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Setting and Problem

• Model stopping of (proton - antiproton) @ heavy-ion 
collisions (RHIC, PbPb)


• Use relativistic diffusion model

 = drift  = diffusion
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with the energy E = m⊥ cosh(y), the transverse momentum

p⊥ =
√

p2
x + p2

y , the transverse mass m⊥ =
√

m2 + p2
⊥, and

the rapidity y. In this work, we concentrate on rapidity
distributions of protons minus produced antiprotons, which
are indicative of the stopping process as described phenomeno-
logically in a relativistic diffusion model (RDM) [4,13] or in
a QCD-based approach [14]. The rapidity distribution is then
obtained by integrating over the transverse mass

dN

dy
(y,t) = C

∫
m⊥E

d3N

dp3
dm⊥ , (2)

with a normalization constant C that depends on the number of
participants at a given centrality. The experimentally observ-
able distribution dN/dy is calculated for the freeze-out time,
t = τf . The latter can be identified with the interaction time
t = τint of [4,13]: the time during which the system interacts
strongly.

We rely on Boltzmann-Gibbs statistics and hence adopt the
Maxwell-Jüttner distribution as the thermodynamic equilib-
rium distribution for t → ∞ at temperature T

E
d3N

dp3

∣∣∣
eq

∝ E exp (−E/T )

≡ m⊥ cosh(y) exp[−m⊥ cosh(y)/T ]. (3)

In thermodynamics, one makes the distinction between ex-
tensive and intensive properties. Intensive properties do not
depend on the size of the system or the amount of mass inside
the system. These are, for example, the temperature or the
mass density. Extensive properties, on the other hand, are
proportional to the mass and increase as the size of the system
increases. Typical examples are the volume and the mass itself.

In statistical physics, the entropy is also extensive:
The Boltzmann-Gibbs definition of the entropy is S =
−kB

∑"
i=1 pi ln(pi), where pi equals the probability of the

system to be in the microstate i. In the case of equal probabili-
ties and a total number of states ", it follows that pi = p = 1

"
and (with kB ≡ 1)

S = −
"∑

i=1

1
"

ln
(

1
"

)
= −

"∑

i=1

1
"

[0 − ln(")]

= ln("), (4)

which is the well-known expression for the entropy. To show
its extensivity, one takes two systems A and B which do not
interact. The number of available microstates in the combined
system is equal to the product of the ones in the individual
systems as they do not interact,

"(A + B) = "(A) "(B) . (5)

Inserting this into the definition of entropy, one gets

S(A + B) = ln["(A + B)]

= S(A) + S(B). (6)

Hence, the Boltzmann-Gibbs entropy is an extensive property
of the system.

Although classical thermodynamics is a very successful
theory, discrepancies with respect to data can arise. This is

particularly relevant in the case of nonequilibrium systems,
such as relativistic heavy-ion collisions. However, statistical
mechanics is then still built upon the principle that the infor-
mation I is minimized with constraints that are appropriate
for the given physical situation, and the entropy is uniquely
defined as S = −kBI .

Nevertheless, different concepts of entropy have been de-
veloped for nonequilibrium systems. In particular, Tsallis has
proposed to resort to nonextensive statistics [6,15] where the
entropy does not fulfill Eq. (6) but is instead given by

Sq =
〈
lnq

1
pi

〉
=

∑
pi lnq

1
pi

=
∑

pi −
∑

p
q
i

q− 1
= 1 −

∑
p

q
i

q− 1
(7)

with the entropic index q∈ R. Here, the logarithm which
causes the additivity of the entropy has been replaced by
the nonadditive q logarithm lnq(x ) such that Sq(A + B) =
Sq(A) + Sq(B) + (1 − q)Sq(A)Sq(B), and qmeasures the de-
gree of nonextensivity. The inverse of the qlogarithm is the q
exponential ex

q that solves the differential equation dy/dx =
yq through

y = [1 + (1 − q) x ]1/(1−q) ≡ ex
q . (8)

In the limit q→ 1, Sq is equal to S because

p
q
i = eqln(pi ) = e(q−1) ln(pi )+ln(pi )

= e(q−1) ln(pi )pi = pi[1 + (q− 1) ln(pi)] + O(∥q− 1∥2),

(9)

provided the last term in Eq. (9) is neglected,

Sq→1 = 1 −
∑

pi[1 + (q− 1) ln(pi)]
q− 1

= 1 −
∑

pi + (q− 1)
∑

pi ln pi

q− 1

=
∑

pi ln pi = S . (10)

There is, however, no clearly defined physical process that
would warrant a generalization from S to Sq, and no theory
available to calculate the nonextensivity exponent qfrom first
principles. It can still successfully be used as an additional
fit parameter, in particular for p⊥ distributions in pp and AA
collisions at relativistic energies which show a transition from
exponential to power-law behavior that theex

qfunction properly
describes with q∈ (1,1.5). From a more fundamental point
of view, the approach is controversial [10,11]. In this work,
we test its applicability to rapidity distributions in relativistic
heavy-ion collisions.

III. FOKKER-PLANCK EQUATION

The general form of the linear Fokker-Planck equation
(FPE) is [16]

∂

∂t
W (y,t) = − ∂

∂y
[J (y,t)W (y,t)] + ∂2

∂y2
[D(y,t)W (y,t)],

(11)
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• Know drift coefficient J(y,t) by:  
— interaction time and peak position: amplitude 
— stationary solution: functional form


• Determine diffusion by fluctuation-dissipation theorem
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Fig. 1. (Color online) Comparison of analytical solutions of
the linear FPE based on a relaxation ansatz (solid lines) with
the corresponding numerical solutions obtained in this work
(crosses). In the upper frame for t = 4∆t, in the middle frame
for t = 15∆t and in the lower frame for t = 40∆t, with ∆t =
0.01 s. For clarity not all points of the numerical solutions are
shown.

As a test of the numerical implementation, we have
first solved the FPE with a linear drift, eq. (11), and com-
pared with the exact analytical result, fig. 1. The solu-
tions are found to be identical. At short times the two
separate peaks do not affect each other, with increasing
time the mean values of the solution functions drift to-
wards midrapidity, in this case y = 0, and overlap. This
superposition leads to a single distribution at the end.
In heavy-ion physics these two initial peaks are identified
with two incoming particle beams, which collide and form
new particles from the relativistic energy. Additional test
with e.g. a diffusion equation without drift also confirm
that the numerical implementation reproduces the exact
analytical solutions.

Hence the DUNE framework can be applied for solving
the FPE with nonlinear drift coefficient. Nevertheless it is
necessary to choose the right parameters for the numer-
ical approach since, e.g., the so-called global refinement
parameter [22] can yet have an effect on the outcome. In
the numerical solution of the FPE with nonlinear drift
(eq. (27)) the time evolution appears quite similar to the
one of the linear FPE: two sharp peaks evolve with time,
broaden, eventually overlap and finally form a single dis-
tribution.

There are, however, differences in the detailed time
evolution. In particular, the nonlinear drift coefficient pro-
duces a somewhat more rapid approach towards statistical
equilibrium since it is determined by the hyperbolic sine:
The absolute value of the nonlinear drift is greater than
the drift caused by the relaxation ansatz for every rapidity
y. Also, the numerical solution for each source is not an
exact Gaussian anymore.

The numerical stationary solution of the nonlinear
FPE now agrees with the exponential part of the Boltz-
mann distribution eq. (6), exp(−E/T ), as shown in fig. 2.
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Fig. 2. (Color online) Stationary numerical solution of the
FPE with nonlinear drift eq. (27) (crosses) compared to the
exponential part of the Boltzmann distribution (solid line), and
the stationary solution eq. (24) of the linear FPE (dashed line).
Curves are normalized to the maximum value.
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Fig. 3. (Color online) Rapidity distribution with nonlinear
drift (solid curve) compared with the analytical solution of
the linear RDM (dashed curve). The numerical distribution is
shown for tint = 1.45 × 10−23 s, D = 30 × 1023 s−1 and the
size of the drift scaled with a factor of 0.6, while the analytical
distribution is shown for tint/τy = 0.56 and D = 0.8×1023 s−1;
the scaling of the drift equalizes the peak positions for this com-
parison. The dotted curves represent the numerical solutions
using a theoretical diffusion coefficient as calculated from the
dissipation-fluctuation theorem with the corresponding drift.

The difference to the stationary solution of the linear prob-
lem eq. (24), dashed curve, is seen to be rather small, it is
most pronounced in the tails. However, when calculating
rapidity distributions from eq. (30) the additional weight-
ing factor m2

⊥ cosh(y) augments the difference, see fig. 3
for the time-dependent case.

When applied to a relativistic heavy-ion collision, the
value of the relaxation time in the linear model, or the
amplitude of the drift term in the nonlinear model will
be determined from the position of the stopping peaks in
rapidity space. For identical peak positions and adjusted
diffusion coefficients as shown in fig. 3, the distribution
functions are then found to be somewhat different, with
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The initial function in Fourier space R̃(k0 , 0) is ob-
tained with a Fourier transform of eq. (15)

R̃(k0 , 0) =
1√
2π

exp

[

−
σ2k2

2
− iky0

]

. (16)

Without loss of generality, only the initial condition with
mean at y = +y0 is used in the following and for eq. (14).
After an inverse Fourier transformation of eq. (14) the
exact solution of eq. (11) is obtained

R(y, t) =
1

√

2πσ2
y

exp

[

−
(y − ⟨y⟩)2

2σ2
y

]

(17)

with mean value

⟨y⟩ = y0e
−t/τy + yeq(1 − e−t/τy ) (18)

and variance

σ2
y = σ2e−2t/τy + Dτy(1 − e−2t/τy ). (19)

This model is successfully used to describe rapidity spectra
of heavy-ion collisions by multiplying each source with
the corresponding number of charged particles. For the
rapidity spectra of produced particles dN

dy it is essential to
consider a three-sources model with the two fragmentation
sources δ(y∓ y0 ) and a midrapidity source at yeq. All three
sources correspond to an own solution of eq. (11), which
can be added incoherently due to the linearity of the PDE.
However, the RDM is also used to describe net-proton or
net-baryon rapidity distributions, where the midrapidity
source is absent.

For simplification the initial Gaussian distribution is
often approximated as a δ-peak at y0 . Then the solution
becomes

R(y, t) =
1√

2πσ̄2
exp

[

−
(y − ȳ)

2σ̄2

]

, (20)

with

ȳ = y0e
−t/τy + yeq(1 − e−t/τy ), (21)

σ̄2 = Dτy(1 − e−2t/τy ). (22)

These results differs from the previous ones only in the
standard deviations (σ and σ̄) and for larger times the two
solution functions are nearly identical. In the following,
the distribution with the initial Gaussian will be used,
since it is physically more appropriate.

