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Abstract – An analytical model for the kinetic equilibration of finite Bose systems is outlined.
The corresponding transport equation is solved exactly through a nonlinear transformation. The
model is applied to the equilibration of a cold quantum gas including implicitly the formation of
a Bose-Einstein condensate through particle-number conservation.
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Introduction. – Nonequilibrium processes in finite
Bose systems are of great current interest. Due to the
quantum-statistical properties of bosons, condensation
can accompany thermalization even in case of weak
interactions, when the final state deviates from a purely
thermal distribution significantly. The nonlinear kinetic
stage has been analyzed, in particular, in refs. [1,2].
Eventually all particles populate the condensed state [3,4]
when the temperature T approaches zero and the thermal
cloud vanishes.

The evolution of the distribution function towards the
one in the presence of a condensate and the time scale for
its appearance has also been considered in refs. [5,6], and
the kinetics of Bose-Einstein condensation in a trap was
discussed in, e.g., refs. [7,8]. A thorough theoretical review
is found in ref. [9], a nonlinear Schrödinger model [10,11]
in ref. [12]. The buildup of coherence in addition to kinetic
equilibration was described in ref. [13]. A review of some
of the kinetic theories is in ref. [14].

This letter presents a nonlinear model for the kinetic
evolution of a Bose gas that is exactly solvable in the limit
of constant transport coefficients, and thus can replace the
relaxation ansatz that does not properly account for the
inherent nonlinearity of the problem. Condensate forma-
tion is not treated explicitly, but only through particle-
number conservation.

The conditions for the formation of a Bose -Einstein con-
densate (BEC) may appear in very diverse physical areas
such as astronomy [15], cosmology [16], relativistic heavy-
ion collisions where gluons are generated abundantly in the
initial phase [17], and, in particular, cold atomic [18,19] as

well as two-dimensional photonic [20] samples where BECs
have actually been created experimentally.

In astronomy and cosmology, the observation of a con-
densate is likely beyond reach. In relativistic heavy-ion
collisions such as those investigated at the Relativistic
Heavy Ion Collider and the Large Hadron Collider, the
creation of a gluon condensate is impeded by inelastic
collisions and nonconservation of particle number [21,22],
although numerical solutions of the Boltzmann equation
offered some hints towards gluon condensation [23]. Cold
bosonic atoms such as 23Na or 87Rb are a more promising
tool to study nonequilibrium aspects of BEC formation. In
case of cold atoms, particle-number conservation is strictly
fulfilled during condensate formation.

The condensed state is reached as described in the
theory of second-order phase transitions by successively
decreasing the temperature and increasing the density.
Although the thermodynamics of Bose condensation is
thus understood quite well, it can only be applied to sys-
tems in thermal equilibrium [24–26]. Experimentally, a
dilute vapor of bosonic atoms is prepared below the criti-
cal temperature Tcrit using both laser cooling [27,28], and
later magnetic evaporative cooling [18,29] to remove high-
momentum atoms. Evaporation causes a compression in
phase space which eventually leads to condensation of the
weakly interacting cold atoms.

However, when the conditions for the formation of
a condensate are reached, the bosonic system can still
be far from equilibrium [30,31], and it is of interest to
investigate numerical and analytical kinetic models for
the time-dependent approach to the stationary state in
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a finite system of bosons that includes a thermal and a
condensed fraction.

It is the purpose of this work to present and solve
analytically such a kinetic model, and to apply it to
the equilibration of an ultracold quantum gas. The sta-
tistical bosonic mode population probability nth(ǫ, t) is
treated explicitly through the exact solution of a nonlinear
equation, whereas the condensed population nc(t) is con-
sidered indirectly through particle-number conservation,
Ntot = Nth(t) + Nc(t) = const.

The method is similar to the one used earlier for the
equilibration of a finite fermion system [32]. However, for
fermions, the physics of thermalization is very different
since Pauli’s exclusion principle determines the structure
of the final state and no condensate appears. For bosons,
a more detailed account of the model is given in ref. [33],
with the full expression of the analytical solution, and a
high-energy application to the local thermalization of the
dense gluon system created initially in relativistic heavy-
ion collisions.

