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23 Lorentz Transformation

23.a GuLer and Lorentz Transformation

The equations of Mwvton's mechanics are invariant under thai@er transformation (GLiLer invariance)
X=%x y=y, Z=z-w, t' =t (23.1)

We will see in the following that MxwEeLL'S equations are invariant under appropriate transfolnatof fields,
currents and charges against linear transformations afdbedinates, y, z, andt, which leave the velocity of
light invariant (Lorentz invariance). Such a transformation reads

_ t- ¥
X=x Y=y, Z= z- vt t = c . (23.2)

9
V2 V2
Ji-% 1-9

Consider two chargegund—q, which are fort < 0 at the same point and which are alsotfer At at the same
point, which move however in the time intervakOt < At against each other. They separate at timer@ ahd
they meet again at timét atr;. They generate according to (21.14) and (21.15) a field, kypiopagates with
light-velocity. It is diferent from zero at point at timet only, if t > |r — rg|/c andt < At + |r — r4]/c holds.
This should hold independently of the system of inertia inclhilwe consider the wave. (We need only assume
that the charges do not move faster than with light-velocifyve choose an infinitesimait then the light flash
arrives at time = |r — rg|/c, since it propagates with light-velocity. Since therkntz transformation is not in
agreement with the laws of#Mton’s mechanics and theA&i_er transformation not with MxwecLL’s equations
(in a moving inertial frame light would have a velocity dedent on the direction of light-propagation) the
guestion arises which of the three following possibiliiiesealized in nature:

(i) there is a preferred system of inertia for electrodyr@min which MuxweLL's equations hold (ether-
hypothesis),

(i) Newton’s mechanics has to be modified

(iii) M axweLL's equations have to be modified.

The decision can only be made experimentally: An essent@ment
to refute (i) is the McueLson-MorLEY experiment: A light beam hits a

half-transparent mirror Spis split into two beams, which are reflected
at mirror Sp and Sp, resp. at distanceand combined again at the

S
half-transparent mirror. One observes the interfereriogds of both B
beams at B. If the apparatus moves with velogify the direction of ‘
the mirror Sp, then the timet; the light needs to propagate from the Sp1
half-transparent mirror to 3@nd back is ‘
I I 2lc 2l V2
= = =—1+=+..). 23.
b c—v Crv @V c( et ) (233)
B
The timet, the light needs to the mirror 3js
2l 2l V2
tZ = 7C2 — V2 = E(l'l’ E + ), (234)

77



78 H Lorentz Invariance of Electrodynamics

since the light velocityc has to be separated into the two componeraad Vc2 — v2. Thus there remains the
time difference

Iv2
3
which would be measurable by a displacement of the intarteréringes, if for example the velocityis the
velocity of the earth against the sun. This displacementbabeen observed. One may object that this is due
to a drag of the ether by the earth. There are however many etperiments, which are all in agreement with
LorenTz invariance, i.e. the constancy of the velocity of light ircuam independent of the system of inertia.
The consequences in mechanics for particles with velsaitienparable to the velocity of light in particular for
elementary particles have confirmedrlentz invariance very well.

Development of the Theory of Relativity

In order to determine the velocity of the earth against thetydated ether MueLson and MoriLey performed
their experiment initially in 1887 with the negative restito motion against the ether was detected. In order
to explain this Frzcerarp (1889) and lrentz (1892) postulated that all material objects are contraictéueir
direction of motion against the ether (comparsinTz contraction, subsection 233).

In the following we will develop the idea of a four-dimensa@space-time, in which one may perform trans-
formations similar to orthogonal transformations in thodmensional space, to which we are used. However
this space is not atkLmbean space, i.e. a space with definite metric. Instead spatémae have a metric
with different sign (see the metric tengpreq. 23.10). This space is also calledkkbwskr space. We use the
modern four-dimensional notation introduced byikbwskr in 1908.

Starting from the basic ideas of special relativity

The laws of nature and the results of experimentsin a system of inertia are independent of the motion of such a
system as whole.

The velocity of light is the same in each system of inertia and independent of the vel ocity of the source

we will introduce the lorentz-invariant formulation of MxweLL's equations and of relativistic mechanics.

t—tp = (23.5)

23.b Lorentz Transformation

We introduce the notation
X=c, xt=x xX=zy, xX*=z (23.6)

or shortly
() = (ct,r) (23.7)

and denotes them as the contravariant components of thervEatther one introduces
(%) = (ct, —r). (23.8)

which are called covariant components of the vector. Themag write

X =g"%, X =0uwX (23.9)
(summation convention)
1 0 0 O
. 0 -1 0 O
0O 0 0 -1

One callgg the metric tensor. Generally one has the rules for liftind lvering of indices
C-#..=¢g"C-+-+, C-oyr-=0guC-"-- (23.11)

We introduce the convention: IndicesaA, y, v run from O to 3, indices, 8, v, ... from 1 to 3. One observes
that according to (23.119,” = 9.9 = 6,”, ¢, = ¢“90 = &, with the Kronecker delta.
If a light-flash is generated at timie= O atr = 0, then its wave front is described by

& =c?-r2=x'%,=0. (23.12)
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We denote the system described by the coordindteéy S. Now we postulate with issteN: Light in vacuum
propagates in each inertial system with the same velacifgrinciple of the constance of light velocity) Then
the propagation of the light flash in the uniformly movingteys S’ whose origin agrees &t t' = 0 with that
of S is given by

s% = X#X, = 0. (23.13)