2 Stationary solution of the RDM

The stationary solution of eq. (11) for t → ∞ obeys the
following differential equation:

1

Dτy

∂

∂y
[(yeq − y)Rst(y)] =

∂2

∂y2
Rst(y), (23)

solved by

Rst(y) =
1

√

2πDτy
exp

[

−
1

2Dτy
(y − yeq)

2

]

. (24)

This stationary solution differs from the thermal equilib-
rium Boltzmann distribution, introduced in eq. (7), al-
though the difference is small. The nonlinear drift term
that is required for the stationary solution to agree with
the thermal equilibrium distribution can be obtained from
the general linear FPE, eq. (8), with the stationary solu-
tion function fst(y, t)

∂

∂y
[J(y)fst(y)] = D

∂2

∂y2
fst(y). (25)

The drift is straightforwardly determined as [21]

J(y) = −
m⊥D

T
sinh(y), (26)

with fst(y) = exp(−m⊥ cosh(y)
T ), where the Einstein rela-

tion D = bT (b the mobility of the particle) is used. This
leads to a modified FPE

∂

∂t
f(y, t) =

m⊥D

T

∂

∂y
[sinh(y)f(y, t)]+D

∂2

∂y2
f(y, t), (27)

with the solution function f(y, t). Writing the amplitude
of the drift term as

A = m⊥D/T (28)

the dissipation-fluctuation theorem with the mobility b =
A/m⊥ becomes

D = AT/m⊥. (29)

According to eq. (5) the corresponding rapidity spectrum
is determined through

dN

dy
(y, t) = C

∫ ∞

m
m2

⊥ cosh(y)f(y, t) dm⊥. (30)

With the nonlinear drift the problem cannot be solved
analytically anymore. The numerical solution for Dirichlet
boundary conditions with values zero and initial Gaussian
distributions to account for the Fermi motion is discussed
in the next section.

3 Numerical solution

For the solution of eq. (27) the modular toolbox DUNE
is chosen (Distributed and Unified Numerics Environ-
ment, https://www.dune-project.org/), which is a
C++ framework for solving partial differential equations
(PDE) using grid based methods, [22] and references
therein. The numerical solution uses the finite element
method. All implementations run on a one-dimensional
grid with sizes adjusted to the problem.
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where E is the laboratory energy and p∥ the momentum
along the beam axis —in this case the z-axis. With the
relativistic energy-momentum relation (E2 = p2 +m2 ) we
can express E and p∥ in terms of y:

E = m⊥ cosh(y), (2)

p∥ = m⊥ sinh(y), (3)

where m⊥ =
√

m2 + p2
⊥ is the transverse mass and p⊥ =

√

p2
x + p2

y the transverse momentum. For the purpose of

this work the invariant differential cross-section or invari-
ant yield is the key variable, since it is invariant under
Lorentz boosts. It is given by (using eq. (2) and eq. (3))

d3N

dp3
=

d3N

dpxdpydpz

=
d3N

p⊥ dp⊥ dφdp∥
=

d2N

2πp⊥ dp⊥ d(m⊥ sinh(y))

=
d2N

2πp⊥ dp⊥ m⊥ cosh(y)dy
=

d2N

2πp⊥ dp⊥ Edy

and hence

E
d3N

dp3
=

d2N

2πp⊥ dp⊥ dy
=

d2N

2πm⊥ dm⊥ dy
. (4)

Therefore the rapidity distribution is obtained as

dN

dy
(y, t) = C

∫

m⊥ E
d3N

dp3
dm⊥ , (5)

with a normalisation constant C.
The global thermodynamical concept is given by the

Boltzmann approximation for a single particle distribu-
tion since the system’s freeze-out temperature exceeds
100MeV. Considering eq. (2) the thermal Boltzmann dis-
tribution can be rewritten in terms of rapidity y and trans-
verse mass m⊥

E
d3N

dp3
∝ Ee− E/T = m⊥ cosh(y)e− m⊥ cosh(y)/T , (6)

where T is the temperature. On the other hand, with
eq. (5) the thermal equilibrium distribution for the ra-
pidity follows as

dNeq

dy
= C

[

m2
⊥ T +

2m⊥ T 2

cosh(y)
+

2T 3

cosh2 (y)

]

× exp

(

−
m⊥ cosh(y)

T

)

. (7)

The stationary solution of the transport equation that
accounts for the approach towards thermal equilibrium
should agree with the isotropic thermal equilibrium solu-
tion eq. (7), where T is identified with the system‘s freeze-
out temperature. For a rapidity distribution f(y, t) we

write the nonequilibrium-statistical Fokker-Planck equa-
tion as

∂f(y, t)

∂t
= −

∂

∂y
[J(y)f(y, t)] + D

∂2

∂y2
f(y, t) (8)

= −
∂

∂y

{

J(y)f(y, t) − D
∂

∂y
f(y, t)

}

, (9)

with a time-independent drift term J(y) and a constant
diffusion coefficient D. In eq. (9) the FPE is recast as
a conservation law, with a density f(y, t) and a flux
w(y, t) = J(y)f(y, t) − D ∂

∂y f(y, t).

For the relativistic diffusion model [3] a relaxation
ansatz for the drift had been made

J(y) =
yeq − y

τy
(10)

with the equilibrium rapidity yeq and a relaxation time τy.
The resulting FPE is, with R(y, t) replacing f(y, t)

∂

∂t
R(y, t) =

∂

∂y

[

y − yeq

τy
R(y, t)

]

+ D
∂2

∂y2
R(y, t). (11)

Equation (11) has an exact analytical solution. The
Fourier transform of eq. (11) is

∂

∂t
R̃(k, t) +

k

τy

∂

∂k
R̃(k, t) =

[

ik

τy
yeq − k2D

]

R̃(k, t), (12)

where R̃(k, t) is the Fourier transform of R(y, t). This is
a partial differential equation of first order in k and t and
therefore solvable with the method of characteristics. This
results in

d

dt
R̃(k0 , t) =

[

ik0et/τy

τy
− Dk2

0 e
2t/τy

]

R̃(k0 , t), (13)

with k0 = ke− t/τy . After separation of the unknowns the
solution of eq. (12) is

R̃(k0 , t) = R̃(k0 , 0) exp

[

ik0yeq(e
t/τy − 1)

−
Dτy

2
k2
0 (e

2t/τy − 1)

]

. (14)

The widths of the initial peaks are determined by the
Fermi velocity vF, since the fermions in the incident nuclei
have a non-zero velocity and therefore a non-zero width
in rapidity space: for a Fermi energy of 38 MeV the cor-
responding Fermi velocity is vF = 0.28, with an ensuing
width (FWHM) in rapidity space of Γ = tanh− 1 (0.28) ≃
0.281. Hence Gaussian distributions with a finite standard
deviation σ = Γ/

√
8 ln 2 are considered as initial condi-

tion. They are given by

R(y, 0) =
1√

2πσ2
exp

[

−
(y − y0 )2

2σ2

]

(15)

with the mean y0 , representing the beam rapidity.



Account for collective 
expansion

• ‘Artificially’ through stronger diffusion coefficient, or


• Change underlying equation: non-linear Fokker-Planck 
equation
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where J is called the drift coefficient and D is the diffusion
coefficient. Here we denote the independent variable as y
because it will later considered to be the rapidity. The FPE
can also be written in the form of a continuity equation for the
probability distribution W as

∂

∂t
W + ∂

∂y
j = 0 , (12)

with j (y,t) = [J (y,t) − ∂
∂y

D(y,t)]W , which is interpreted as
a probability current [16]. Even for coefficientsJ andD that are
not time dependent it is generally difficult—if not impossible—
to find analytical solutions. Two important analytically solv-
able examples are J (y,t) = 0, D(y,t) = D (Wiener process)
and J (y,t) = −αy, D(y,t) = D (Uhlenbeck-Ornstein process
[17]). For more complicated problems, numerical methods are
employed.

In the relativistic diffusion model, the time evolution of
the rapidity spectra has been modeled by a FPE. At first, an
Uhlenbeck-Ornstein (UO) ansatz has been tested in Ref. [4].
The stationary solution in such a case is determined as

∂

∂y

[
αyW + D

∂

∂y
W

]
= 0 ⇒ ∂W

∂y
∝ −yW + C . (13)

C has to be equal to zero because otherwise W < 0,
∫

1
W

dW ∝
∫

−ydy ⇒ ln W ∝ −1
2
y2 + const.

⇒ W ∝ e− 1
2 y2

. (14)

This does not correspond to the equilibrium distribution from
Eq. (3) and therefore another drift term is needed. We see from
the above calculation that a stationary solution W ∝ e−V (y)

results from a drift term V ′(y). With the drift

J (y) = −A sinh(y) (15)

one gets the desired stationary solution [7,13] with

A = m⊥ D

T
, (16)

which can be interpreted as a fluctuation-dissipation relation
similar to one known from Brownian motion, D = bT , with
the mobility b. Hence, the dissipation as described by the
amplitude of the drift term can be related to the diffusion
coefficient that is responsible for the fluctuations.

This particular sinh-drift term has also been investigated
in Ref. [13] and the result was—as in the simple UO model
[18]—that the fluctuation-dissipation relation is violated: The
diffusion is too small to account for the experimental data.

The canonical interpretation of this result is that collec-
tive expansion occurs in the quark-gluon-plasma phase and
enhances the width. One way to match the observation is
to increase the diffusion coefficient, attributing the effect to
collective expansion [13,18]. Indeed, a general form of the
fluctuation-dissipation theorem has been used in relativistic
hydrodynamic calculations that describe systems exhibiting
longitudinal collective expansion [19].

Within the Fokker-Planck framework, another possibility is
to change the underlying equation in order to account for the

“anomalous” diffusion [7–9]. In the latter approach which we
want to test here, one extends the model to a nonlinear FPE:

∂

∂t
W (y,t)µ = − ∂

∂y
[J (y,t)W (y,t)µ]

+ ∂2

∂y2
[D(y,t)W (y,t)ν] . (17)

Analytical solution strategies for this equation in case of
ν ̸= 1,µ ̸= 1 are not readily available. However, one can
connect Eq. (17) with the nonextensive entropy Eq. (7). Indeed,
Tsallis and Bukman have shown in Ref. [6] that the result of
maximizing the entropic form

Sq[p] =
1 −

∫
du[p(u)]q

q − 1
, (18)

leads to the function

pq(y,t) = {1 − β(t)(1 − q)[y − ym(t)]2}1/(1−q)

Zq(t)
. (19)

When assuming a drift term J (y,t) = −αy and a con-
stant diffusion coefficient D(y,t) = D, the function pq(y,t) ≡
W (y,t) solves the partial differential equation Eq. (17) with
additional conditions on β(t), ym(t), and Zq(t). One can
identify q from the entropic form with the exponents µ and
ν of Eq. (17) as q = 1 + µ − ν [6].

This identification is actually only justified in the case of the
above linear drift, which is not the one we will use because the
Boltzmann equilibrium form requires a sinh drift. It was also
shown in Ref. [6] that in order to conserve the norm, µ = 1 is
required, and since we model a probability distribution we set
µ to one, such that the exponent of the diffusion term becomes
ν = 2 − q. Rewriting the diffusion term as

∂2

∂y2
[DW 2−q] = ∂2

∂y2
[(DW 1−q) W ] , (20)

we can view the nonlinearity in the exponent as ordinary
diffusion extended by a nonlinear diffusion coefficient, namely
D′ = DW 1−q. It is visualized in Fig. 1. For function values of
less than one, the diffusion is increased and for values larger
than one it is suppressed. This leads to thinner peaks and faster
diffusion in the tails.

The width that we used for the simulation (σ = 0.1),
represented by the middle curve in Fig. 1, peaks at y = 4. This
results in diffusion coefficients of 0.5 and 0.75, depending on
the value of q. In the tails, the diffusion amplification peaks at a
factor of 5 or 6 before the distribution functions get negligibly
small.