Derivation of the transport equation. – The Boltz-
mann equation with the corresponding statistical factors
in the collision term provides a starting point to model
the time evolution of the occupation-number distribution
in a finite system of bosons. The ensuing nonlinear kinetic
equation preserves the essential features of Bose-Einstein
statistics which are contained in the Boltzmann equation.
It is then solved exactly, and applied to cold quantum
gases.

Assuming spatial homogeneity for the boson distribu-
tion function f(x, p, t) with momentum p or energy ǫ (p)
and a spherically symmetric momentum dependence, one
can reduce the kinetic equations to one dimension by car-
rying out the angular integration [34]. The equation for
the single-particle occupation numbers nj ≡ nth(ǫj , t) in
a Bose system becomes

∂n1

∂t
=

∞
∑

ǫ2,ǫ3,ǫ4

〈V 2
1234〉G (ǫ1 + ǫ2, ǫ3 + ǫ4)

×
[

(1 + n1)(1 + n2)n3 n4−(1 + n3)(1 + n4)n1 n2

]

(1)

with the second moment of the interaction 〈V 2〉 and the
energy-conserving function G. The collision term can also
be written in the form of a master equation with gain and
loss terms, respectively,

∂n1

∂t
= (1 + n1)

∑

ǫ4

W4→1 n4 − n1

∑

ǫ4

W1→4(1 + n4) (2)

with the transition probability

W4→1 =
∑

ǫ2,ǫ3

〈V 2
1234〉G (ǫ1 + ǫ2, ǫ3 + ǫ4) (1 + n2)n3 (3)

and W1→4 accordingly. The summations are then re-
placed by integrations, introducing the densities of states

gj ≡ g(ǫj) and W4→1 = W41g1, W1→4 = W14g4. Because
bosons are interchangeable, we have W41 = W14.

The function G ensures energy conservation. It is a
δ-function for an infinite system as in the usual Boltzmann
collision term where the single-particle energies are time
independent,

G (ǫ1 + ǫ2, ǫ3 + ǫ4) → π δ(ǫ1 + ǫ2 − ǫ3 − ǫ4). (4)

In a finite system the energy-conserving function may ac-
quire a width such that off-shell scatterings between single-
particle states lying apart in energy space are possible
Then W14 = W41 = W

[

1
2 (ǫ4 + ǫ1), |ǫ4 − ǫ1|

]

depends on
the absolute value of x = ǫ4−ǫ1 and is peaked at x = 0. It
is nonlinear because of the dependence on the statistical
factors in eq. (3), but here I shall explicitly treat only the
nonlinearity in eq. (2) with the option to improve this by
an iteration scheme.

An approximation to eq. (2) can then be obtained
through a Taylor expansion of n4 and g4 n4 around ǫ4 = ǫ1
to second order. By introducing transport coefficients via
moments of the transition probability

D =
1

2
g1

∫

∞

0

W (ǫ1, x)x2dx, v = g−1
1

d

dǫ1
(g1D) (5)

one arrives at a nonlinear partial differential equation for
n ≡ nth(ǫ, t) ≡ nth(ǫ1, t)

∂n

∂t
= − ∂

∂ǫ

[

v n (1 + n) − n2 ∂D

∂ǫ

]

+
∂2

∂ǫ2
[

D n
]

. (6)

Dissipative effects are expressed through the drift term
v(ǫ, t), diffusive effects through the diffusion term D(ǫ, t).
In the limit of constant transport coefficients, the nonlin-
ear boson diffusion equation for the occupation-number
distribution n(ǫ, t) becomes

∂n

∂t
= −v

∂

∂ǫ

[

n (1 + n)
]

+ D
∂2n

∂ǫ2
, (7)

and this kinetic equation can be solved exactly. The usual
thermal equilibrium distribution is a stationary solution

neq(ǫ) =
1

e(ǫ−μ)/T − 1
(8)

with the chemical potential μ < 0 in a finite boson sys-
tem. The equilibrium temperature is given in terms of the
transport coefficients, T = −D/v with v < 0 since the
drift is towards the infrared region. An equilibrium distri-
bution with μ = 0 and a constant distribution also solve
eq. (7). The particle content in the condensate [5,6,17] is
(2π)3 δ(p)×nc(t), with nc(t) the number density of bosons
in the condensed state.