Requiring a homogeneous space-time continuum the tranatan between’ andx has to be linear
X = A X, (23.14)

ands? = < with some constant has to hold. If we require that space is isotropic and no systiinertia is
preferred, therf = 1 has to hold. The conditiosi’ = & implies

s/2 — /HX/,; — A”VXVAﬂKXK — 52 — V6VKXK9 (2315)

which is fulfilled for arbitraryx, if
NGNS =6 (23.16)
holds. The inverse transformation of (23.14) follows from

X= 6,50 = ASARX = ALK (23.17)

From (23.16) one obtains in particular foe « = 0 the relation 4°°)? — 3, (A*%)? = 1. Note thatA?, = +A*°,
AL = —A%. Thus one hag\%? > 1. One distinguishes between transformations with pasaivd negative
A%, since there is no continuous transition between these tagses. The condition® > 0 means that
A = %h/ > 0, that is a clock which is at rest B changes its time seen frogwith the same direction as the
clock at rest inS (and not backwards).

Finally we can make a statement on dét(). From (23.16) it follows that

AR g o =6~ (23.18)
Using the theorem on the multiplication of determinants Wtam
det(\",)? det(,,) det@™) = 1. (23.19)

Since detg,,) = det@*) = —1 one obtains
deta”,) = 1. (23.20)

If we consider only a right-basis-system then we haverdej(= +1. Transformations which fulfill
A%>0, detprz!) =1 (23.21)

are called proper érentz transformations.

Eqg. (23.21) has the consequence that the fourdimensioaattpne volume is invariant
1 10(x0, x1, x?, x'3) 1 1

d'dPr’ = —d*x = =" dtx = = det(A,)d*x = Zd*x = ditd®r. 23.22

T A0, XL, 2, x3) X= e St )d'x X ' ( )

If the direction of the z- and the z'-axes point into the dif@e of the relative velocity between both inertial
systems and’ = X, Yy’ =Y, then the special transformation (23.2) follows. The cgponding matrixA reads

y 00 By
0 10 O
My _
A=l 9 01 o (23.23)
By 0 0 vy
with 1
y= ’ ﬂz‘_é. (23.24)
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23.ba Time Dilatation

We consider now a clock in the systé®rwhich is at rest irS’. From
t=9y(t' + %)

we find that ot

AO0 = E ; =9.

Thus the clock at rest i’ runs slower when seen fro8

o’
At = —
ot

This phenomenon is called time dilatation.

23.bp Lorentz Contraction

From
Z =y(z-w)
one obtains
3 _ 07| _
c 0z t =Y

and therefore

0z
AZ= —
‘= oz

1 / V2
At = —-At= 4/1- _zAt‘
r Y C

2
a7 =taz = \J1-Laz
t Y C

(23.25)

(23.26)

(23.27)

(23.28)

(23.29)

(23.30)

A length-meter which is at rest i and is extended in the direction of the relative movemerieaps conse-
guently contracted is. This is called lorentz contraction or FrzGeraLp-Lorentz contraction. However, the

distances perpendicular to the velocity are unaltefed:= Ax, Ay’ = Ay.

This contraction has thefect that in (23.3) the lengthhas to be replaced by /1 — ‘C’—i Then the two times the

light has to travel agree independent of the velogjty = t,.
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24 Four-Scalars and Four-Vectors

. . 0—

24.a Distance and Proper Time as Four-Scalars x-=ct
4
A quantity which is invariant under drentz transformations is future @
called four-scalar. \oo
Example: Given two points in space-time (eventg)((¥). The . RN
P P P (evente) () space-like ©
quantity %3
&= (X = X)X, — X, 24.1
( W6 = %) (e4.) distance

is a four-scalar. It assumes the same number in all systeimsrtifr.
Especially fon = 0 (origin) it is & = xX,,.

past
|

24.ac Space-like distances® < 0

If > < 0, then there are systems of inertia, in which both eventsramicthe same tim&© = 0. If for example
() = (ct, 0,0, 2). Then one obtains from 23.2)

L I | (24.2)
1-% 1-%
c c?
with v = tc?/z
1-% 2
t' =0, z’=z( C2)=z 1-L s VZ -V & (24.3)

Thus one calls such two events space-like separated.

24.ap Time-like distances® > 0

In this case there exists a system of inertia in which botmesvieke place at the same point in space<0).
We chooser = z/t in the transformation (23.2) and obtain

t(1-% ) )
v X Cz)ztwfl—ézsign(t)\/tz—%zsign(t)g, Z-=0. (24.4)
\%

1-2

One event takes place before the other that is the sitfragfrees with that of.
Proper Time
The proper timer is the time which passes in the rest system under considerdtia point moves with velocity

v(t) its proper time varies as
ds V2
dr=— = 4/1- =dt 24.5
r=—=q1- g (24.5)

B t2 V2(t)
T_fﬁ ,/1_?& (24.6)

The proper time is independent of the system of inertia, thigsa four-scalar.

that is

24.ay Light-like distance s = 0

If a light flash propagates directly from one event to anqgttiem the distance of these two evests 0. The
time measured in a system of inertia depends on the systenedfa and may be arbitrarily long or short,
however, the sequence of the events (under propeinNrz transformation) cannot be reversed.