IV. NUMERICAL CALCULATIONS

A. General procedure

To arrive at a usable form for the computer, we trans-
form the equation for W (y,t) into its dimensionless version
for f (y,t) by introducing a new timescale tc, resulting in
the dimensionless time variable τ = t/tc. It follows that
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where J is called the drift coefficient and D is the diffusion
coefficient. Here we denote the independent variable as y
because it will later considered to be the rapidity. The FPE
can also be written in the form of a continuity equation for the
probability distribution W as

∂

∂t
W + ∂

∂y
j = 0 , (12)

with j (y,t) = [J (y,t) − ∂
∂y

D(y,t)]W , which is interpreted as
a probability current [16]. Even for coefficientsJ andD that are
not time dependent it is generally difficult—if not impossible—
to find analytical solutions. Two important analytically solv-
able examples are J (y,t) = 0, D(y,t) = D (Wiener process)
and J (y,t) = −αy, D(y,t) = D (Uhlenbeck-Ornstein process
[17]). For more complicated problems, numerical methods are
employed.

In the relativistic diffusion model, the time evolution of
the rapidity spectra has been modeled by a FPE. At first, an
Uhlenbeck-Ornstein (UO) ansatz has been tested in Ref. [4].
The stationary solution in such a case is determined as

∂

∂y

[
αyW + D

∂

∂y
W

]
= 0 ⇒ ∂W

∂y
∝ −yW + C . (13)

C has to be equal to zero because otherwise W < 0,
∫

1
W

dW ∝
∫

−ydy ⇒ ln W ∝ −1
2
y2 + const.

⇒ W ∝ e− 1
2 y2

. (14)

This does not correspond to the equilibrium distribution from
Eq. (3) and therefore another drift term is needed. We see from
the above calculation that a stationary solution W ∝ e−V (y)

results from a drift term V ′(y). With the drift

J (y) = −A sinh(y) (15)

one gets the desired stationary solution [7,13] with

A = m⊥ D

T
, (16)

which can be interpreted as a fluctuation-dissipation relation
similar to one known from Brownian motion, D = bT , with
the mobility b. Hence, the dissipation as described by the
amplitude of the drift term can be related to the diffusion
coefficient that is responsible for the fluctuations.

This particular sinh-drift term has also been investigated
in Ref. [13] and the result was—as in the simple UO model
[18]—that the fluctuation-dissipation relation is violated: The
diffusion is too small to account for the experimental data.

The canonical interpretation of this result is that collec-
tive expansion occurs in the quark-gluon-plasma phase and
enhances the width. One way to match the observation is
to increase the diffusion coefficient, attributing the effect to
collective expansion [13,18]. Indeed, a general form of the
fluctuation-dissipation theorem has been used in relativistic
hydrodynamic calculations that describe systems exhibiting
longitudinal collective expansion [19].

Within the Fokker-Planck framework, another possibility is
to change the underlying equation in order to account for the

“anomalous” diffusion [7–9]. In the latter approach which we
want to test here, one extends the model to a nonlinear FPE:

∂

∂t
W (y,t)µ = − ∂

∂y
[J (y,t)W (y,t)µ]

+ ∂2

∂y2
[D(y,t)W (y,t)ν] . (17)

Analytical solution strategies for this equation in case of
ν ̸= 1,µ ̸= 1 are not readily available. However, one can
connect Eq. (17) with the nonextensive entropy Eq. (7). Indeed,
Tsallis and Bukman have shown in Ref. [6] that the result of
maximizing the entropic form

Sq[p] =
1 −

∫
du[p(u)]q

q − 1
, (18)

leads to the function

pq(y,t) = {1 − β(t)(1 − q)[y − ym(t)]2}1/(1−q)

Zq(t)
. (19)

When assuming a drift term J (y,t) = −αy and a con-
stant diffusion coefficient D(y,t) = D, the function pq(y,t) ≡
W (y,t) solves the partial differential equation Eq. (17) with
additional conditions on β(t), ym(t), and Zq(t). One can
identify q from the entropic form with the exponents µ and
ν of Eq. (17) as q = 1 + µ − ν [6].

This identification is actually only justified in the case of the
above linear drift, which is not the one we will use because the
Boltzmann equilibrium form requires a sinh drift. It was also
shown in Ref. [6] that in order to conserve the norm, µ = 1 is
required, and since we model a probability distribution we set
µ to one, such that the exponent of the diffusion term becomes
ν = 2 − q. Rewriting the diffusion term as

∂2

∂y2
[DW 2−q] = ∂2

∂y2
[(DW 1−q) W ] , (20)

we can view the nonlinearity in the exponent as ordinary
diffusion extended by a nonlinear diffusion coefficient, namely
D′ = DW 1−q. It is visualized in Fig. 1. For function values of
less than one, the diffusion is increased and for values larger
than one it is suppressed. This leads to thinner peaks and faster
diffusion in the tails.

The width that we used for the simulation (σ = 0.1),
represented by the middle curve in Fig. 1, peaks at y = 4. This
results in diffusion coefficients of 0.5 and 0.75, depending on
the value of q. In the tails, the diffusion amplification peaks at a
factor of 5 or 6 before the distribution functions get negligibly
small.

IV. NUMERICAL CALCULATIONS

A. General procedure

To arrive at a usable form for the computer, we trans-
form the equation for W (y,t) into its dimensionless version
for f (y,t) by introducing a new timescale tc, resulting in
the dimensionless time variable τ = t/tc. It follows that
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with the energy E = m⊥ cosh(y), the transverse momentum

p⊥ =
√

p2
x + p2

y , the transverse mass m⊥ =
√

m2 + p2
⊥, and

the rapidity y. In this work, we concentrate on rapidity
distributions of protons minus produced antiprotons, which
are indicative of the stopping process as described phenomeno-
logically in a relativistic diffusion model (RDM) [4,13] or in
a QCD-based approach [14]. The rapidity distribution is then
obtained by integrating over the transverse mass

dN

dy
(y,t) = C

∫
m⊥E

d3N

dp3
dm⊥ , (2)

with a normalization constant C that depends on the number of
participants at a given centrality. The experimentally observ-
able distribution dN/dy is calculated for the freeze-out time,
t = τf . The latter can be identified with the interaction time
t = τint of [4,13]: the time during which the system interacts
strongly.

We rely on Boltzmann-Gibbs statistics and hence adopt the
Maxwell-Jüttner distribution as the thermodynamic equilib-
rium distribution for t → ∞ at temperature T

E
d3N

dp3

∣∣∣
eq

∝ E exp (−E/T )

≡ m⊥ cosh(y) exp[−m⊥ cosh(y)/T ]. (3)

In thermodynamics, one makes the distinction between ex-
tensive and intensive properties. Intensive properties do not
depend on the size of the system or the amount of mass inside
the system. These are, for example, the temperature or the
mass density. Extensive properties, on the other hand, are
proportional to the mass and increase as the size of the system
increases. Typical examples are the volume and the mass itself.

In statistical physics, the entropy is also extensive:
The Boltzmann-Gibbs definition of the entropy is S =
−kB

∑"
i=1 pi ln(pi), where pi equals the probability of the

system to be in the microstate i. In the case of equal probabili-
ties and a total number of states ", it follows that pi = p = 1

"
and (with kB ≡ 1)

S = −
"∑

i=1

1
"

ln
(

1
"

)
= −

"∑

i=1

1
"

[0 − ln(")]

= ln("), (4)

which is the well-known expression for the entropy. To show
its extensivity, one takes two systems A and B which do not
interact. The number of available microstates in the combined
system is equal to the product of the ones in the individual
systems as they do not interact,

"(A + B) = "(A) "(B) . (5)

Inserting this into the definition of entropy, one gets

S(A + B) = ln["(A + B)]

= S(A) + S(B). (6)

Hence, the Boltzmann-Gibbs entropy is an extensive property
of the system.

Although classical thermodynamics is a very successful
theory, discrepancies with respect to data can arise. This is

particularly relevant in the case of nonequilibrium systems,
such as relativistic heavy-ion collisions. However, statistical
mechanics is then still built upon the principle that the infor-
mation I is minimized with constraints that are appropriate
for the given physical situation, and the entropy is uniquely
defined as S = −kBI .

Nevertheless, different concepts of entropy have been de-
veloped for nonequilibrium systems. In particular, Tsallis has
proposed to resort to nonextensive statistics [6,15] where the
entropy does not fulfill Eq. (6) but is instead given by

Sq =
〈
lnq

1
pi

〉
=

∑
pi lnq

1
pi

=
∑

pi −
∑

p
q
i

q− 1
= 1 −

∑
p

q
i

q− 1
(7)

with the entropic index q∈ R. Here, the logarithm which
causes the additivity of the entropy has been replaced by
the nonadditive q logarithm lnq(x ) such that Sq(A + B) =
Sq(A) + Sq(B) + (1 − q)Sq(A)Sq(B), and qmeasures the de-
gree of nonextensivity. The inverse of the qlogarithm is the q
exponential ex

q that solves the differential equation dy/dx =
yq through

y = [1 + (1 − q) x ]1/(1−q) ≡ ex
q . (8)

In the limit q→ 1, Sq is equal to S because

p
q
i = eqln(pi ) = e(q−1) ln(pi )+ln(pi )

= e(q−1) ln(pi )pi = pi[1 + (q− 1) ln(pi)] + O(∥q− 1∥2),

(9)

provided the last term in Eq. (9) is neglected,

Sq→1 = 1 −
∑

pi[1 + (q− 1) ln(pi)]
q− 1

= 1 −
∑

pi + (q− 1)
∑

pi ln pi

q− 1

=
∑

pi ln pi = S . (10)

There is, however, no clearly defined physical process that
would warrant a generalization from S to Sq, and no theory
available to calculate the nonextensivity exponent qfrom first
principles. It can still successfully be used as an additional
fit parameter, in particular for p⊥ distributions in pp and AA
collisions at relativistic energies which show a transition from
exponential to power-law behavior that theex

qfunction properly
describes with q∈ (1,1.5). From a more fundamental point
of view, the approach is controversial [10,11]. In this work,
we test its applicability to rapidity distributions in relativistic
heavy-ion collisions.

III. FOKKER-PLANCK EQUATION

The general form of the linear Fokker-Planck equation
(FPE) is [16]

∂

∂t
W (y,t) = − ∂

∂y
[J (y,t)W (y,t)] + ∂2

∂y2
[D(y,t)W (y,t)],

(11)
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D(x, t) = D (Ornstein-Uhlenbeck process). For more complicated problems, especially

nonlinear ones, numerical methods are employed.

In the relativistic di�usion model the time evolution of the rapidity spectra has been

modeled by a FPE. At first a linear drift ansatz has been tested [3]. The stationary

solution in such a case is determined as

ˆ

ˆx

Ë
xW + ˆ

ˆx W

È
= 0 =∆ ˆW

ˆx
= ≠xW + C , (22)

C has to be equal to zero because otherwise W < 0.
⁄ 1

W
dW =

⁄
≠x dx =∆ ln W = ≠1

2x
2 + const

=∆ W Ã e
≠ 1

2 x2
.

(23)

This does not correspond to the equilibrium distribution from eq. (6) and therefore

another drift term is needed. We see from the above calculation that a stationary solution

W Ã e
≠V (x) results from a drift term V

Õ(x). Setting A = sinh(x) we get the desired

stationary solution. This drift term has also been investigated in [10] and the result was

again that the fluctuation-dissipation theorem is violated, i.e. the di�usion is too small

to account for the experimental data.

