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Motivation and Outline
Around 1971 I worked in critical phenomena. I was fascinated by the fact
that Kramers and Wannier (1941) were able to determine the critical temper-
ature of the two-dimensional Ising model on the square lattice exactly before
Onsager (1944) gave the exact solution for this model. The basic idea was
that this model was self-dual. Therefore I thought whether someting similar
could be done for the three dimensional model. I realized that the dual model
is a gauge-invariant model, but it is not self-dual. Increasing the number of
dimensions from three to four the gauge-invariant model is self-dual and its
critical temperature is the same as for the two-dimensional conventional Ising
model.
The gauge-invariant model has the property that it has no local order param-
eter. Non-vanishing correlations are given by products of spins along a loop,
called Wilson-loop. The expectation value obeys at high temperatures an area
law and at low temperatures a perimeter law. If time permits I will mention
some related work.
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Outline

• Duality in the two-dimensional Ising model

• Duality in three dimensions

• Ising models Md,n

• Correlations

• Dislocations and Correlations

• Self-dual models in three dimensions

What was missing?

Lattice gauge theories

Electromagnetic field

• Summary
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Duality in two-dimensional Ising models
Kramers and Wannier 1941
Prediction of exact critical temperature of the two dimensional Ising model
on a square lattice before exact solution by Onsager in 1944. They compared
the high- and the low-temperature expansion for the partition function of the
model.
Square lattice with Ns = N1×N2 lattice points and periodic boundary condi-
tions. Ising spin Si,j = ±1 at each lattice site (i, j). The Hamiltonian reads

H = −J
N1∑
i=1

N2∑
j=1

(Si,jSi,j+1 + Si,jSi+1,j). (1)
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High temperature expansion (HTE ) The Boltzmann factor

e−βH =
∏
i,j

(coshK + sinhKSi,jSi,j+1)(coshK + sinhKSi,jSi+1,j)

= (coshK)Nb
∏
i,j

(1 + tanhKSi,jSi,j+1)(1 + tanhKSi,jSi+1,j), (2)

Nb number of bonds, K = βJ . Partition function: expand in powers of
tanhKSS ′, sum over all spin configurations: zero unless all spins appear with
even powers, then the sum is 2Ns and the interaction bonds form closed loops.
Closed: An even number of bonds meets at each lattice site.
Expansion

Z(K) = 2Ns(coshK)Nbf(tanhK), (3)

f(a) =
∑
l

cla
l, (4)

Coefficients cl count the number of closed loops of length l, c0 = 1, c2 = 0,
c4 = Ns, c6 = 2Ns, c8 = Ns(Ns + 9)/2, etc. and cl = 0 for odd l.
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Low temperature expansion (LTE ) on the dual lattice. Spins S∗(r∗) inside
each of the squares of the original lattice. Dual Hamitonian

H∗ = −J∗
∑
i,j

(S∗i−1/2,j−1/2S
∗
i−1/2,j+1/2 + S∗i−1/2,j−1/2S

∗
i+1/2,j−1/2). (5)

Positive J∗: All spins are parallel in the ground state: E∗min = −NbJ
∗, Nb =

2N∗s number of bonds.
Excited states by turning some spins. Reversing one spin costs an excitation
energy 8J , since the spin interacts with 4 other spins. Quite generally the
excitation energy is given by 2lJ , if the overturned spins are surrounded by
Bloch walls of a total number of l edges. In the case of the square lattice one
obtains

Z∗(K∗) = 2eNbK
∗
f(e−2K∗) (6)

with f defined in (4). Both expansions are governed by the same function f .
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Fig. 1. Examples for closed loops in the HTE and Bloch walls in the LTE on
the dual lattice
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Comparison Kramers and Wannier argued: If the partition function or equiv-
alently the free energy has a singularity at the critical point and no other
singularity, then it must be determined by

e−2Kc = tanhKc, (7)

which yields

Kc =
1

2
ln(1 +

√
2) = 0.4407, (8)

which indeed turned out to be correct from Onsager’s exact solution 1944.
Thus there is a relation between the partition function and similarly the free
energy at high (K < Kc) and low (K∗ > Kc) temperatures for

tanhK = e−2K∗ ↔ tanhK∗ = e−2K → sinh(2K) sinh(2K∗) = 1. (9)