Another four-scalar is the charge.
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24.b World Velocity as Four-Vector

If a four-component quantityA) transforms by the transition from one system of inertiahother as the
space-time coordinate%")), then it is a four-vector

AH = A A, (24.7)
An example is the world velocity

dx  dx* dt

_dxdxdt ax® _ dt
Todr 0 dt dr B

=y with VP = = Cq "

(24.8)

The world velocity (*) = (cy,vy) is a four-vector. Since is invariant under brentz transformations, its
components transform liked(). However, €, v) is not a four-vector. One has

W, = (- VvA)y? =2 (24.9)
Quite generally the scalar product of two four-vecta¥$)(and @) is a four-scalar
A"B;, = A ,A A'B, = 5;A’B, = A’B,. (24.10)

We show the following lemma: Ifg!) is an arbitrary four-vector (or one has a complete set off@etors) and
a'b, is a four-scalar theri{) is a four-vector too. Proof:

a', = &b, = A" &' (24.11)

Since this holds for allg') or for a complete set, one hag = A* b;. This, however, is the transformation
formula (23.17) for four-vectors.

Addition theorem for velocities

The system of inerti&’ moves with velocityv in zdirection with respect t&. A point in S’ moves with
velocityw also inz-direction. With which velocity does the point move$? We have

Z+w t+%
7= 27 -, = —= (24.12)
\% V-
1-% 1-%
With Z = w't’ one obtains
V+ W)t/ 1+ Wy
7= u t= Q (24.13)
1-% 1-%
From this one obtains the velocity of the poiniSn
w
w=Z_W+v (24.14)
bt 14y
We observe )
w. w? V2
ORI S B =2 Sl (24.15)
c? 1+ (1+4%)2 '

If W| < cand|V| < ¢, then this expression is positive. Then one obtains [alse ¢. Example:w’ = v = 0.5c,
then one obtaina = 0.8c.

24.c Current Density Four-Vector

We combine charge- and current-density in the charge-cudensity

(1) = (cp.)) (24.16)



24 Four-Scalars and Four-Vectors 83

and convince us that' is a four-vector. For charges of velocityone has (the contributions of charges of
different velocities can be superimposed)

F=p¥, (W=0), jH=p1-p2F (24.17)

If p+/1-pB2is afour-scalar then indegd is a four-vector. Now one has
q q

with the volumeVy in the rest system and thevkentz contractionV = Vg +/1 — 82. Since the chargg andV,

are four-scalars this holds alpa/1 — 2.
We bring the equation of continuity indrentz-invariant form. Fronp+ divj = O one obtains

it
% _o, (24.19)

(24.18)

sincedj?/ox° = dp/dt. We consider now the transformation properties of the aéxigsd/ox"

of  ox of  of
axi - axE g - M o (24.20)

that is the derivatives transform according to

0 0
=AY 24.21
OXH "ooxr ( )
asx;, = A% Thus one writes
0 19
— = =(==,V). 24.22
6)(# alh (6H) (C6t’ ) ( )
Watch the positions of the indices. Similarly one has
0 10
- - = (==, -V). 24.23
o = @)=Y (24.23)
Then the equation of continuity can be written
auj* =0. (24.24)
Generally the four-divergendy,P* = 9P, of a four-vectorP is a four-scalar.
24.d Four-Potential
We combine the potentials and® in the four-potential
(A) = (D, A), (24.25)
then one has
47
oA = —?j” (24.26)
in the Lorenz gauge with the gauge condition
divA + %c’p =0 d,A' =0. (24.27)
There theo’A LemBERT Operator
1
O=a- gaf = —0,0" (24.28)

is a four-scalan’ = 0.
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We now show that the retarded solutiéfis manifestly lorentz-invariant. We claim

AR = [ dyPonGE0ee ) (24.29)
€ o= (X -y - V) = Sty —t)? - (x-y)° (24.30)
0 1 xX®>0

00Q) = { 0 00 (24.31)

We consider now generally the integration ove-function, which depends on a functidn Apparently only
the zeroes of f contribute,

ti+e

f g(t)é(f(t))dtzz - ga()d with 1(5)=0. (24.32)

—€

With z = f(t), dz= f’(t)dt one obtains

_ o dz < 9(t)
f g()s(f (t))dt = Z I o 9D 7y = Z ol (24.33)

Thus the zeroes in th&function of (24.29) aréy = tx + |x — y|/c and their derivatives are given Wy(t,) =
c*(ty — t) = +c|x — y|, which yields

1 o1 1 . -
A = 5 [ dyraGR -y = [ dyo - B, (24.34)

The factord(ty — ty) yields the retarded solution. The solution is in agreermétit (21.14) and (21.15). If we
replace thed-function by6(t, — ty), then we obtain the advanced solution. Remember that ¢imeagithe time
difference does not change under propatdvtz transformations.
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25 Electromagnetic Field Tensor

25.a Field Tensor
We obtain the field& andB from the four-potential
1.
B = curlA, E=-gradd - EA’

for example

A3 HA? AAY  HAl

Bi= 2y~ ae = PR - PN Ep= - - T =00 - AL

e ax3 axt  9x0

Thus we introduce the electromagnetic field tensor

FI7= A — AN, F = P
It is an antisymmetric four-tensor. It reads explicitely
0 -E1 -E; -Es
Ep, 0 -Bs B

E; Bs 0 -B
Es -B, B 0

(F™) =

25.b MaxweLL’s Equations

25.ba  The Inhomogeneous Equations

The equation diE = 4mp reads
47
01F 10 + 3,F 20 1 9oF %0 = %“ i°.
From the 1-component of cuBl- E = %j one obtains

Bs 0B, O0E, 4n.
Q—Q—Q=%Ejl—>62F21+63F31+60F01=

similarly for the other components. These four componejtagions can be combined to

4
0,F* = —j".
u CJ

If we insert the representation of the fields by the potesiti@5.3), we obtain
4 .
B (A — A = %‘ .
Together with the condition for thedrenz gauged, A = 0, (24.27) one obtains
4
Av — v
0,0" c i

in agreement with (24.26) and (24.28).