The interpretation of this result is that additional expansion inside the quark-gluon-

plasma takes place and leads to an increased di�usion. The physics behind this processes

is not yet known in detail so one has to account for them phenomenologically. One way

to achieve this is by simply increasing the di�usion coe�cient and attributing this to the

internal expansion [10]. Another way is to change the underlying equation to account

for anomalous di�usion. Taking the second route we extend the model to a nonlinear

FPE (NLFPE)

ˆ

ˆt
W

µ(x, t) = ˆ

ˆx
(≠A(x, t)W )µ(x, t) + ˆ

2

ˆx2 (D(x, t)W ‹(x, t)) . (24)

Tsallis and Bukman show in [11] that the result of maximizing the entropic form

Sq[p] = 1 ≠
s

du
#
p(u)

$q

q ≠ 1 , (25)
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Tsallis, C., & Bukman, D. J. (1996). Anomalous diffusion in the presence of external forces: Exact time-dependent solutions and their thermostatistical 
basis. Physical Review E, 54(3), R2197.
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where J is called the drift coefficient and D is the diffusion
coefficient. Here we denote the independent variable as y
because it will later considered to be the rapidity. The FPE
can also be written in the form of a continuity equation for the
probability distribution W as

∂

∂t
W + ∂

∂y
j = 0 , (12)

with j (y,t) = [J (y,t) − ∂
∂y

D(y,t)]W , which is interpreted as
a probability current [16]. Even for coefficientsJ andD that are
not time dependent it is generally difficult—if not impossible—
to find analytical solutions. Two important analytically solv-
able examples are J (y,t) = 0, D(y,t) = D (Wiener process)
and J (y,t) = −αy, D(y,t) = D (Uhlenbeck-Ornstein process
[17]). For more complicated problems, numerical methods are
employed.

In the relativistic diffusion model, the time evolution of
the rapidity spectra has been modeled by a FPE. At first, an
Uhlenbeck-Ornstein (UO) ansatz has been tested in Ref. [4].
The stationary solution in such a case is determined as

∂

∂y

[
αyW + D

∂

∂y
W

]
= 0 ⇒ ∂W

∂y
∝ −yW + C . (13)

C has to be equal to zero because otherwise W < 0,
∫

1
W

dW ∝
∫

−ydy ⇒ ln W ∝ −1
2
y2 + const.

⇒ W ∝ e− 1
2 y2

. (14)

This does not correspond to the equilibrium distribution from
Eq. (3) and therefore another drift term is needed. We see from
the above calculation that a stationary solution W ∝ e−V (y)

results from a drift term V ′(y). With the drift

J (y) = −A sinh(y) (15)

one gets the desired stationary solution [7,13] with

A = m⊥ D

T
, (16)

which can be interpreted as a fluctuation-dissipation relation
similar to one known from Brownian motion, D = bT , with
the mobility b. Hence, the dissipation as described by the
amplitude of the drift term can be related to the diffusion
coefficient that is responsible for the fluctuations.

This particular sinh-drift term has also been investigated
in Ref. [13] and the result was—as in the simple UO model
[18]—that the fluctuation-dissipation relation is violated: The
diffusion is too small to account for the experimental data.

The canonical interpretation of this result is that collec-
tive expansion occurs in the quark-gluon-plasma phase and
enhances the width. One way to match the observation is
to increase the diffusion coefficient, attributing the effect to
collective expansion [13,18]. Indeed, a general form of the
fluctuation-dissipation theorem has been used in relativistic
hydrodynamic calculations that describe systems exhibiting
longitudinal collective expansion [19].

Within the Fokker-Planck framework, another possibility is
to change the underlying equation in order to account for the

“anomalous” diffusion [7–9]. In the latter approach which we
want to test here, one extends the model to a nonlinear FPE:

∂

∂t
W (y,t)µ = − ∂

∂y
[J (y,t)W (y,t)µ]

+ ∂2

∂y2
[D(y,t)W (y,t)ν] . (17)

Analytical solution strategies for this equation in case of
ν ̸= 1,µ ̸= 1 are not readily available. However, one can
connect Eq. (17) with the nonextensive entropy Eq. (7). Indeed,
Tsallis and Bukman have shown in Ref. [6] that the result of
maximizing the entropic form

Sq[p] =
1 −

∫
du[p(u)]q

q − 1
, (18)

leads to the function

pq(y,t) = {1 − β(t)(1 − q)[y − ym(t)]2}1/(1−q)

Zq(t)
. (19)

When assuming a drift term J (y,t) = −αy and a con-
stant diffusion coefficient D(y,t) = D, the function pq(y,t) ≡
W (y,t) solves the partial differential equation Eq. (17) with
additional conditions on β(t), ym(t), and Zq(t). One can
identify q from the entropic form with the exponents µ and
ν of Eq. (17) as q = 1 + µ − ν [6].

This identification is actually only justified in the case of the
above linear drift, which is not the one we will use because the
Boltzmann equilibrium form requires a sinh drift. It was also
shown in Ref. [6] that in order to conserve the norm, µ = 1 is
required, and since we model a probability distribution we set
µ to one, such that the exponent of the diffusion term becomes
ν = 2 − q. Rewriting the diffusion term as

∂2

∂y2
[DW 2−q] = ∂2

∂y2
[(DW 1−q) W ] , (20)

we can view the nonlinearity in the exponent as ordinary
diffusion extended by a nonlinear diffusion coefficient, namely
D′ = DW 1−q. It is visualized in Fig. 1. For function values of
less than one, the diffusion is increased and for values larger
than one it is suppressed. This leads to thinner peaks and faster
diffusion in the tails.

The width that we used for the simulation (σ = 0.1),
represented by the middle curve in Fig. 1, peaks at y = 4. This
results in diffusion coefficients of 0.5 and 0.75, depending on
the value of q. In the tails, the diffusion amplification peaks at a
factor of 5 or 6 before the distribution functions get negligibly
small.

IV. NUMERICAL CALCULATIONS

A. General procedure

To arrive at a usable form for the computer, we trans-
form the equation for W (y,t) into its dimensionless version
for f (y,t) by introducing a new timescale tc, resulting in
the dimensionless time variable τ = t/tc. It follows that
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where J is called the drift coefficient and D is the diffusion
coefficient. Here we denote the independent variable as y
because it will later considered to be the rapidity. The FPE
can also be written in the form of a continuity equation for the
probability distribution W as

∂

∂t
W + ∂

∂y
j = 0 , (12)

with j (y,t) = [J (y,t) − ∂
∂y

D(y,t)]W , which is interpreted as
a probability current [16]. Even for coefficientsJ andD that are
not time dependent it is generally difficult—if not impossible—
to find analytical solutions. Two important analytically solv-
able examples are J (y,t) = 0, D(y,t) = D (Wiener process)
and J (y,t) = −αy, D(y,t) = D (Uhlenbeck-Ornstein process
[17]). For more complicated problems, numerical methods are
employed.

In the relativistic diffusion model, the time evolution of
the rapidity spectra has been modeled by a FPE. At first, an
Uhlenbeck-Ornstein (UO) ansatz has been tested in Ref. [4].
The stationary solution in such a case is determined as

∂

∂y

[
αyW + D

∂

∂y
W

]
= 0 ⇒ ∂W

∂y
∝ −yW + C . (13)

C has to be equal to zero because otherwise W < 0,
∫

1
W

dW ∝
∫

−ydy ⇒ ln W ∝ −1
2
y2 + const.

⇒ W ∝ e− 1
2 y2

. (14)

This does not correspond to the equilibrium distribution from
Eq. (3) and therefore another drift term is needed. We see from
the above calculation that a stationary solution W ∝ e−V (y)

results from a drift term V ′(y). With the drift

J (y) = −A sinh(y) (15)

one gets the desired stationary solution [7,13] with

A = m⊥ D

T
, (16)

which can be interpreted as a fluctuation-dissipation relation
similar to one known from Brownian motion, D = bT , with
the mobility b. Hence, the dissipation as described by the
amplitude of the drift term can be related to the diffusion
coefficient that is responsible for the fluctuations.

This particular sinh-drift term has also been investigated
in Ref. [13] and the result was—as in the simple UO model
[18]—that the fluctuation-dissipation relation is violated: The
diffusion is too small to account for the experimental data.

The canonical interpretation of this result is that collec-
tive expansion occurs in the quark-gluon-plasma phase and
enhances the width. One way to match the observation is
to increase the diffusion coefficient, attributing the effect to
collective expansion [13,18]. Indeed, a general form of the
fluctuation-dissipation theorem has been used in relativistic
hydrodynamic calculations that describe systems exhibiting
longitudinal collective expansion [19].

Within the Fokker-Planck framework, another possibility is
to change the underlying equation in order to account for the

“anomalous” diffusion [7–9]. In the latter approach which we
want to test here, one extends the model to a nonlinear FPE:

∂

∂t
W (y,t)µ = − ∂

∂y
[J (y,t)W (y,t)µ]

+ ∂2

∂y2
[D(y,t)W (y,t)ν] . (17)

Analytical solution strategies for this equation in case of
ν ̸= 1,µ ̸= 1 are not readily available. However, one can
connect Eq. (17) with the nonextensive entropy Eq. (7). Indeed,
Tsallis and Bukman have shown in Ref. [6] that the result of
maximizing the entropic form

Sq[p] =
1 −

∫
du[p(u)]q

q − 1
, (18)

leads to the function

pq(y,t) = {1 − β(t)(1 − q)[y − ym(t)]2}1/(1−q)

Zq(t)
. (19)

When assuming a drift term J (y,t) = −αy and a con-
stant diffusion coefficient D(y,t) = D, the function pq(y,t) ≡
W (y,t) solves the partial differential equation Eq. (17) with
additional conditions on β(t), ym(t), and Zq(t). One can
identify q from the entropic form with the exponents µ and
ν of Eq. (17) as q = 1 + µ − ν [6].

This identification is actually only justified in the case of the
above linear drift, which is not the one we will use because the
Boltzmann equilibrium form requires a sinh drift. It was also
shown in Ref. [6] that in order to conserve the norm, µ = 1 is
required, and since we model a probability distribution we set
µ to one, such that the exponent of the diffusion term becomes
ν = 2 − q. Rewriting the diffusion term as

∂2

∂y2
[DW 2−q] = ∂2

∂y2
[(DW 1−q) W ] , (20)

we can view the nonlinearity in the exponent as ordinary
diffusion extended by a nonlinear diffusion coefficient, namely
D′ = DW 1−q. It is visualized in Fig. 1. For function values of
less than one, the diffusion is increased and for values larger
than one it is suppressed. This leads to thinner peaks and faster
diffusion in the tails.

The width that we used for the simulation (σ = 0.1),
represented by the middle curve in Fig. 1, peaks at y = 4. This
results in diffusion coefficients of 0.5 and 0.75, depending on
the value of q. In the tails, the diffusion amplification peaks at a
factor of 5 or 6 before the distribution functions get negligibly
small.