The square lattice is called self-dual, since the HTE and the LTE are per-
formed on the same lattice.
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Duality in 3 dimensions
Does there exist a dual model to the three-dimensional Ising model?
There is such a model, but of a different kind of interaction. LTE of the 3d-
Ising model on a cubic lattice. I start out from the ordered state and then
change single spins. These single spins are surrounded by closed Bloch walls.
The expansion of the partition function is again of the form (4,6), but now
with c2 = 0, c4 = 0, c6 = Ns, c8 = 0, c10 = 3Ns, c12 = Ns(Ns − 7)/2, etc.
The HTE of the dual model must be given by an interaction such that only
closed surfaces yield a contribution. Thus locate a spin at each edge and
introduce the interaction as a product of the spins surrounding an elementary
square called plaquette. The interaction of the dual model M3,2

βH3,2 = −K
∑
i,j,k

(R(i+ 1/2, j, k) +R(i, j + 1/2, k) +R(i, j, k + 1/2)),

R(i+ 1/2, j, k) = Si+1/2,j,k+1/2Si+1/2,j+1/2,kSi+1/2,j,k−1/2Si+1/2,j−1/2,k,

R(i, j + 1/2, k) = Si+1/2,j+1/2,kSi,j+1/2,k+1/2Si−1/2,j+1/2,kSi,j+1/2,k−1/2,

R(i, j, k + 1/2) = Si+1/2,j,k+1/2Si,j+1/2,k+1/2Si−1/2,j,k+1/2Si,j−1/2,k+1/2.

is the sum of interactions R over three differently oriented plaquettes.
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Fig. 2. Elementary cube with spins of the modelM3,2.
The red circles (ellipses) connect the four spins multi-
plied in the interaction.

Spin-independent products The product R(i + 1/2, j, k)R(i, j + 1/2, k)
×R(i, j, k + 1/2)R(i − 1/2, j, k)R(i, j − 1/2, k)R(i, j, k − 1/2) of the six Rs
around the cube does not depend on the spin configuration, since each spin
appears twice in the product.
Local gauge invariance Turning all six spins S(i±1/2, j, k), S(i, j±1/2, k),
S(i, j, k ± 1/2) around the corner (i, j, k) does not change the energy of the
configuration. As an example the three spins around the green corner are
reversed from the state, in which all spins are aligned upwards.
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Ising-models Md,n

The models considered up to now are generalized to models in arbitrary di-
mensions d.
Cut the d-dimensional hypervolume into d-dimensional hypercubes B(d) by
(d− 1)-dimensional hyperplains at integer Cartesian coordinates. Hypercubes
B(d) are bounded by (d− 1)-dimensional hypercubes B(d−1).
k-dimensional hypercubes B(k) are bounded by (k−1)-dimensional hypercubes
B(k−1).
0-dimensional hypercubes B(0) are corners of the B(d).
Associate lattice points r(k) at the centers of the B(k).
(d− k) coordinates are integers given by the (d− 1)-dimensional hyperplains.
The other k coordinates are half-integer, that is integer+1/2.
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Similarly for the dual lattice, but the d-dimensional hypercubes B∗(d) are
bounded by hyperplains at half-integer coordinates. The associated centers
of the k-dimensional hypercubes B∗(k) are denoted by r∗(k). The (d− k) coor-
dinates are half-integer, the other k coordinates are integer.
The points r(k) coincide with the r∗(d−k).
They are the intersections of B(k) with B∗(d−k).
Incidence matrix with elements θ(r(k), r(k−1)) equals 1, if B(k−1) with center
r(k−1) is on the boundary of the hypercube B(k) with center r(k), otherwise 0.
Similarly θ∗(r∗(k), r∗(k−1)) for the dual lattice.
Hamiltonian of model Md,n and its dual

βHd,n = −
∑
b

K(b)R(b), R(b) =
∏

r(n−1) S(rn−1)θ(b,r
(n−1)), (10)

β∗H∗ = −
∑
b

K∗(b)R∗(b), R∗(b) =
∏

r∗(d−n−1) S∗(rd−n−1)θ
∗(b,r(d−n−1)), (11)

with b for r(n) = r∗(d−n).
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Closure relation An important property of the lattices is the closure relation:
Consider a pair r(k+1) and r(k−1). They lie in cells B(k+1) and B(k−1). Then∑

r(k)