4.

85

(25.1)

(25.2)

(25.3)

(25.4)

(25.5)

(25.6)

(25.7)

(25.8)

(25.9)
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25.bp The Homogeneous Equations
Similarly the homogeneous MweLL's equations can be written. From dv= 0 one obtains
IFB 4 92F3L 4 83F12 = 0 (25.10)

and (curE + 1B), = 0 reads

~PF* - °F% - °F* = 0, (25.11)
These equations can be combined to

O'FF + P+ 9 FY =0, (25.12)

One observes that these equations are only non-trivial feru # v # A. If two indices are equal, then the
left-hand side vanishes identically. One may represenggjuations equally well by the dual field tensor

A1
F = S 'Fa. (25.13)

Heree“*” is completely antisymmetric against interchange of the fiodices. Thus it changes sign, if two of
the indices are exchanged. This implies that it vanisheésdfindices are equal. It is onlyfiierent from zero,
if all four indices are dferent. It is normalized te®'?® = 1. Then one obtains explicitely

0 -B;1 -B; -Bs
By O Es -E

vy —
(F"™) = B, -Es 0 E, (25.14)
Bs E; -E; O
and (25.12) can be written 5
a,F* =0. (25.15)
One should convince oneself thais an invariant pseudo-tensor of fourth order, i.e.
€ = det(A)e™ 4, (25.16)

where detf) takes only the valuesl1 according to the discussion after (23.19). For propskrz transfor-
mations it equals-1 (23.21).

25.c Transformation of the Electric and Magnetic Fields
Since p¥) and @) transform like four-vectors, one has
FH = AM A F (25.17)

for the transformation of the electromagnetic field. If w@ake in particular

y 00 By
0O 1 0 O
Hy —
(A7) o 01 o0 | (25.18)
By 0 0 vy
then one obtains
Ei — F/lO — AlKAOAFK/l — ,yFlO _ﬂ,yFl3 — '}’(El _,BBZ)a (2519)
thus v
Ey =¥(E1 - _Bo), (25.20)
similarly
By =y(By+ \—éEz) (25.21)
v v
E;=v(E+ _B).  By=y(B- By (25.22)

E,=Es, By=B; (25.23)
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which can be combined to
Eﬁ = Ey, BI’| =B, component|| v (25.24)

v v
E, =y(E.L + c x B), B =y(B. - c x E), componentsL v. (25.25)

25.d Fields of a Point Charge in Uniform Motion

From this we can determine the fields of a charge which moviisomnstant velocity = ve,. In the rest system
S’ of the charge, which is supposed to be in the origi®gfone has

E = qr%, B = 0. (25.26)

In the systen® the coordinates of the charge agg= yq = 0, Z; = vt. Now we express’ by r andt and obtain

;o (ax ay gy(z—w)

E = (N’N’iN ) (25.27)
B = 0 (25.28)
N = =0 +y+y%(z-w)?%2 (25.29)

It follows that

E1=y(E; + !By = ¥ )
E2 = 1(E,- 1B = 4 lE= L(VN L (25.30)
Es= By = 2
By = y(B; - 1E) =
A A _ Q(vxr)
Bo =(By+ YE) = ¥ (B = (25.31)

Bs=B,=0

Areas of constanl are oblate rotational ellipsoids. The ratio short halfsgtong half-axis is given by fy =
1- "é thus the same contraction as for therkntz contraction.

25.e [DorrLer Effect
We consider a monochromatic plane wave
E=Eo, B=Bed’ withp=k-r—ot (25.32)

We know, howE andB and thusEy andBy transform. Thus we are left with considering the phaseéhich is a
four-scalar. If we write w
() = (2. k). (25.33)

then
¢ = -k X! (25.34)

follows. Since &) is an arbitrary four-vector anglis a four-scalar, it follows thak{) has to be a four-vector.
Thus one obtains for the speciadtentz transformation (25.18)

W =ck® =cy(k® - BK3) = y(w - pck®), K=k, K2=K, K3=y(K - ,8%). (25.35)
If the angle betweer-axis and direction of propagationdsthenk® = ¢ cosf holds, and one obtains

o' = wy(1l-Bcosb). (25.36)
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Thus ifv is parallel and antiparallel to the direction of propagatiesp., then one deals with the longitudinal
DoppLER shift

0=0: o =w,5 (25.37)
h=n: o =wi% (25.38)

If howeverd = /2 and®’ = xt/2, resp., then one deals with the transverserikr shift.

JT; / w
=5 W= (25.39)
o = g L W = w1 B (25.40)

Here# is the angle between tt#e-axis and the direction of propagation®.
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26 Relativistic Mechanics
EsteN realized that the constance of light velocity in vacuum draresulting lorentz transformation is not

restricted to electrodynamics, but is generally valid iygbs. Here we consider its application to mechanics
starting from the force on charges.