IV. NUMERICAL CALCULATIONS

A. General procedure

To arrive at a usable form for the computer, we trans-
form the equation for W (y,t) into its dimensionless version
for f (y,t) by introducing a new timescale tc, resulting in
the dimensionless time variable τ = t/tc. It follows that
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FIG. 1. Comparison of the diffusion nonlinearity W 1−q for dif-
ferent q values. The coefficient is variable for q > 1 and depends on
the size of the probability distribution itself. Gauss curves with σ =
0.2,0.1,0.05 are plotted as a reference for the size of the normalized
probability distribution function.

∂
∂t

= ∂
∂τ

t−1
c and further

∂f

∂τ
= tc A

∂

∂y
[sinh(y) f (y,t)] + tc D

∂2

∂y2
[f (y,t)2−q] .

(21)

Since A = m⊥D/T , we set tc = T/(m⊥D) = A−1. The
result is the dimensionless Eq. (22) depending only on the ratio
γ = T/m⊥ of temperature T and transverse mass m⊥ which
is a measure of the strength of the diffusion,

∂f

∂τ
= ∂

∂y
[sinh(y) f (y,t)] + γ

∂2

∂y2
[f (y,t)2−q] . (22)

To get physical values for the drift and diffusion coefficients,
one has to specify a timescale (or the other way round).
Considering that it is only the drift term that is responsible
for determining the peak position, we are free to chose the
time τ such that the peak position of the experimental data
is reproduced. This leaves as free parameters the diffusion
strength γ and the nonextensivity parameter q.

We calculate the solution using two different methods in
order to gain insight about the accuracy. The more straightfor-
ward one was using MATLAB’s integration routines for solving
parabolic-elliptic PDEs. The second, more elaborate method,
was implementing it in a finite-element-method framework
(FEM) (DUNE [20] and FEniCS [21]).

To make use of the FEM, we have to convert our PDE
into the so-called weak formulation, which reformulates the
problem as an integral equation. This is done by integrating
the left-hand side (LHS) of Eq. (22) over the whole domain
% ⊂ R and multiplying it by a test function g(y) that vanishes
on the boundary ∂%,

∫

%

dy

{
g(y)

∂

∂y

[
sinh(y) f (y,t) + γ

∂

∂y
f (y,t)2−q

]}
.

(23)

Integrating this by parts, we get
[
g(y)

{
sinh(y)f (y,t) + γ

∂

∂y
f (y,t)2−q

}]∣∣∣∣
∂%

−
∫

%

dy

{
∂g

∂y

[
sinh(y)f (y,t) + γ

∂

∂y
f (y,t)2−q

]}
. (24)

The first line in Eq. (24) vanishes because of g and the second
line contains only first derivatives. To approximate the time
derivative in Eq. (22) (LHS), we use the backward Euler
scheme

∂f (tn)
∂t

= f (tn) − f (tn−1)
&t

+ O(∥&t2∥) . (25)

For both methods, the chain rule is used to write ∂
∂y

f 2−q

as (2 − q)f 1−q ∂
∂y

f . Because we analyze cases for q > 0,
we have to take care of the singularity at f = 0. To get
around this issue, we add a small constant to the argument
stabilizing the computation: (f + ϵ)1−q . In MATLAB, we use
the routine pdepe to integrate the equation. It is suited for
parabolic-elliptic problems and we could directly insert the
PDE without modifying it.

To compare the simulation to experimental data, we have to
insert relevant values for T , m⊥, and the initial conditions,
most importantly y0. The value of the beam rapidity y0 is
determined by the center-of-mass energy per nucleon pair as
y0 = ln(

√
sNN/mp). Two Gaussian distributions centered at

±y0 with a small width σ that corresponds to the Fermi motion
represent the incoming ions before the collision. The exact
value of σ does not have a large effect on the time evolution
[13]; here we use a value of 0.1.

For the temperature, we take the critical value 160 MeV
for the transition between hadronic matter and quark-gluon
plasma. The actual freeze-out temperature is smaller (T =
118 ± 5 MeV for Pb-Pb at SPS energies [2]); overestimating
the temperature will increase the diffusion. For 17.2 GeV
Pb-Pb, the transverse mass is taken to be m⊥ = 1.17 GeV,
as the average transverse momentum p⊥ is around 0.7 GeV
[2]. The dimensionless diffusion strength γ is thus 0.137.
Corresponding values for 200-GeV Au-Au will be given later.

The results are then transformed to a rapidity distribution
[13]. Rewriting Eq. (2) and replacing d3N/dp3 with the
computed distribution f (y,t), we obtain

dN

dy
(y,t) = C

∫
m2

⊥ cosh(y)f (y,t)dm⊥ . (26)

Since the transverse mass m⊥ is mainly distributed around mp

[2], we introduce an upper integration limit m∗ such that the
second moment of m⊥ corresponds to the measured value [2]
at SPS energies, and accordingly at RHIC energies

⟨m2
⊥⟩ =

∫ m∗

mp

m2
⊥dm⊥ . (27)

The rapidity distribution for net protons can then approxi-
mately be written as

dN

dy
(y,t) ≈ C̃⟨m2

⊥⟩ cosh(y)f (y,t) . (28)

044913-4

A. SIMON AND G. WOLSCHIN PHYSICAL REVIEW C 97, 044913 (2018)

FIG. 1. Comparison of the diffusion nonlinearity W 1−q for dif-
ferent q values. The coefficient is variable for q > 1 and depends on
the size of the probability distribution itself. Gauss curves with σ =
0.2,0.1,0.05 are plotted as a reference for the size of the normalized
probability distribution function.

∂
∂t

= ∂
∂τ

t−1
c and further

∂f

∂τ
= tc A

∂

∂y
[sinh(y) f (y,t)] + tc D

∂2

∂y2
[f (y,t)2−q] .

(21)

Since A = m⊥D/T , we set tc = T/(m⊥D) = A−1. The
result is the dimensionless Eq. (22) depending only on the ratio
γ = T/m⊥ of temperature T and transverse mass m⊥ which
is a measure of the strength of the diffusion,

∂f

∂τ
= ∂

∂y
[sinh(y) f (y,t)] + γ

∂2

∂y2
[f (y,t)2−q] . (22)

To get physical values for the drift and diffusion coefficients,
one has to specify a timescale (or the other way round).
Considering that it is only the drift term that is responsible
for determining the peak position, we are free to chose the
time τ such that the peak position of the experimental data
is reproduced. This leaves as free parameters the diffusion
strength γ and the nonextensivity parameter q.

We calculate the solution using two different methods in
order to gain insight about the accuracy. The more straightfor-
ward one was using MATLAB’s integration routines for solving
parabolic-elliptic PDEs. The second, more elaborate method,
was implementing it in a finite-element-method framework
(FEM) (DUNE [20] and FEniCS [21]).

To make use of the FEM, we have to convert our PDE
into the so-called weak formulation, which reformulates the
problem as an integral equation. This is done by integrating
the left-hand side (LHS) of Eq. (22) over the whole domain
% ⊂ R and multiplying it by a test function g(y) that vanishes
on the boundary ∂%,

∫

%

dy

{
g(y)

∂

∂y

[
sinh(y) f (y,t) + γ

∂

∂y
f (y,t)2−q

]}
.

(23)

Integrating this by parts, we get
[
g(y)

{
sinh(y)f (y,t) + γ

∂

∂y
f (y,t)2−q

}]∣∣∣∣
∂%

−
∫

%

dy

{
∂g

∂y

[
sinh(y)f (y,t) + γ

∂

∂y
f (y,t)2−q

]}
. (24)

The first line in Eq. (24) vanishes because of g and the second
line contains only first derivatives. To approximate the time
derivative in Eq. (22) (LHS), we use the backward Euler
scheme

∂f (tn)
∂t

= f (tn) − f (tn−1)
&t

+ O(∥&t2∥) . (25)

For both methods, the chain rule is used to write ∂
∂y

f 2−q

as (2 − q)f 1−q ∂
∂y

f . Because we analyze cases for q > 0,
we have to take care of the singularity at f = 0. To get
around this issue, we add a small constant to the argument
stabilizing the computation: (f + ϵ)1−q . In MATLAB, we use
the routine pdepe to integrate the equation. It is suited for
parabolic-elliptic problems and we could directly insert the
PDE without modifying it.

To compare the simulation to experimental data, we have to
insert relevant values for T , m⊥, and the initial conditions,
most importantly y0. The value of the beam rapidity y0 is
determined by the center-of-mass energy per nucleon pair as
y0 = ln(

√
sNN/mp). Two Gaussian distributions centered at

±y0 with a small width σ that corresponds to the Fermi motion
represent the incoming ions before the collision. The exact
value of σ does not have a large effect on the time evolution
[13]; here we use a value of 0.1.

For the temperature, we take the critical value 160 MeV
for the transition between hadronic matter and quark-gluon
plasma. The actual freeze-out temperature is smaller (T =
118 ± 5 MeV for Pb-Pb at SPS energies [2]); overestimating
the temperature will increase the diffusion. For 17.2 GeV
Pb-Pb, the transverse mass is taken to be m⊥ = 1.17 GeV,
as the average transverse momentum p⊥ is around 0.7 GeV
[2]. The dimensionless diffusion strength γ is thus 0.137.
Corresponding values for 200-GeV Au-Au will be given later.

The results are then transformed to a rapidity distribution
[13]. Rewriting Eq. (2) and replacing d3N/dp3 with the
computed distribution f (y,t), we obtain

dN

dy
(y,t) = C

∫
m2

⊥ cosh(y)f (y,t)dm⊥ . (26)

Since the transverse mass m⊥ is mainly distributed around mp

[2], we introduce an upper integration limit m∗ such that the
second moment of m⊥ corresponds to the measured value [2]
at SPS energies, and accordingly at RHIC energies

⟨m2
⊥⟩ =

∫ m∗

mp

m2
⊥dm⊥ . (27)

The rapidity distribution for net protons can then approxi-
mately be written as

dN

dy
(y,t) ≈ C̃⟨m2

⊥⟩ cosh(y)f (y,t) . (28)
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where J is called the drift coefficient and D is the diffusion
coefficient. Here we denote the independent variable as y
because it will later considered to be the rapidity. The FPE
can also be written in the form of a continuity equation for the
probability distribution W as

∂

∂t
W + ∂

∂y
j = 0 , (12)

with j (y,t) = [J (y,t) − ∂
∂y

D(y,t)]W , which is interpreted as
a probability current [16]. Even for coefficientsJ andD that are
not time dependent it is generally difficult—if not impossible—
to find analytical solutions. Two important analytically solv-
able examples are J (y,t) = 0, D(y,t) = D (Wiener process)
and J (y,t) = −αy, D(y,t) = D (Uhlenbeck-Ornstein process
[17]). For more complicated problems, numerical methods are
employed.

In the relativistic diffusion model, the time evolution of
the rapidity spectra has been modeled by a FPE. At first, an
Uhlenbeck-Ornstein (UO) ansatz has been tested in Ref. [4].
The stationary solution in such a case is determined as

∂

∂y

[
αyW + D

∂

∂y
W

]
= 0 ⇒ ∂W

∂y
∝ −yW + C . (13)

C has to be equal to zero because otherwise W < 0,
∫

1
W

dW ∝
∫

−ydy ⇒ ln W ∝ −1
2
y2 + const.