θ(r(k+1), r(k))θ(r(k), r(k−1)) ≡ 0 mod 2. (12)

Proof: If B(k−1) is on the boundary of B(k+1), then two cells B(k) on the
boundary of B(k+1) have B(k−1) as boundaries. If B(k−1) is not at the boundary
of B(k+1), then none of the B(k) on the boundary of B(k+1) has B(k−1) as
boundary. This proofs (12).
Gauge invariance Changing all spins close to a point r(n−2),

S(r(n−1))→ (−)θ(r
(n−1),r(n−2))S(r(n−1)) (13)

leaves R(b) invariant, since it is multiplied by

(−)
∑
r(n−1) θ(r

(n−1),r(n−2)))θ(r(n),r(n−1)), (14)

which due to the closure relation (12) yields one.
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Spin-independent products R(b) The product over all R(b) around a given
r(n+1), that is∏

b

R(b)θ(r
(n+1),r(n)(b)) =

∏
r(n−1)

S(r(n−1))
∑
r(n)

θ(r(n),r(n−1))θ(r(n+1),r(n)) = 1. (15)

does not depend on the spin configuration, since it yields one due to the closure
relation (12). Of course also products of these products are spin-independent.
The closure relation plays an important role in deriving the duality relation
between Md,n and Md,d−n with∑

b

θ(b, r(n−1))θ∗(b, r∗(d−n−1)) = 0 mod 2, (16)

since θ∗(b, r∗(d−n−1)) = θ(r(n+1), b).
One uses linear algebra on a ring with elements (0,1) with algebra
modulo 2.
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Inequality One obtains

2−Nm/2Y {K} < Y ∗{K∗} < 2Nm/2Y {K}. (17)

for

Y {K} =
2−(Ns+Ng)/2∏

b(cosh(2K(b))1/2
Z{K} (18)

and similarly for Y ∗{K∗}. Nb number of bonds, Ns and N∗s number of spins
of the lattices and Ng and N∗g number of independent gauge transformations.
(Ns −Ng = rank(θ)). Then

Nm = Nb −Ns +Ng −N∗s +N∗g (19)

depends on the boundary conditions and is normally negligible in the thermo-
dynamic limit.
One obtains Nm =

(
d
n

)
for periodic boundary conditions. Then Nm does not

depend on the size of the model.
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Self-duality The modelMd,n on the hypercubic lattice is self-dual, if d = 2n.
This is the case for M2,1, which is the two-dimensional Ising model on the
square lattice. But also the four-dimensional model M4,2 with the plaquette
interaction is self-dual. Both have the phase transition at Kc = 0.4407, (8).
The Ising model M2,1 shows a continuous transition. Creutz, Jacobs, and
Rebbi have investigated the model M4,2 by Monte Carlo techniques. They
determined 〈R(b)〉 as a function of K. They found a first order transition with
hysteresis. By decreasing K the system showed superheating until ≈ 0.48 and
by increasing K undercooling until ≈ 0.40. Starting from a mixed phase they
located the transition between 0.43 and 0.45.

17



Correlations
Non-vanishing correlations are only obtained for gauge-invariant products.
These are products of R(b). In particular we consider the product of spins
on the boundary of an n-dimensional hypercube of Md,n. The HTE yields

〈
∏
r

S(r)〉 = (tanhK + 2(d− n)(tanhK)1+2n + ...)υ, n > 1, (20)

=
1

2
[tanhK + (2(d− 1))1/2(tanhK)2 + ...]υ

+
1

2
[tanhK − (2(d− 1))1/2(tanhK)2 + ...]υ, n = 1. (21)

where υ is the volume of the hypercube. For n = 1 this is the distance between
the two spins; for n = 2 it is the area spanned by the spins. The LTE yields

〈
∏
r

S(r)〉 = (1− e4(d−n+1)K + ...)f , n < d,

〈
∏
r

S(r)〉 = (1− 2e−2K + ...)υ, n = d, (22)

where f is the hyperarea of the boundary of the hypercube (for n = 1 it is the
number f = 2 of ends of the line; for n = 2, f is the perimeter of the square).
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Thus the behavior of the correlation functions of large hypercubes differs in
the high and low temperature phases, and we expect

