> c	ollisions		
		S Schu		(2008) 038	
		0.00114		(2000) 000.	
	normalised distributio	on of α @ Tevatron Run I	normalised distribution of	η ₃ @ Tevatron Run I	