⇒ W ∝ e− 1
2 y2

. (14)

This does not correspond to the equilibrium distribution from
Eq. (3) and therefore another drift term is needed. We see from
the above calculation that a stationary solution W ∝ e−V (y)

results from a drift term V ′(y). With the drift

J (y) = −A sinh(y) (15)

one gets the desired stationary solution [7,13] with

A = m⊥ D

T
, (16)

which can be interpreted as a fluctuation-dissipation relation
similar to one known from Brownian motion, D = bT , with
the mobility b. Hence, the dissipation as described by the
amplitude of the drift term can be related to the diffusion
coefficient that is responsible for the fluctuations.

This particular sinh-drift term has also been investigated
in Ref. [13] and the result was—as in the simple UO model
[18]—that the fluctuation-dissipation relation is violated: The
diffusion is too small to account for the experimental data.

The canonical interpretation of this result is that collec-
tive expansion occurs in the quark-gluon-plasma phase and
enhances the width. One way to match the observation is
to increase the diffusion coefficient, attributing the effect to
collective expansion [13,18]. Indeed, a general form of the
fluctuation-dissipation theorem has been used in relativistic
hydrodynamic calculations that describe systems exhibiting
longitudinal collective expansion [19].

Within the Fokker-Planck framework, another possibility is
to change the underlying equation in order to account for the

“anomalous” diffusion [7–9]. In the latter approach which we
want to test here, one extends the model to a nonlinear FPE:

∂

∂t
W (y,t)µ = − ∂

∂y
[J (y,t)W (y,t)µ]

+ ∂2

∂y2
[D(y,t)W (y,t)ν] . (17)

Analytical solution strategies for this equation in case of
ν ̸= 1,µ ̸= 1 are not readily available. However, one can
connect Eq. (17) with the nonextensive entropy Eq. (7). Indeed,
Tsallis and Bukman have shown in Ref. [6] that the result of
maximizing the entropic form

Sq[p] =
1 −

∫
du[p(u)]q

q − 1
, (18)

leads to the function

pq(y,t) = {1 − β(t)(1 − q)[y − ym(t)]2}1/(1−q)

Zq(t)
. (19)

When assuming a drift term J (y,t) = −αy and a con-
stant diffusion coefficient D(y,t) = D, the function pq(y,t) ≡
W (y,t) solves the partial differential equation Eq. (17) with
additional conditions on β(t), ym(t), and Zq(t). One can
identify q from the entropic form with the exponents µ and
ν of Eq. (17) as q = 1 + µ − ν [6].

This identification is actually only justified in the case of the
above linear drift, which is not the one we will use because the
Boltzmann equilibrium form requires a sinh drift. It was also
shown in Ref. [6] that in order to conserve the norm, µ = 1 is
required, and since we model a probability distribution we set
µ to one, such that the exponent of the diffusion term becomes
ν = 2 − q. Rewriting the diffusion term as

∂2

∂y2
[DW 2−q] = ∂2

∂y2
[(DW 1−q) W ] , (20)

we can view the nonlinearity in the exponent as ordinary
diffusion extended by a nonlinear diffusion coefficient, namely
D′ = DW 1−q. It is visualized in Fig. 1. For function values of
less than one, the diffusion is increased and for values larger
than one it is suppressed. This leads to thinner peaks and faster
diffusion in the tails.

The width that we used for the simulation (σ = 0.1),
represented by the middle curve in Fig. 1, peaks at y = 4. This
results in diffusion coefficients of 0.5 and 0.75, depending on
the value of q. In the tails, the diffusion amplification peaks at a
factor of 5 or 6 before the distribution functions get negligibly
small.

IV. NUMERICAL CALCULATIONS

A. General procedure

To arrive at a usable form for the computer, we trans-
form the equation for W (y,t) into its dimensionless version
for f (y,t) by introducing a new timescale tc, resulting in
the dimensionless time variable τ = t/tc. It follows that
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It follows that ˆ
ˆt = ˆ

ˆ· t
≠1
c and further

ˆf

ˆ·
= tc A

ˆ

ˆy

#
sinh(y) f(y, t)

$
+ tc D

ˆ
2

ˆy2

Ë
f(y, t)2≠q

È
. (28)

Since A = mT D
T we set tc = T

mT D = A
≠1. The result is the dimensionless eq. (29)

depending only on the ratio “ = T
mT

of temperature T and transverse mass mT which is

a measure of the strength of the di�usion.
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sinh(y) f(y, t)
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Ë
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To get physical values for the drift and di�usion coe�cients one has to specify a time scale
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FIG. 1. Comparison of the diffusion nonlinearity W 1−q for dif-
ferent q values. The coefficient is variable for q > 1 and depends on
the size of the probability distribution itself. Gauss curves with σ =
0.2,0.1,0.05 are plotted as a reference for the size of the normalized
probability distribution function.

∂
∂t

= ∂
∂τ

t−1
c and further

∂f

∂τ
= tc A

∂

∂y
[sinh(y) f (y,t)] + tc D

∂2

∂y2
[f (y,t)2−q] .

(21)

Since A = m⊥D/T , we set tc = T/(m⊥D) = A−1. The
result is the dimensionless Eq. (22) depending only on the ratio
γ = T/m⊥ of temperature T and transverse mass m⊥ which
is a measure of the strength of the diffusion,

∂f

∂τ
= ∂

∂y
[sinh(y) f (y,t)] + γ

∂2

∂y2
[f (y,t)2−q] . (22)

To get physical values for the drift and diffusion coefficients,
one has to specify a timescale (or the other way round).
Considering that it is only the drift term that is responsible
for determining the peak position, we are free to chose the
time τ such that the peak position of the experimental data
is reproduced. This leaves as free parameters the diffusion
strength γ and the nonextensivity parameter q.

We calculate the solution using two different methods in
order to gain insight about the accuracy. The more straightfor-
ward one was using MATLAB’s integration routines for solving
parabolic-elliptic PDEs. The second, more elaborate method,
was implementing it in a finite-element-method framework
(FEM) (DUNE [20] and FEniCS [21]).

To make use of the FEM, we have to convert our PDE
into the so-called weak formulation, which reformulates the
problem as an integral equation. This is done by integrating
the left-hand side (LHS) of Eq. (22) over the whole domain
% ⊂ R and multiplying it by a test function g(y) that vanishes
on the boundary ∂%,

∫

%

dy

{
g(y)

∂

∂y

[
sinh(y) f (y,t) + γ

∂

∂y
f (y,t)2−q

]}
.

(23)

Integrating this by parts, we get
[
g(y)

{
sinh(y)f (y,t) + γ

∂

∂y
f (y,t)2−q

}]∣∣∣∣
∂%

−
∫

%

dy

{
∂g

∂y

[
sinh(y)f (y,t) + γ

∂

∂y
f (y,t)2−q

]}
. (24)

The first line in Eq. (24) vanishes because of g and the second
line contains only first derivatives. To approximate the time
derivative in Eq. (22) (LHS), we use the backward Euler
scheme

∂f (tn)
∂t

= f (tn) − f (tn−1)
&t

+ O(∥&t2∥) . (25)

For both methods, the chain rule is used to write ∂
∂y

f 2−q

as (2 − q)f 1−q ∂
∂y

f . Because we analyze cases for q > 0,
we have to take care of the singularity at f = 0. To get
around this issue, we add a small constant to the argument
stabilizing the computation: (f + ϵ)1−q . In MATLAB, we use
the routine pdepe to integrate the equation. It is suited for
parabolic-elliptic problems and we could directly insert the
PDE without modifying it.

To compare the simulation to experimental data, we have to
insert relevant values for T , m⊥, and the initial conditions,
most importantly y0. The value of the beam rapidity y0 is
determined by the center-of-mass energy per nucleon pair as
y0 = ln(

√
sNN/mp). Two Gaussian distributions centered at

±y0 with a small width σ that corresponds to the Fermi motion
represent the incoming ions before the collision. The exact
value of σ does not have a large effect on the time evolution
[13]; here we use a value of 0.1.

For the temperature, we take the critical value 160 MeV
for the transition between hadronic matter and quark-gluon
plasma. The actual freeze-out temperature is smaller (T =
118 ± 5 MeV for Pb-Pb at SPS energies [2]); overestimating
the temperature will increase the diffusion. For 17.2 GeV
Pb-Pb, the transverse mass is taken to be m⊥ = 1.17 GeV,
as the average transverse momentum p⊥ is around 0.7 GeV
[2]. The dimensionless diffusion strength γ is thus 0.137.
Corresponding values for 200-GeV Au-Au will be given later.

The results are then transformed to a rapidity distribution
[13]. Rewriting Eq. (2) and replacing d3N/dp3 with the
computed distribution f (y,t), we obtain

dN

dy
(y,t) = C

∫
m2

⊥ cosh(y)f (y,t)dm⊥ . (26)

Since the transverse mass m⊥ is mainly distributed around mp

[2], we introduce an upper integration limit m∗ such that the
second moment of m⊥ corresponds to the measured value [2]
at SPS energies, and accordingly at RHIC energies

⟨m2
⊥⟩ =

∫ m∗

mp

m2
⊥dm⊥ . (27)

The rapidity distribution for net protons can then approxi-
mately be written as

dN

dy
(y,t) ≈ C̃⟨m2

⊥⟩ cosh(y)f (y,t) . (28)
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FIG. 1. Comparison of the diffusion nonlinearity W 1−q for dif-
ferent q values. The coefficient is variable for q > 1 and depends on
the size of the probability distribution itself. Gauss curves with σ =
0.2,0.1,0.05 are plotted as a reference for the size of the normalized
probability distribution function.

∂
∂t

= ∂
∂τ

t−1
c and further

∂f

∂τ
= tc A

∂

∂y
[sinh(y) f (y,t)] + tc D

∂2

∂y2
[f (y,t)2−q] .

(21)

Since A = m⊥D/T , we set tc = T/(m⊥D) = A−1. The
result is the dimensionless Eq. (22) depending only on the ratio
γ = T/m⊥ of temperature T and transverse mass m⊥ which
is a measure of the strength of the diffusion,

∂f

∂τ
= ∂

∂y
[sinh(y) f (y,t)] + γ

∂2

∂y2
[f (y,t)2−q] . (22)

To get physical values for the drift and diffusion coefficients,
one has to specify a timescale (or the other way round).
Considering that it is only the drift term that is responsible
for determining the peak position, we are free to chose the
time τ such that the peak position of the experimental data
is reproduced. This leaves as free parameters the diffusion
strength γ and the nonextensivity parameter q.

We calculate the solution using two different methods in
order to gain insight about the accuracy. The more straightfor-
ward one was using MATLAB’s integration routines for solving
parabolic-elliptic PDEs. The second, more elaborate method,
was implementing it in a finite-element-method framework
(FEM) (DUNE [20] and FEniCS [21]).

To make use of the FEM, we have to convert our PDE
into the so-called weak formulation, which reformulates the
problem as an integral equation. This is done by integrating
the left-hand side (LHS) of Eq. (22) over the whole domain
% ⊂ R and multiplying it by a test function g(y) that vanishes
on the boundary ∂%,

∫

%

dy

{
g(y)

∂

∂y

[
sinh(y) f (y,t) + γ

∂

∂y
f (y,t)2−q

]}
.