The present analytical model does not treat the second-
order phase transition to the condensate below a critical
temperature Tcrit explicitly since a Boltzmann-type ap-
proach cannot account for the buildup of coherence which
is required for the phase transition to occur [5]. Instead,
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the model considers the kinetics of Bose condensation be-
fore and after the phase transition as in related numerical
approaches [6,31].

In particular, a change of the number of the non-
condensed particles in time can occur if one separates the
transitions between the continuum states and the transi-
tions from the continuum to the condensate (and back).
A version of the collision integral with energy-conserving
δ-function that separately treats collisions involving and
not involving condensate atoms is given by [35]. The sim-
plified nonlinear model outlined in this work with a fi-
nite width of the energy-conserving function and transport
coefficients D, v conjectures that the population transfer
from the thermal cloud to the condensate is describable
by the nonlinear equation (7) through the transport co-
efficients, which account for the microscopic properties of
the system.

For a fixed equilibrium temperature T as in the
present approach, the nonequilibrium evolution according
to eq. (7) pushes a certain fraction of bosons into the con-
densed state for sufficiently large times, or for tempera-
tures below the critical value Tcrit. Since eq. (7) can also
be written in the form of a continuity equation

∂n

∂t
+

1

g(ǫ)

∂j

∂ǫ
= 0, (9)

the probability current j(ǫ, t) is

j(ǫ, t) = g(ǫ)
[

v n (1 + n) − D
∂n

∂ǫ

]

. (10)

At ǫ = 0 this corresponds to the local flow of occupation
probability from the thermal cloud into the condensate if
the sign of the current is negative, and from the conden-
sate into the thermal cloud if the sign is positive. The
stationary state nstat(ǫ) = n(ǫ, t = τstat) —that replaces
the thermal equilibrium solution neq(ǫ) without conden-
sate formation— is reached for t = τstat, which can be
computed from the condition

v n(0, τstat) [1 + n(0, τstat)] = D
∂n(0, τstat)

∂ǫ
. (11)

Based on eq. (7), the equilibration process is driven by
elastic collisions that conserve the total particle number
and hence the integral over the initial distribution ni(ǫ) is
required to agree with the integral over the asymptotic dis-
tribution that includes a condensed fraction, ntot(ǫ, t) =
nth(ǫ, t) + nc(t). Due to condensation, the total particle
number Ntot at ǫ → 0 has not only a thermal fraction
Nth(t), but also a condensed fraction Nc(t).

The distribution of the thermal fraction has been found
to be isotropic in experiments with cold atoms [18]. In
contrast, the condensate atoms, which are all described by
the same macroscopic wave function, reflect anisotropies
of the confining potential. The present model considers
explicitly the equilibration in the thermal cloud, but not
the developing coherence in the condensate, and there-
fore an isotropic one-dimensional approach in momentum
space appears justified.

Analytical solution of the nonlinear equation.

– Whereas nonlinear partial differential equations are
rarely solvable in closed form, in the case of eq. (7)
an analytical solution can be obtained using a method
that was proposed in [32] for a finite fermion system.
Although the approach is similar for bosons, the different
quantum-statistical properties require a new investigation
in particular regarding the transition to a Bose-Einstein
condensate through the different statistical properties of
the boson as compared to the fermion system. The
transformation

n(ǫ, t) = − D

vP (ǫ, t)

∂P (ǫ, t)

∂ǫ
(12)

reduces the nonlinear boson equation (7) to a linear diffu-
sion equation for P (ǫ, t),

Pt = −vPǫ + DPǫǫ, (13)

where Pt = ∂P/∂t, Pǫ = ∂P/∂ǫ. An equivalent solution of
eq. (7) is possible through the linear transformation

n(ǫ, t) =
1

2v
w(ǫ, t) − 1

2
(14)

which yields Burgers’ equation [36]

wt + wwǫ = Dwǫǫ. (15)

This equation has the structure of a one-dimensional
Navier-Stokes equation without pressure term. It has
been used to describe fluid flow and, in particular, shock
waves in a viscous fluid. It can be solved through Hopf’s
transformation [37]

w(ǫ, t) = −2Dφǫ/φ (16)

which reduces eq. (15) to the heat equation φt = Dφǫǫ.