26.a Lorentz Force Density

The force density on moving charges reads
1
k=pE+Ej x B, (26.1)
that is e.qg. for the first component
1_ }-2 i3 _1—-0 10 _ 212 i3 13_}- 1y
Ki=pBr+ (I"Bs— "B = C(TF 7 - "R - R = ) F ™ (26.2)
Thus one introduces the four-vector of therkntz force density
1.
k¢ = EJVF”V. (26.3)

We consider the time-like component
1 1
K==jF”=Jj.E. 26.4
<] o (26.4)

The time-like component gives the mechanical energy aeduer time and volume, whereas the space-like
components give the rate of change of mechanic momentunmpeiand volume

() = i EK). (26.5)

26.b Lorentz Force Acting on a Point Charge

The four-current-density atof a point charge atx, reads
J7(%, 1) = go3(x — Xq(D)V". (26.6)
Thus the force acting on the point charge is given by
KK = gvVF’”. (26.7)

This is not a four-vector, sinceX) is not a four-vector. If we multiply it by then we obtain a four-vector, the
Minkowski force
yKH = guyF’”. (26.8)

K is the momentum which is fed into the point charge per timg oK is the power fed into it. The Mkowsk1
force is the momentum and the energy dividedbsesp., fed into it per proper time.

26.c Energy and Momentum of a Mass Point

We assume that also mechanical momentum and eftergynbine to a four-vector, since the change of mo-
mentum and energy divided lzyare components of a four-vector

@)= (E.G). (26.9)
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In the rest systers’ we expects’ = 0to hold, i.e.

1
G*") = (E Eo, 0). (26.10)
In the systens the special transformation (23.23) yields o ve,
v Eo
G=  rgBe= wg. (26.11)
E= cG’=cyG%= yE,. (26.12)
For velocities small in comparison to light-velocity ongaibs
Eo V2
G-= gv(1+ oz * ). (26.13)
In Newton's mechanics we have
GnNewton = MV (26.14)

for a mass point of mass. For velocitiesy <« ¢ the momentum of Bwron’s and of the relativistic mechanics
should agree. From this one obtains

m=— - Ep=mc, G =myv. (26.15)
Then one obtains for the energy
E = mc2y = mc? + %"vz + O(*/c?). (26.16)

One associates a rest eneffy= mc? with the masses. At small velocities the contributl@v? known from
NewTonian mechanics has to be added

G' = mu. (26.17)
ThisG is called four-momentum. We finally observe
G"G, = mfu'u, = mPc?, (26.18)
from which one obtains
G+ C_lez “ PR, E? =Rt + G2, (26.19)

One does not observe the rest enefgy= mc? as long as the particles are conserved. However they are
observed when the particles are converted, for examplen alparticle decays into two other ones

A% = 7+ p*. (26.20)
With the masses
my = 21821, m, =273m,, my = 1836me (26.21)
one obtains the momentum and energy bilance forthéhich is at rest before the decay
me = |JmEct+ G2+ \fmEct + G2? (26.22)
0 = G.+G, (26.23)

The solution of the system of equations yields

G| = 4c\/M(mA — M)(M = m)(M —mp)/my,  2M = my +m, + my,. (26.24)
By means of the four-vectors one may solve

G/ =G/ + Gy (26.25)
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with respect taG, and take the square

Gy'Gpy = (G~ — G4)(Gay — Gry) = G-Gpy + GGy — 2G- Gy

This yields
MGc? = M ¢% + N c” — 2my E,

and therefore

CZ
Eﬂ=z—m(”ﬁ+”ﬁ—m§)

and analogously
C2
Epz ﬁ(r’rﬁ—ﬁﬁ+m%)
26.d Equation of Motion
Finally we write down explicitely the equations of motiorr fmint masses

dG*
= _ KA
dt

As mentioned before these equations are not manifestlyNrz-invariant. We have, however,

dG*  dG* dt dGH
—_— Y = ’)/Kl’l s
dr dt dr dt
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(26.26)

(26.27)

(26.28)

(26.29)

(26.30)

(26.31)

where the right-hand side is themdowski force. In this form the equations of motion are manifesiginrz

invariant.
If the force does not change the rest energy of a particlepbtans from

d
GG, = nPc? — 37 (GG =0 G'yK, = 0> UK, =0,
The force is orthogonal on the world velocity. An exampléehis Lorentz force
UK = Dy =0
LA C)/V,,Vv =0,

sinceF*” is antisymmetric. We observe

cdE
VK, =-v-K+-—=0.
" Todt
Thus equation (26.32) is equivalent to
dE
—=-v-K
a -

which yields the power fed into the kinetic energy of the mass

(26.32)

(26.33)

(26.34)

(26.35)
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27 Lagrangian Formulation

27.a Lagrangian of a Massive Charge in the ElectromagneticiEld

We claim that the Lagrangiafi of a point chargg of massmin an electromagnetic field can be written

L

-mc? 1—E—q<D(r t)+9A(r t)-f
c? ’ c

XX, q .
-mc? /1 + = - EA”(x)x,l. (27.1)
Then the actiort can be written
d
| = fdt.zzz —mczfdr—gfth“d—)i” - fdr(—mcz— Ja), (27.2)

that is as a four-scalar.
Now we show that this Lagrangian yields the correct equata@motion

= _ = 27.
dt %, X, 0 27.3)
from which by use of
L mx* g q
== ZA” =G + —A” 27.4
- N O0=0T (27.4)
T
one finally obtains
9649+ 9. v)a+qvo-dvw.A) =0, (27.5)
dt c c c

Note thatA contains only the partial time-derivative &f thus we have d/dt = A + (v - V)A. By suitable
combination of the contributions one obtains

d 1. q 3

aG +q(VO + EA) - EV x(VxA) = 0 (27.6)
d q 3
aG—qE— vaB = 0. (27.7)

Thus the Lagrangian given above yields the correct equafiomotion.