〈
∏
r

S(r)〉 ∝
{

e−υ/υ0(T ) T > Tc, n < d
e−f/f0(T ) T < Tc, n < d

(23)

We attribute the qualitatively different asymptotic behavior in both tempera-
ture regions to different states of the system above and below a critical tem-
perature Tc.
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Dislocations and
Correlations

Fig. 3. Red dots: Location
of disorder variable in the
original lattice and of spins
in the dual lattice

Kadanoff and Ceva for M2,1: Disorder variables at red points in Fig. 3. The
couplings K are changed along a line to −K between these two points. The
change of the partition function is independent of choice of line (e.g. blue or
green). Denote the operator of change of sign by M(b) and let φ∗(b) = 0, 1 for
bonds with unchanged, changed sign. Then

〈
∏
b

M(b)φ
∗(b)〉 = 〈

∏
b

e−2φ∗(b)K(b)R(b)〉 =
Z{(−)φ

∗
K}

Z{K}
=
Y {(−)φ

∗
K}

Y {K}
. (24)

From (9) we obtain tanh((−)φ
∗
K) = e−2K∗−iπφ∗ and thus
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〈
∏
b

M(b)φ
∗(b)〉 = Y {K∗ + iπφ∗/2}/Y {K∗}

= i−
∑
b φ
∗(b)〈

∏
b

eiπφ∗(b)R∗(b)/2〉{K∗} = 〈
∏
b

R∗(b)φ
∗(b)〉{K∗}. (25)

〈
∏

bM(b)φ
∗(b)〉 equals the ratio of the partition functions with the changed

bonds and the unchanged bonds, thus the exponential of the difference β∆F
of the free energy without and with the changed bonds at K,

〈S(r∗)S(r∗
′
)〉(K∗) = e−β∆F (K). (26)

If K is in the paramagnetic region, then the disturbance of the bonds yields a
contribution to β∆F only close to the points, where this line of bonds ends.
Thus for large separation of the two spins it approaches a finite value, which
corresponds to the square of the magnetization at K∗. On the other hand if
K is in the ferromagnetic region, then the disturbance will change the free
energy proportional to the distance between the two spins S(r∗) and S(r∗

′
),

which yields an exponential decay of the correlation function.
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ConsiderM3,1 andM3,2. Change the sign of the interaction
∑

ij Si,j,kSi,j,k+1

over a whole region (area) in the plane spanned by ij. Analogous to the
two-dimensional Ising model, the change ∆F (K) will be proportional to the
perimeter f for paramagnetic K and proportional to the area υ for ferromag-
netic K. The product

∏
bR
∗(b) is now the product of the Ising spins along the

perimeter of the dislocations. Consequently the expectation value decays pro-
portional to e−f/f0(T ∗) at low temperatures T ∗ and proportional to e−υ/υ0(T ∗)

at high temperatures T ∗ in accordance with (23).
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Local order parameter If all states are taken into account, then the corre-
lations different from zero are only obtained from products of R. For n = 1
the product of two spins S(0)S(r) can be written as product of Rs. For n > 1
products of spins

∏
k S(ak)

∏
l S(r+ al) with with ak and al restricted to some

finite region |ak| < c, |al| < c yield only non-vanishing correlations for distances
r > 2c, if both

∏
k S(ak) and

∏
l S(r+ al) are separately gauge invariant, that

is, they are expressed as finite products of R. However, with (24, 25) expec-
tations of products of R in one phase can be expressed by correlations in the
other phase

〈
∏

some bR(b)〉{K} = 〈
∏

same b(cosh(2K∗(b))−R∗(b) sinh(2K∗(b)))〉.
Thus since there is no long range order in the high temperature phase, there
can be none in the dual low temperature phase,

limr→∞(〈
∏

k S(ak)
∏

l S(r + al)〉 − 〈
∏

k S(ak)〉〈
∏

l S(al)〉) = 0.

Thus there is no local order parameter for models Md,n with n > 1. This
argument does not apply for n = 1, since in this case the number of Rs in the
product increases with |r|.
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Self-dual models in 3 dimensions
If we add a magnetic field to the model M3,2,

−βH ′3,2 = −βH3,2 + h
∑
i,j,k

(Si,j+1/2,k+1/2 + Si+1/2,j,k+1/2 + Si+1/2,j+1/2,k), (27)

then the model is self-dual in the two couplings K and h,

tanhK = e−2h∗ , tanhh = e−2K∗ . (28)

Another self-dual model in three dimensions: D.W. Wood, J. Phys. C5,
L181 (1972); see also P.A. Pearce and R.J. Baxter, Phys. Rev. B24 (1981)
5295.