The resulting solution of eq. (7) can then be written as

n(ǫ, t) =

∫ +∞

−∞

(

ǫ−x
2vt − 1

2

)

F (ǫ − x, t)G(x) dx
∫ +∞

−∞
F (ǫ − x, t)G(x) dx

(17)

with a Gaussian part arising through the linear diffusion
(or heat) equation

F (ǫ − x, t) = exp

[

− (ǫ − x)2

4Dt

]

(18)

and an exponential function

G(x) = exp

[

− 1

2D

(

vx + 2v

∫ x

0

ni(y) dy
)

]

(19)

that contains an integral over the initial distribution ni(ǫ).
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Fig. 1: (Color online) Equilibration of a finite Bose system
based on the nonlinear evolution according to eq. (7) start-
ing from a truncated equilibrium distribution as in evapora-
tive cooling, eq. (20), upper curve with cutoff at ǫi = 7peV.
The transport coefficients are D = 8 × 10−3 neV2 s−1, v =
−1 neVs−1. The temperature T = −D/v = 8 × 10−3 neV ≃
93 nK is below the critical value for 87Rb. The time sequence
is 0.001, 0.01, 0.2, 0.5, 2 and 5ms (top to bottom) with the
equilibration time τeq = 4D/(9v2) ≃ 3.6 ms. The nonequilib-
rium occupation drops below the thermal equilibrium values
because the particles are redistributed into the BEC ground
state in the IR, and into a new UV thermal tail.

Application to ultracold quantum gases. – The
solution given by eq. (17) can be evaluated for any given
nonequilibrium initial distribution. For example, when
describing the equilibration in the course of evaporative
cooling including BEC formation, one can start with a
truncated thermal equilibrium distribution that is cut off
at a maximum energy ǫi, the energy beyond which atoms
have been removed as shown in fig. 1, upper curve with
cutoff:

nBEC
i (ǫ) = Ni

1

e(ǫ−μ)/T − 1
θ(1 − ǫ/ǫi) θ(ǫ) . (20)

Numerical integration of the full kinetic equation in [29]
has indeed shown that during evaporation the cold gas is
characterized by a thermal distribution of atom energies,
truncated at the trap depth. In the case of the analytical
model solution, eq. (17), the integration is over the full
energy domain −∞ ≤ ǫ ≤ ∞. For bosons, ni(ǫ < 0) = 0,
whereas for fermions [32], all negative-energy states in the
Dirac sea are occupied.

The time-dependent solutions, eq. (17), starting from
an initial truncated thermal equilibrium distribution,
eq. (20), with a cutoff energy ǫi = 7 peV and Ni = 1
are displayed in fig. 1 for a sequence of six times from
0.001 ms to 5 ms. The equilibrium temperature is T =
−D/v = 8 × 10−3 neV ≃ 93 nK, below the critical value
for 87Rb. The values of the transport coefficients D, v are
given in the caption.

The nonlinear evolution is seen to remove the disconti-
nuities that occur in linear relaxation models at the cutoff
energy ǫ = ǫi. The solutions of eq. (7) display a simul-
taneous fall of occupation in the IR below the thermal

Fig. 2: (Color online) Integrands n(ǫ, t)
√

ǫ for the nonlinear
evolution according to eq. (7) with initial condition given by
eq. (20), upper curve with cutoff at ǫi = 7peV. The integrands
are shown at six values of time t from 0.001 ms to 5ms, top to
bottom, as in fig. 1. The integrated particle number, eq. (21),
in the nonequilibrium thermal cloud is not conserved during
the time evolution since particles in the IR move into the ǫ = 0
condensate. With increasing time a new nonequilibrium ther-
mal tail develops in the UV.

equilibrium value neq(0) = 1/(z−1), with z = exp(−μ/T )
and neq(0) ≃ 11.2 for the example shown in fig. 1 where
z = 1.089. This fall is more pronounced at later times,
and it is accompanied by a decreasing particle number in
the nonequilibrium thermal cloud. The depletion occurs
because the particles move into the condensed state in the
IR. They are also redistributed into the emerging new UV
thermal tail.