27.b Lagrangian Density of the Electromagnetic Field

The Lagrangian density of the electromagnetic field of a system of charges consiste@e contributions
1, 1.,
L = —EF F/,lv - EA Jll + Lmech (278)

The mechanical part for point charges of magseads
Lieen == Y7 me [ drs* (- x(o). (27.9)
i

which yields after integration ovet*x the corresponding contribution to the actibmiven in (27.1). The

second contribution in (27.8) describes the interactidwben field and charge. Integration of this contribution

for point charges using
: dx;
AGOEDI TN ED (27.10)
i
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yields the corresponding contribution in (27.1). The fimtizibution is that of the free field. Below we will see
that it yields MaxweLL's equations correctly. The action itself reads

-1 f dXL(X) = f it f ABxL(x, 1) = f o). L = f BrL(X, 1). (27.12)

The action has to be extremal if the fieldsare varied. There we have to considfeas function ofA (25.3),
F. = 0,A, — 0,A,. Then the variation with respect foyields

1 1
6L = ——F,0F" — =j,6A” 27.12
8n H CJ ( )
SEF = §(MA — A = oA — I SN (27.13)
FudF® = Fd"0A - ,NavaAﬂ 2F 06N (27.14)
1
oL = ——F,0"6A — =,0A". 27.15
43'[ H CJ ( )

Thus the variation of the action with respect&ds

ol

1 1
f d*x( - T Fwd oA - 5 JV6AV)

v 1 1 4
f d“x—&”(F,,V(SA )+ f d*x( G”FW -3 jv)OA. (27.16)
The first term of the second line is a surface-term (in foureatisions). From the second term one concludes
MaxweLL's inhomogeneous equations (25.7)

4.
,F = %‘ . (27.17)

MaxweLL's homogeneous equations are already fulfilled due to theseptatiorF,, = 9,A, — d,A,.
Generally one obtains for a Lagrangian density, which ddpem a field &) and its derivatives by variation

f d*xsL(X)
f d*x ( A SA”(X) + T AV(X)(?”(SAV(X))
V 5L v
f d4xaﬂ(66ﬂ e (x)) f ' ((W( 5 aﬂ((wAv (X)))éA . (27.18)

Usually one denotes the partial derivatived ofith respect toA anddA by 6L/6.... Since the variation has to
vanish, one obtains in general the equations of motion

oL oL
& (66#AV(X)) ~ 500 = ° (27.19)

col

This is the generalization of dcrance’s equations of motion (27.3) for fields. There appear déwiea of
oL/6VA” with respect to the space variables besides the time-digggafsL/5A”.
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28 Energy Momentum Tensor and Conserved Quantities

28.a The Tensor

In section 15.b we have calculated the conservation law famentum from the density of theokentz force
in vacuo that is without considering additional contribut due to matter

0 0

—_ = J— —_— M
k 05— 5 5 Tope", (28.1)
1
g = H:E xB, (28.2)
1 B
M _ af (=2 2
T = E(EaEﬁ+ BBy) - g(E +B?). (28.3)

—k is the force density which feeds momentum into the electpmatic field. The zeroth component is the
energy-density, wherek® is the power density fed into the electromagnetic field. s tensity we have
obtainded in section 15.a

K0 = —}j E=Ldvs+ la (28.4)
Cc C Cc
Cc
S = _-ExB (28.5)
1 2 2
u = g(E +B?). (28.6)
We summarize
-kt =0, T (28.7)

with the electromagnetic energy-momentum tensor
u %Sl lSQ 1 S3
M M M
COs1 _T%/Il —T%/I2 _TH
COs2 _T%/Il —T%VI2 —TZN:I,)
Cgs3 —T3 —Tzp —Tg

(T = (28.8)

We have indicated the MweLLian stress tensor BJM since within a relativistic invariant description one uses

this sign convention. This energy-momentum tensor is loilfrom the energy density, the Ry~nTinG vector

(density of energy curreng, the momentum density, and the stress tensor. One observes that*” is

symmetric,T# = T, sinceT,z is symmetric andgs = %S = iE x B holds. One easily checks that

oL
"~ 4n

holds either by explicit calculation and comparison or from

1
™ (FF = 29" FFY) (28.9)

1 1 1 1
K= 2 FH = —(0F, )F* = — 8" (F, F*) - —F, 0 F*. 28.1
CJ/l A (6 V/i) 43_[6 ( vA ) It V/la ( 8 O)
From
Foa(9"FH + #FY + 9'F¥) = 0 (28.11)
one obtains the relation 1
Eaﬂ(FMFM) +2F,,0"F* = 0, (28.12)
so that finally we obtain
1 v A 1 v
k' = =0 (FuaF™) + Eaﬂ(FMF )
_ 1 M Av 1 VK A
= an(— FFY + 297 FF - (28.13)

T+ is a symmetric four-tensor, i.e. it transforms according to
T = AN T (28.14)
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28.b Conservation Laws

We start out from a four-vector fieldj4{(x). In any three-dimensional space-like subspBcef the four-
dimensional space bg#) different from zero only in a finite region. We call a space spéeeil any two
points in this space have a space-like distance. A worlg-lie. a line which everywhere has a velocity below
light-speed hits a space-like subspace in exactly one ptiione plots the subspace as a functid(r) then

its slope is everywhere less then 1. The slope of the wonleli everywhere larger than 1. For example, the
points of constant time in an inertial frame constitute sadpace-like space. We now integrate the divergence
0, j* over the four-dimensional volur, which is bounded by two space-like spa&eandR’ and obtain

fd4 fd3 % i) - R/dsx(jo—%j“). (28.15)