(23)

Integrating this by parts, we get
[
g(y)

{
sinh(y)f (y,t) + γ

∂

∂y
f (y,t)2−q

}]∣∣∣∣
∂%

−
∫

%

dy

{
∂g

∂y

[
sinh(y)f (y,t) + γ

∂

∂y
f (y,t)2−q

]}
. (24)

The first line in Eq. (24) vanishes because of g and the second
line contains only first derivatives. To approximate the time
derivative in Eq. (22) (LHS), we use the backward Euler
scheme

∂f (tn)
∂t

= f (tn) − f (tn−1)
&t

+ O(∥&t2∥) . (25)

For both methods, the chain rule is used to write ∂
∂y

f 2−q

as (2 − q)f 1−q ∂
∂y

f . Because we analyze cases for q > 0,
we have to take care of the singularity at f = 0. To get
around this issue, we add a small constant to the argument
stabilizing the computation: (f + ϵ)1−q . In MATLAB, we use
the routine pdepe to integrate the equation. It is suited for
parabolic-elliptic problems and we could directly insert the
PDE without modifying it.

To compare the simulation to experimental data, we have to
insert relevant values for T , m⊥, and the initial conditions,
most importantly y0. The value of the beam rapidity y0 is
determined by the center-of-mass energy per nucleon pair as
y0 = ln(

√
sNN/mp). Two Gaussian distributions centered at

±y0 with a small width σ that corresponds to the Fermi motion
represent the incoming ions before the collision. The exact
value of σ does not have a large effect on the time evolution
[13]; here we use a value of 0.1.

For the temperature, we take the critical value 160 MeV
for the transition between hadronic matter and quark-gluon
plasma. The actual freeze-out temperature is smaller (T =
118 ± 5 MeV for Pb-Pb at SPS energies [2]); overestimating
the temperature will increase the diffusion. For 17.2 GeV
Pb-Pb, the transverse mass is taken to be m⊥ = 1.17 GeV,
as the average transverse momentum p⊥ is around 0.7 GeV
[2]. The dimensionless diffusion strength γ is thus 0.137.
Corresponding values for 200-GeV Au-Au will be given later.

The results are then transformed to a rapidity distribution
[13]. Rewriting Eq. (2) and replacing d3N/dp3 with the
computed distribution f (y,t), we obtain

dN

dy
(y,t) = C

∫
m2

⊥ cosh(y)f (y,t)dm⊥ . (26)

Since the transverse mass m⊥ is mainly distributed around mp

[2], we introduce an upper integration limit m∗ such that the
second moment of m⊥ corresponds to the measured value [2]
at SPS energies, and accordingly at RHIC energies

⟨m2
⊥⟩ =

∫ m∗

mp

m2
⊥dm⊥ . (27)

The rapidity distribution for net protons can then approxi-
mately be written as

dN

dy
(y,t) ≈ C̃⟨m2

⊥⟩ cosh(y)f (y,t) . (28)
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FIG. 1. Comparison of the diffusion nonlinearity W 1−q for dif-
ferent q values. The coefficient is variable for q > 1 and depends on
the size of the probability distribution itself. Gauss curves with σ =
0.2,0.1,0.05 are plotted as a reference for the size of the normalized
probability distribution function.

∂
∂t

= ∂
∂τ

t−1
c and further

∂f

∂τ
= tc A

∂

∂y
[sinh(y) f (y,t)] + tc D

∂2

∂y2
[f (y,t)2−q] .

(21)

Since A = m⊥D/T , we set tc = T/(m⊥D) = A−1. The
result is the dimensionless Eq. (22) depending only on the ratio
γ = T/m⊥ of temperature T and transverse mass m⊥ which
is a measure of the strength of the diffusion,

∂f

∂τ
= ∂

∂y
[sinh(y) f (y,t)] + γ

∂2

∂y2
[f (y,t)2−q] . (22)

To get physical values for the drift and diffusion coefficients,
one has to specify a timescale (or the other way round).
Considering that it is only the drift term that is responsible
for determining the peak position, we are free to chose the
time τ such that the peak position of the experimental data
is reproduced. This leaves as free parameters the diffusion
strength γ and the nonextensivity parameter q.

We calculate the solution using two different methods in
order to gain insight about the accuracy. The more straightfor-
ward one was using MATLAB’s integration routines for solving
parabolic-elliptic PDEs. The second, more elaborate method,
was implementing it in a finite-element-method framework
(FEM) (DUNE [20] and FEniCS [21]).

To make use of the FEM, we have to convert our PDE
into the so-called weak formulation, which reformulates the
problem as an integral equation. This is done by integrating
the left-hand side (LHS) of Eq. (22) over the whole domain
% ⊂ R and multiplying it by a test function g(y) that vanishes
on the boundary ∂%,

∫

%

dy

{
g(y)

∂

∂y

[
sinh(y) f (y,t) + γ

∂

∂y
f (y,t)2−q

]}
.

(23)

Integrating this by parts, we get
[
g(y)

{
sinh(y)f (y,t) + γ

∂

∂y
f (y,t)2−q

}]∣∣∣∣
∂%

−
∫

%

dy

{
∂g

∂y

[
sinh(y)f (y,t) + γ

∂

∂y
f (y,t)2−q

]}
. (24)

The first line in Eq. (24) vanishes because of g and the second
line contains only first derivatives. To approximate the time
derivative in Eq. (22) (LHS), we use the backward Euler
scheme

∂f (tn)
∂t

= f (tn) − f (tn−1)
&t

+ O(∥&t2∥) . (25)

For both methods, the chain rule is used to write ∂
∂y

f 2−q

as (2 − q)f 1−q ∂
∂y

f . Because we analyze cases for q > 0,
we have to take care of the singularity at f = 0. To get
around this issue, we add a small constant to the argument
stabilizing the computation: (f + ϵ)1−q . In MATLAB, we use
the routine pdepe to integrate the equation. It is suited for
parabolic-elliptic problems and we could directly insert the
PDE without modifying it.

To compare the simulation to experimental data, we have to
insert relevant values for T , m⊥, and the initial conditions,
most importantly y0. The value of the beam rapidity y0 is
determined by the center-of-mass energy per nucleon pair as
y0 = ln(

√
sNN/mp). Two Gaussian distributions centered at

±y0 with a small width σ that corresponds to the Fermi motion
represent the incoming ions before the collision. The exact
value of σ does not have a large effect on the time evolution
[13]; here we use a value of 0.1.

For the temperature, we take the critical value 160 MeV
for the transition between hadronic matter and quark-gluon
plasma. The actual freeze-out temperature is smaller (T =
118 ± 5 MeV for Pb-Pb at SPS energies [2]); overestimating
the temperature will increase the diffusion. For 17.2 GeV
Pb-Pb, the transverse mass is taken to be m⊥ = 1.17 GeV,
as the average transverse momentum p⊥ is around 0.7 GeV
[2]. The dimensionless diffusion strength γ is thus 0.137.
Corresponding values for 200-GeV Au-Au will be given later.

The results are then transformed to a rapidity distribution
[13]. Rewriting Eq. (2) and replacing d3N/dp3 with the
computed distribution f (y,t), we obtain

dN

dy
(y,t) = C

∫
m2

⊥ cosh(y)f (y,t)dm⊥ . (26)

Since the transverse mass m⊥ is mainly distributed around mp

[2], we introduce an upper integration limit m∗ such that the
second moment of m⊥ corresponds to the measured value [2]
at SPS energies, and accordingly at RHIC energies

⟨m2
⊥⟩ =

∫ m∗

mp

m2
⊥dm⊥ . (27)

The rapidity distribution for net protons can then approxi-
mately be written as

dN

dy
(y,t) ≈ C̃⟨m2

⊥⟩ cosh(y)f (y,t) . (28)
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FIG. 1. Comparison of the diffusion nonlinearity W 1−q for dif-
ferent q values. The coefficient is variable for q > 1 and depends on
the size of the probability distribution itself. Gauss curves with σ =
0.2,0.1,0.05 are plotted as a reference for the size of the normalized
probability distribution function.
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is a measure of the strength of the diffusion,
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To get physical values for the drift and diffusion coefficients,
one has to specify a timescale (or the other way round).
Considering that it is only the drift term that is responsible
for determining the peak position, we are free to chose the
time τ such that the peak position of the experimental data
is reproduced. This leaves as free parameters the diffusion
strength γ and the nonextensivity parameter q.

We calculate the solution using two different methods in
order to gain insight about the accuracy. The more straightfor-
ward one was using MATLAB’s integration routines for solving
parabolic-elliptic PDEs. The second, more elaborate method,
was implementing it in a finite-element-method framework
(FEM) (DUNE [20] and FEniCS [21]).

To make use of the FEM, we have to convert our PDE
into the so-called weak formulation, which reformulates the
problem as an integral equation. This is done by integrating
the left-hand side (LHS) of Eq. (22) over the whole domain
% ⊂ R and multiplying it by a test function g(y) that vanishes
on the boundary ∂%,

∫
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The first line in Eq. (24) vanishes because of g and the second
line contains only first derivatives. To approximate the time
derivative in Eq. (22) (LHS), we use the backward Euler
scheme

∂f (tn)
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+ O(∥&t2∥) . (25)

For both methods, the chain rule is used to write ∂
∂y

f 2−q

as (2 − q)f 1−q ∂
∂y

f . Because we analyze cases for q > 0,
we have to take care of the singularity at f = 0. To get
around this issue, we add a small constant to the argument
stabilizing the computation: (f + ϵ)1−q . In MATLAB, we use
the routine pdepe to integrate the equation. It is suited for
parabolic-elliptic problems and we could directly insert the
PDE without modifying it.

To compare the simulation to experimental data, we have to
insert relevant values for T , m⊥, and the initial conditions,
most importantly y0. The value of the beam rapidity y0 is
determined by the center-of-mass energy per nucleon pair as
y0 = ln(

√
sNN/mp). Two Gaussian distributions centered at

±y0 with a small width σ that corresponds to the Fermi motion
represent the incoming ions before the collision. The exact
value of σ does not have a large effect on the time evolution
[13]; here we use a value of 0.1.

For the temperature, we take the critical value 160 MeV
for the transition between hadronic matter and quark-gluon
plasma. The actual freeze-out temperature is smaller (T =
118 ± 5 MeV for Pb-Pb at SPS energies [2]); overestimating
the temperature will increase the diffusion. For 17.2 GeV
Pb-Pb, the transverse mass is taken to be m⊥ = 1.17 GeV,
as the average transverse momentum p⊥ is around 0.7 GeV
[2]. The dimensionless diffusion strength γ is thus 0.137.
Corresponding values for 200-GeV Au-Au will be given later.

The results are then transformed to a rapidity distribution
[13]. Rewriting Eq. (2) and replacing d3N/dp3 with the
computed distribution f (y,t), we obtain

dN

dy
(y,t) = C

∫
m2

⊥ cosh(y)f (y,t)dm⊥ . (26)

Since the transverse mass m⊥ is mainly distributed around mp

[2], we introduce an upper integration limit m∗ such that the
second moment of m⊥ corresponds to the measured value [2]
at SPS energies, and accordingly at RHIC energies

⟨m2
⊥⟩ =

∫ m∗

mp

m2
⊥dm⊥ . (27)

The rapidity distribution for net protons can then approxi-
mately be written as
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FIG. 2. Comparison of the analytic Uhlenbeck-Ornstein (UO)
model (crosses) and the corresponding numerical solution (q = 1,
dashed curve). The numerical solutions for two different values of
q are also shown (solid for q = 1.15, dash-dotted for q = 1.3). The
parameters are γ = 0.137, y0 = 2.9, σ = 0.1, τ = 1.2.

The constant C̃ is chosen such that the total number of particles
for 0–5% centrality corresponds to the number of participant
protons in this centrality bin.