Hence, for conserved total particle number Ntot =
Nth(t) + Nc(t) missing particles reappear as occupation
of the condensate Nc(t) = (2π)3 δ(p) × nc(t). This is ex-
pected for a Bose system below the critical temperature.
Correspondingly, the particle number in the nonequilib-
rium thermal cloud

Nth(t) =

∫

∞

0

n (ǫ, t) g (ǫ) dǫ (21)

with the density of states for a cold quantum gas moving
freely in three-dimensional space (as is the case for the
thermal cloud [18] in a trap)

g (ǫ) = (2m)3/2V
√

ǫ /(4π2) (22)

is diminishing with time. Here, m is the atomic mass and
V the volume. This is confirmed by a numerical integra-
tion of n (ǫ, t)

√
ǫ as displayed in fig. 2 for the same time

sequence as in fig. 1.
With eq. (22) the ground state has zero weight, even

though it is macroscopically occupied in the condensed
phase. As is the case in equilibrium-statistical models
for BEC, the condensed ground state must therefore be
treated separately, which is beyond the scope of eq. (7)
with initial conditions given as eq. (20): The nonlinear
model describes only the time-dependent physics of the
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thermal cloud, including the disappearance of particles
from the cloud because they move into the condensate,
but not the physics of the condensate itself. This is, how-
ever, also the case for the full Boltzmann equation if no
seed condensate is assumed.

An alternative solution of eq. (7) could be obtained
by specifying the boundary conditions nb(ǫ = 0, t) = 0,
thus forcing the system to attain zero thermal occupa-
tion at ǫ = 0. Technically, in this case the integrals
∫ +∞

−∞
in eq. (17) are replaced by

∫ +∞

0 , and the corre-
sponding Green’s function for solving the boundary value
problem at ǫ = 0 replaces eq. (18). This solution would en-
tail particle-number conservation, no particles would move
into the condensed state —which is not what is observed.
Hence, the solution of eq. (7) without boundary conditions
at ǫ = 0 is more appropriate to represent the physics in
the presence of Bose-Einstein condensation.

The accuracy of the method has been tested with
θ-function initial conditions

ni(ǫ) = Ni θ(1 − ǫ/ǫi) θ(ǫ), (23)

where the occupation is constant up to ǫi. In this case
eq. (17) can be evaluated exactly [33].

A similar initial condition had been proposed at a much
higher-energy scale for massless gluons with the dispersion
relation ǫ = |p| in relativistic heavy-ion collisions [38,39].
There it accounts for the early stages of a collision assum-
ing that all gluons up to a limiting momentum are freed
on a short time scale whereas all gluons beyond this satu-
ration momentum are not freed.

The typical momentum scale is of the order of
1 GeV/c [40], about 20 orders of magnitude higher than
the momentum scale in cold quantum gases. Yet the
same formalism can in principle be applied in both cases
to model the equilibration [33], with the caveat that in
relativistic heavy-ion collisions, the system is rapidly ex-
panding preferentially in the longitudinal direction. In a
three-dimensional setting where isotropy is violated, the
one-dimensional model, eq. (7), may be of limited useful-
ness. Analytically solvable extensions to two and three
dimensions are, however, not conceivable, and numerical
models are less transparent.

The exact evaluation [33] of eq. (17) with initial con-
dition given by eq. (23) and the corresponding numerical
result agree with high accuray, but the analytical approach
is more suitable in view of further conclusions such as the
derivation of an explicit expression for the equilibration
time. The solution can be written as a product of exponen-
tials and error functions, it has the expected behaviour in
both the IR and UV domains, and it fulfills n(ǫ, t) → ni(ǫ)
for t → 0 [33].