The contributiond, j* is integrated inx“-direction until the
boundaryR or R or until j* vanishes. This yields immedi- X
ately the contribution given for the 0O-component. For the 1-
component one obtains initially the integeal dx’dx?dx®j*

at the boundary. Thed-integration may be transformed into
an d(lﬂ-lntegratlon IfX = x? increases (decreases) at the
boundary withx!, then this is the lower (upper) limit of the
integration. Thus we have a minus-sign in frontgéff, sim-
ilarly for the other space-components.We may convince our-
selves that

x9=X(x)

3 i
fR d®x(j° - a = f dv,j (28.16)

with (dV,,) = (1, -VX)d®x is a four-scalar. If we introduce a four-vectq4‘X, so that

0 InR ~

31
o o 4y
fRd ] fd ] fd T (28.18)

where the last integral is obviously a four-scalar, sincthlax and the four-divergence dfis a four-scalar.
Since the field j*) is arbitrary, we find that\d, j* has to be a four-scalar for each infinitesima¥jlin R. Since
(j*) is a four-vector, (¥*) must be a four-vector, too. Then (28.16) reads

f d*xd, j* = f av, j# - f v, j-. (28.19)
Q R R

This is the divergence theorem in four dimensions.
From this we conclude:

i = { ;iR (28.17)

then it follows that

28.ba Charge

(j*) be the four-vector of the current density. One obtains fthenequation of continuity, j* = 0 for each
space-likeR the same result

q= % f dv,,j (28.20)
R

for the charge, since the integral of the divergenc&iim (28.19) vanishes, (since the integrand vanishes) and
since one may always choose the sadheThus the charge is a conserved quantity, more preciselyave h
found a consistent behaviour, since we already have assimnsetisection 24.c that charge is conserved. New
is that it can be determined in an arbitrary space-like tidiegensional space.
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28.bB3 Energy and Momentum

From
-kt =9, TH (28.21)

- f d*xk! = f dv, T# — f dv, T, (28.22)
Q R 24

In a charge-free spacé&*( = 0), i.e. for free electromagnetic waves one finds that thepmrants of the
momentum of radiation

one obtains

Gi = }deVT’” (28.23)
CJr

are independent d®. Thus they are conserved. Now lig ) an arbitrary but constant four-vector. Thig/T+”
is a four-vector and, (b, T#") = 0. Thenb,Gj is a four-scalar an@ is a four-vector.
If there are charges in the four-volurf¥ then one obtains.

Gi(R) = —% fg d*xk* + GA(R). (28.24)

For point-chargeg; one has (26.7, 26.30)

% f dxk- =Z f dtK” =Z f dtG" =Z(G¢(R)—G¢(F¥)). (28.25)

HereG/(R) = mu/'(R) is the four-momentum of the chargesdt the point where its worldline hits the three-
dimensional spacR. Then
G =GL(R) + Z G'(R) (28.26)
i

is the conserved four-momentum.

28.byy Angular Momentum and Movement of Center of Mass

Eq. (28.7) yields
(X' TH = XTY) = x4 XK+ TH =T, (28.27)

Since the tensor is symmetric, the last two terms cancel. We introduce theden
M#(R) = % fR dV, (T — T ), (28.28)
Itis antisymmetrioViZ = —M%*. Due to (28.19) one has
M#(R) = —% fQ d*x(x'K — ¥'k') + M (R). (28.29)
For point-charges one obtains

% fﬂ d*x(x'k — k') = Z f dt(x'K! - X'K}!) = Z f dt%(fo’i’ - X'G}). (28.30)

sincex'G* = x“G*. Therefore

M*(R) = Mg"(R) + M'(R) (28.31)
including the mechanical contribution
ME®R =Y ('8 - ¥'6)| (28.32)

is a conserved quantity, i.84%(R) is independent of the choice Bf Simultaneously*) is a four-tensor.
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Finally we have to determine the meaning\df For this purpose we considit in the three-dimensional space
R given by constant timefor a system of inerti&. Then we have

M = %fd?‘x(x”T”O =X T+ 3

x'Gl - X'G}) (28.33)

First we consider the space-like components

ues = [ gt - gg) + 3 (6l - X)) (28.34)

Thisis fore # g a component of the angular momentupmamelye,s, L,. Thus we have found the conservation
of angular momentum.
If one component is time-like then one finds

MO = ct(fd3xgg + ZG?) - ;—l;(fd3xx”u + Z X'E). (28.35)

The first contribution igt multiplied by the total momentum. The second contributthie sum of all energies
times their space-coordinate® divided byc. This second contribution can be considered as the center of
energy (actually its-component) multiplied by the total energy divided dySince total momentum and total
energy are constant, one concludes that the center of emerggs with the constant velocitﬁm‘f%"?

For non-relativistic velocities the mechanical part of émergy reduces to

MO = c(t Yar-> r’m(i’] . (28.36)

Then the conservation of this quantity comprises the unifarovement of the center of mass with the velocity
total momentum divided by total mass. In the theory of reigtithis transforms into a uniform moving center
of energy. lorentz invariance combines this conservation with the consesuatf angular momentum to the
antisymmetric tensavl.
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29 Field of an arbitrarily Moving Point-Charge

29.a Lenarp-WiecHERT Potential

First we determine the potential at a poirt) of a point-charge) which moves along a world-lingy(t). Its
four-current density reads

F(X) = a6’ (X —rq1). V' = (. Fq(). (29.1)
According to (24.29) the four-potential reads
A(X) = %fd“x’j”(x’)&(%sz)e(t—t’) = qfdt’\/’(t’)é(%sz)e(t—t’) (29.2)
with 0
S=aa, a=x-xt) (29.3) point of

observation (X

world line

") is a function of &) andt’. The diferential of 3 i
(&) is a function of &) an e diferential of5s” is of charge

given by

. rq(t
1 light cone a(®)
d(ész) =ada’ = a,dx’ — a,v'dt’. (29.4)
Thus one obtains thernknarp-WiecHErT potential \ o
1 o\ qu-
Aﬂ = \/’l ! = = . 2 .
0= 55 = 25, = 2wl (29.5)

ot

Here the two expressions with the indeare to be evaluated at the tirtieat whichs> = 0 andt > t'.
We note thab,v' =ac—a-v > 0, sincea = c(t — t') = |a. a,u”/cis the distance between point of observation
and charge in the momentary rest system of the charge.