The Ising spins are placed on a
face-centered cubic lattice. The
interaction is given by the sum
of the products over the four
spins at the corners of the el-
ementary tetrahedra of the lat-
tice

Fig. 4. Cube of fcc-
lattice with eight
elementary tetrahe-
dra, one in red
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What was missing?
The word gauge
The word loop. Would have been useful for the models Md,2.
The type of transition. I simply did not / could not know it and was
surprised, when I learned, it is of first order.
Generalization from Z(p = 2) Ising to larger p by Korthals Altes and by
Yoneya. For p > 4 there are two transitions.
Elitzur, Pearson, and Shigemitsu have discussed the properties of this phase.
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Lattice gauge theories
ModelsMd,n with n > 1 show local gauge invariance. Such models are related
to quantum chromodynamics. The basic idea first formulated by Wilson is to
start from the lattice M4,2. (Many reprints on this subject are compiled in
Rebbi’s book). The degrees of freedom are now denoted by U in place of S.
These U are elements of a group. It may be a finite or a continuous group, it
may be an Abelian or non-Abelian group. In the case of QCD one considers
the ’colour’-group SU(3). Ui,j is placed on the link between lattice sites i and
j with Uj,i = U−1

i,j . The action is

g−2
∑

plaquettes

(1− 1

q
<tr(UijUjkUklUli)), (29)

where q is the dimension of U . One introduces quarks (fermions) with inter-
action

g′−2
∑
links

ψ†iUijψj. (30)

These interaction terms are invariant under local gauge transformations

ψj → Gjψj, ψ†j → ψ†jG
†
j, Uij → GiUijG

†
j. (31)
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The couplings depend on temperature and pressure of the hadron system.
At low temperature and pressure the correlations fall of with an area law.
Since the action is an integral over time, this behaviour corresponds to an
increase of the effective potential between quarks proportional to the distance
between them. The gradient of the potential is called string tension and given
by 1/υ0(T ) in (23). This potential binds three quarks, which constitute a
hadron. Or one quark and one antiquark are bound and constitute a meson.
Generally the difference between the number of quarks and antiquarks has to
be a multiple of three. At high temperature and high pressure the system forms
a quark-gluon plasma. This corresponds to the phase in which the correlation
increases proportional to the perimeter of the loop. Then the effective potential
between the quarks stays finite at large distances and the quarks are rather
free to move in this plasma.
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Electromagnetic field
The electromagnetic field in QED and its coupling to charged particles can be
described similarly with the group U(1), Uij = exp(i

∫ i
j
Aµdxµ) Then

tr(Ur,r+aµeµUr+aµeµ,r+aµeµ+aνeνUr+aµeµ+aνeν ,r+aνeνUr+aνeν )

≈ exp(iaµaνFµν(r + (aµeµ + aνeν)/2)) (32)

with the electromagnetic field tensor Fµν = ∂µAν − ∂νAµ.
Since only the real part of tr(

∏
U) contributes, one obtains in leading order

the well-known action of the electromagnetic field proportional to FµνF
µν .

If one performs the continuum limit (a→ 0) then only these terms survive.
The discretized Maxwell equations can be solved on such a lattice (Weiland
1977). One places the components Aµ on sites r(1), the six electromagnetic
field components Fµν on sites r(2), the components of the charge and current
densities on sites r(1). Lorenz gauge and charge conservation can be put on
sites r(0).
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Summary

• I reported my motivation and the main ideas of my 1971 paper.

• I started with the duality arguments by Kramers and Wannier: High-
and low-temperature expansions of Z ofM2,1 are expressed by the same
functions of different arguments.

• Requiring the same functions in three dimensions leads to duality be-
tween M3,1 and the local gauge-invariant model M3,2.

• Generalization to duality of d-dimensional modelsMd,n andMd,d−n. Of
particular interest is the self-dual model M4,2.

• The correlation functions at high and low temperatures show different
behavior (area and perimeter law) and suggest different phases. They
are related by duality to dislocations.

Thank you very much.
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