An explicit expression for the bosonic equilibration time
τBose
eq follows from an asymptotic expansion of the error

functions

erf (zb) ≃ 1 − 1√
π zb

exp
[

−z2
b

]

+ exp(−z2
b)O

( 1

z3
b

)

(24)

which occur in the analytical solution [33] at the boundary
xb = ǫi,

zb =
1

2
√

Dt

[

xb − ǫ + (1 + 2Ni) vt
]

. (25)

Therefore, deviations from the asymptotic solution in
the thermal tail of the distribution function scale with
exp[−(1+2Ni)

2v2t/(4D)] such that the equilibration time
in a system of bosons with an initial distribution given by
eq. (23) becomes

τBose
eq = 4D/[(1 + 2Ni)

2 v2]. (26)

As a consequence, the Bose equilibration time for Ni = 1
is a factor nine shorter than the corresponding equilibra-
tion time in a fermion system, which was found to be
τFermi
eq = 4D/v2 in [32]. This difference is solely due to the

quantum-statistical properties of a boson as compared to
a fermion system: In a fermion system, changes of the
occupation of single-particle states are suppressed due to
the exclusion principle and consequently, the equilibration
process takes more time for fermions than for bosons.

Hence, short equilibration times encountered in bosonic
systems —such as the initial state in relativistic heavy-ion
collisions that is determined mostly by gluons— are to a
large extent due to the statistical factors for bosons, as
the appearance of a phase transition in bosonic systems
is due to the particle correlations imposed by Bose statis-
tics. It is interesting that τBose

eq ∼ 1/(1 + 2Ni)
2 decreases

with rising occupation Ni of the initial state. In confined
geometries the equilibration time may be somewhat dif-
ferent from three-dimensional systems where the thermal
cloud is isotropic in momentum space, because spatially
confined geometries induce anisotropies in the momentum
distribution of the thermal cloud such that there is not a
single local equilibration time characterizing the system.

There is presently no microscopic calculation of the
transport coefficients available. However, since the model
uniquely connects v and D with T and τeq, fixed values of
the latter have been chosen to compute v, D.

Obviously, such a model with constant transport coeffi-
cients is an idealization that is motivated by the possibility
to find an exact solution of the dynamics of the thermal
cloud as described by a kinetic Boltzmann equation. From
the microscopic structure as given in eq. (5), the diffusion
coefficient D is constant if g1W41 and, therefore, the rate
W4→1 of eq. (3) in the master equation (2) is independent
of energy, which for contact interaction is true only in the
high-temperature limit when the occupations n2 and n3

are independent of energy1. For constant D, any energy
dependence of the drift according to eq. (5) is due to the
single-particle level density g1, and constant v would re-
quire an exponential energy dependence of g. Hence, the
transport coefficient functions v, D certainly call for fur-
ther detailed investigations starting from the microscopic

1This was observed by one of the referees.
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structure of the transition probabilities, which is, however,
beyond the scope of this letter which relies on constant co-
efficients to provide an exact solution.

Conclusion. – To summarize, I have outlined a
schematic model for equilibration in finite Bose systems.
The master equation for the bosonic mode occupation
probabilities has been transformed into a nonlinear par-
tial differential equation that keeps track of the statistical
factors in an essential way: It allows the system to evolve
into the condensate in the infrared region, and to develop a
thermal tail in the ultraviolet. A closed-form solution has
been obtained in the simplified case of constant transport
coefficients. I have applied the model to the equilibration
of a cold quantum gas such as 87Rb below the critical tem-
perature, with a truncated thermal equilibrium distribu-
tion as initial condition that corresponds to the situation
encountered during evaporative cooling.

The phase transition is not accounted for explicitly
in the model, but indirectly through particle-number
conservation. Hence, the model describes only the time-
dependent physics of the thermal cloud, including the dis-
appearance of particles from the cloud because they move
into the condensate —not the physics of the condensate
itself.

Dissipative and diffusive effects combine with the non-
linearity to yield the time evolution towards the asymp-
totic thermal distribution nstat(ǫ), which differs from the
usual thermal equilibrium limit neq(ǫ) since part of the
system reaches the condensed state at ǫ = 0. Simultane-
ously, a thermal tail develops within the bosonic equilibra-
tion time. This is different from fermionic systems where
all particles attain the thermal equilibrium limit at large
times [32].
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