29.b The Fields

Starting from the potentials we calculate the fields
F7 = A — " A (29.6)

In order to do this we have to determine the derivativeg afandt’

L v
M = (29.7)
/ vV Vat’
ya = P =g -V o (29.8)
i
av a
_ 29.
- (29.9)

where the last expression has been obtained 80m0 by means of (29.4). Here and in the following we use

(a-v) = av,=ac-a-v=ca—a-p) (29.10)
(v-v) = Vv, =c2-V?=c*(1-5%) (29.11)
(a-vy = avw=-a-w (29.12)
One evaluates
P o= & (29.13)

@-v)
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o = gv- (‘6’:_&::) (29.14)
d@-v) = (0"a)V, + al(0"V)
e vt via wa
(a-v) (a-v)
(V-V) (@a-v)
Then one obtains
y Voo v vidH(a-y)
TR = 6”(‘”(a-v)) ") @
- a,zbv_q(:f‘\’/; (29.16)
v - qrdvied vy eo1n
Therefore .
. 1 . 1 .
01 = G (1 + 2L )+ pla- B+ Sla-a-p)p (29.18)
and the fields read
F = a'b’ —a'b (29.19)
o0 . _ dl-pA@-Ba) gax(@@-pa)xp)
E=ab’-ab = S T qasa pF (29.20)
B = —axb=2XE (29.21)

The contribution proportional to the accelerathMecreases like /B; a, E, andB constiute an orthogonal
system for this contribution. The contribution indepertdEig falls off like 1/a2.

29.c  Uniform Motion

(compare section 25.d). The scaja'v,/cis the distance between the point of observation and the pbthe
charge in the rest-system of the charge. Thus one has

a-a-p= %Ir’l, (a-a-p)*=N/y°. (29.22)

Considering thaa = r — vt’, a = c(t — t’), one obtains

a-Ba=r—-vt'—vt+vt' =1 —vt (29.23)
and thus ( ) ( v)x ( )
_qy(r-v _(r=vt)x(r=vtgqy gqyvxr
E="N B~ c(t—t)N ~ ¢N (29.24)
in accordance with (25.30) and (25.31).
29.d Accelerated Charge Momentarily at Rest
The equations (29.20) and (29.21) simplify o 0 to
ga ¢9g :
E = = + gax (axp) (29.25)
B = -Jd@axp), (29.26)

caz?
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from which the power radiated into the solid angl@ can be determined with the energy-current density
S=LExB
A

’ 2
s _2s.n= Plae B = (@x B = 2 (nx V) (29.27)
dQ 47
and the total radiated power
) 2
U= 29 2 (29.28)

(Larmor-formula) follows.
For a harmonic motiong = rqCOSEt) andv = —rqw? cosgt) one obtains

. 2 qzrgq 4 T 1 pg 4

Ug = 3 (cos@t))?, Us= 33
in agreement with section 22.b. This appliesfok 1. Otherwise one has to take into account quadrupole and
higher multipole contributions in 22.b, and here tiatannot be neglected anymore, which yields additional

contributions in ordew® and higher orders.

(29.29)

29.e Emitted Radiations # 0

We had seen that in the system momentarily at rest the chanie the powetUs = %% . The emitted
momentum vanishes because of the symmetry of the radiatitimout consideration of the static contribution
of E, which, however, decays that fast that it does not conibmt suficiently largea)

E(-a) =E(a), B(-a)=-B(a), Tu(-a)=Ts(a). (29.30)
Thus we may write the energy-momentum-vector emitted pepgntime

d (1 S) _ L}“Zqz( du? du,l)

i (29.31)

arlcY= %)= T3

sincew’ = ¢y « v-v = 0. Since the formula is written in a lorentz-invariant wayalds in each inertial frame,
ie.

dus dfu°2q( )2(_Md(m))

dt dt ¢ 3c3 dt  dt

- 2 (o - &)

202 . i . .
= SR 200+ - ). (29.32)
With dr/dt - u®/c = 1 and
d 1 3V V
== =y — 29.33
Y=g — Yz (29.33)
C2
one obtains finally
w20 (o e(V-V)

Orbiting in a synchrotron of radiusa charge undergoes the acceleratienv?/r perpendicular to its velocity.
Thus one has

2 2
Us = 3078y /r? = Sacly® - 1712 (29.35)
The radiated energy per circulation is

AUg = @U 4“ BT, (29.36)
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At Desy one obtains for an orbiting electron of enefgy=7.5 GeV and massypc®> =0.5 MeV a valuey =

E/(moc?®) = 15000. For = 32m one obtaindU = 9.5MeV. Petra yields wittE = 19GeV ay = 38000 and
with r = 367m a radiatiolAU = 34MeV per circulation.

Exercise Hera at Desy has = 1008m and uses electrons Bf = 30GeV and protons oEp = 820GeV.
Calculate the energy radiated per circulation.
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