B. Tests of the numerical implementation

In order to check the numerical implementation, we com-
pare it to analytically solvable problems. At first, we consider
the UO model and compare the numerical solution of Eq. (22)
for different values of q, first for q = 1 (where both should be
the same) and then for other values of q; see Fig. 2. This gives
us a first idea about the impact of the nonlinearity parameter
on the evolution.

The numerical result for q = 1 is identical with the an-
alytical solution, which validates the numerical method. By
increasing q, the peaks are slightly smeared out, giving an
overall flatter shape than before. This is expected since a larger
diffusion coefficient will spread out the profile faster.

As the next step, we consider the problem solved analyti-
cally by Borland et al. in Ref. [12]:

∂f

∂t
= ∂

∂y
(yf ) + ∂2

∂y2
f 2−q . (29)

The solution assumes that the initial condition is function-
ally equal to the stationary solution, except for time-dependent
coefficients. In particular, both the stationary solution and the
initial conditions are centered at y = 0, which is essential to
obtain the analytical solution of the time-dependent problem.

In the case of a heavy-ion collision, however, the initial
distributions are both off center at the values of the beam
rapidities, whereas the stationary solution that is obtained
for t → ∞ is centered at rapidity y = 0 in symmetric sys-
tems. Hence, the Borland et al. analytical solution cannot be
used: The time-dependent equation must be solved with the
beam rapidities ybeam = ±y0 defining the initial conditions
(δ-functions, or Gaussians with a width that is determined by
the Fermi motion), and the solution in the heavy-ion case drifts
with increasing time toward midrapidity. Although the Borland
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FIG. 3. Comparison of the analytical (solid curves) and numerical
(crosses) solutions for q = 1.3 at different dimensionless times τ =
0.2, 0.5, and 0.8 (top to bottom at y = 0).

solution cannot describe our physical situation, it offers the
possibility to compare the anomalous diffusion to an analytic
solution.

The agreement between analytical and numerical solution
(see Fig. 3) in the case of initial conditions that are centered at
y = 0 further supports the correctness of the implementation.
We have now three numerical schemes at our disposal to
calculate the evolution. Since they are based upon two different
mathematical methods (finite elements and finite differences),
it is unlikely that a hypothetical programming error occurred
in all of them. Having this in mind, we simulated the full PDE
using each of the packages and compared the results. The time
evolution of two Gaussian peaks with y0 = 2.9 and σ = 0.1 at
the time τ = 1 is shown in Fig. 4.

The relative difference between the solutions using the three
numerical schemes is around 1% and mostly concentrated at
the peaks. Possible origins of the slight discrepancies are the
different step sizes used in each discretization and the basis
functions used in the FEM interpolation. In any case, the
differences are very small, from which we conclude that the
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τ = 1 and γ = 0.137.
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The constant C̃ is chosen such that the total number of particles
for 0–5% centrality corresponds to the number of participant
protons in this centrality bin.

B. Tests of the numerical implementation

In order to check the numerical implementation, we com-
pare it to analytically solvable problems. At first, we consider
the UO model and compare the numerical solution of Eq. (22)
for different values of q, first for q = 1 (where both should be
the same) and then for other values of q; see Fig. 2. This gives
us a first idea about the impact of the nonlinearity parameter
on the evolution.

The numerical result for q = 1 is identical with the an-
alytical solution, which validates the numerical method. By
increasing q, the peaks are slightly smeared out, giving an
overall flatter shape than before. This is expected since a larger
diffusion coefficient will spread out the profile faster.

As the next step, we consider the problem solved analyti-
cally by Borland et al. in Ref. [12]:

∂f

∂t
= ∂

∂y
(yf ) + ∂2

∂y2
f 2−q . (29)

The solution assumes that the initial condition is function-
ally equal to the stationary solution, except for time-dependent
coefficients. In particular, both the stationary solution and the
initial conditions are centered at y = 0, which is essential to
obtain the analytical solution of the time-dependent problem.

In the case of a heavy-ion collision, however, the initial
distributions are both off center at the values of the beam
rapidities, whereas the stationary solution that is obtained
for t → ∞ is centered at rapidity y = 0 in symmetric sys-
tems. Hence, the Borland et al. analytical solution cannot be
used: The time-dependent equation must be solved with the
beam rapidities ybeam = ±y0 defining the initial conditions
(δ-functions, or Gaussians with a width that is determined by
the Fermi motion), and the solution in the heavy-ion case drifts
with increasing time toward midrapidity. Although the Borland
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solution cannot describe our physical situation, it offers the
possibility to compare the anomalous diffusion to an analytic
solution.

The agreement between analytical and numerical solution
(see Fig. 3) in the case of initial conditions that are centered at
y = 0 further supports the correctness of the implementation.
We have now three numerical schemes at our disposal to
calculate the evolution. Since they are based upon two different
mathematical methods (finite elements and finite differences),
it is unlikely that a hypothetical programming error occurred
in all of them. Having this in mind, we simulated the full PDE
using each of the packages and compared the results. The time
evolution of two Gaussian peaks with y0 = 2.9 and σ = 0.1 at
the time τ = 1 is shown in Fig. 4.

The relative difference between the solutions using the three
numerical schemes is around 1% and mostly concentrated at
the peaks. Possible origins of the slight discrepancies are the
different step sizes used in each discretization and the basis
functions used in the FEM interpolation. In any case, the
differences are very small, from which we conclude that the
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B. Tests of the numerical implementation

In order to check the numerical implementation, we com-
pare it to analytically solvable problems. At first, we consider
the UO model and compare the numerical solution of Eq. (22)
for different values of q, first for q = 1 (where both should be
the same) and then for other values of q; see Fig. 2. This gives
us a first idea about the impact of the nonlinearity parameter
on the evolution.

The numerical result for q = 1 is identical with the an-
alytical solution, which validates the numerical method. By
increasing q, the peaks are slightly smeared out, giving an
overall flatter shape than before. This is expected since a larger
diffusion coefficient will spread out the profile faster.

As the next step, we consider the problem solved analyti-
cally by Borland et al. in Ref. [12]:

∂f

∂t
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∂y
(yf ) + ∂2

∂y2
f 2−q . (29)

The solution assumes that the initial condition is function-
ally equal to the stationary solution, except for time-dependent
coefficients. In particular, both the stationary solution and the
initial conditions are centered at y = 0, which is essential to
obtain the analytical solution of the time-dependent problem.

In the case of a heavy-ion collision, however, the initial
distributions are both off center at the values of the beam
rapidities, whereas the stationary solution that is obtained
for t → ∞ is centered at rapidity y = 0 in symmetric sys-
tems. Hence, the Borland et al. analytical solution cannot be
used: The time-dependent equation must be solved with the
beam rapidities ybeam = ±y0 defining the initial conditions
(δ-functions, or Gaussians with a width that is determined by
the Fermi motion), and the solution in the heavy-ion case drifts
with increasing time toward midrapidity. Although the Borland
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solution cannot describe our physical situation, it offers the
possibility to compare the anomalous diffusion to an analytic
solution.

The agreement between analytical and numerical solution
(see Fig. 3) in the case of initial conditions that are centered at
y = 0 further supports the correctness of the implementation.
We have now three numerical schemes at our disposal to
calculate the evolution. Since they are based upon two different
mathematical methods (finite elements and finite differences),
it is unlikely that a hypothetical programming error occurred
in all of them. Having this in mind, we simulated the full PDE
using each of the packages and compared the results. The time
evolution of two Gaussian peaks with y0 = 2.9 and σ = 0.1 at
the time τ = 1 is shown in Fig. 4.

The relative difference between the solutions using the three
numerical schemes is around 1% and mostly concentrated at
the peaks. Possible origins of the slight discrepancies are the
different step sizes used in each discretization and the basis
functions used in the FEM interpolation. In any case, the
differences are very small, from which we conclude that the
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dashed curve). The numerical solutions for two different values of
q are also shown (solid for q = 1.15, dash-dotted for q = 1.3). The
parameters are γ = 0.137, y0 = 2.9, σ = 0.1, τ = 1.2.

The constant C̃ is chosen such that the total number of particles
for 0–5% centrality corresponds to the number of participant
protons in this centrality bin.

B. Tests of the numerical implementation

In order to check the numerical implementation, we com-
pare it to analytically solvable problems. At first, we consider
the UO model and compare the numerical solution of Eq. (22)
for different values of q, first for q = 1 (where both should be
the same) and then for other values of q; see Fig. 2. This gives
us a first idea about the impact of the nonlinearity parameter
on the evolution.

The numerical result for q = 1 is identical with the an-
alytical solution, which validates the numerical method. By
increasing q, the peaks are slightly smeared out, giving an
overall flatter shape than before. This is expected since a larger
diffusion coefficient will spread out the profile faster.

As the next step, we consider the problem solved analyti-
cally by Borland et al. in Ref. [12]:

∂f

∂t
= ∂

∂y
(yf ) + ∂2

∂y2
f 2−q . (29)

The solution assumes that the initial condition is function-
ally equal to the stationary solution, except for time-dependent
coefficients. In particular, both the stationary solution and the
initial conditions are centered at y = 0, which is essential to
obtain the analytical solution of the time-dependent problem.

In the case of a heavy-ion collision, however, the initial
distributions are both off center at the values of the beam
rapidities, whereas the stationary solution that is obtained
for t → ∞ is centered at rapidity y = 0 in symmetric sys-
tems. Hence, the Borland et al. analytical solution cannot be
used: The time-dependent equation must be solved with the
beam rapidities ybeam = ±y0 defining the initial conditions
(δ-functions, or Gaussians with a width that is determined by
the Fermi motion), and the solution in the heavy-ion case drifts
with increasing time toward midrapidity. Although the Borland
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solution cannot describe our physical situation, it offers the
possibility to compare the anomalous diffusion to an analytic
solution.

The agreement between analytical and numerical solution
(see Fig. 3) in the case of initial conditions that are centered at
y = 0 further supports the correctness of the implementation.
We have now three numerical schemes at our disposal to
calculate the evolution. Since they are based upon two different
mathematical methods (finite elements and finite differences),
it is unlikely that a hypothetical programming error occurred
in all of them. Having this in mind, we simulated the full PDE
using each of the packages and compared the results. The time
evolution of two Gaussian peaks with y0 = 2.9 and σ = 0.1 at
the time τ = 1 is shown in Fig. 4.

The relative difference between the solutions using the three
numerical schemes is around 1% and mostly concentrated at
the peaks. Possible origins of the slight discrepancies are the
different step sizes used in each discretization and the basis
functions used in the FEM interpolation. In any case, the
differences are very small, from which we conclude that the
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FIG. 5. Numerical solutions of the nonlinear FPE for central PbPb
at 17.2 GeV with three different values of q ∈ [1,1.5], and NA49
data [2].

calculations are correct. Since further data analysis is easiest
in MATLAB, we use it in the following calculations.

V. COMPARISON OF NUMERICAL RESULTS
AND EXPERIMENTAL DATA

The results of the calculation for different values of q are
shown in Fig. 5 for Pb-Pb at 17.2 GeV. While a larger q does
broaden the distribution, the effect is by far too small to come
close to the experimental results.

In order to reproduce the measured data for Pb-Pb, we
have to adopt a diffusion strength of around 1.5 while the
one predicted by the fluctuation-dissipation relation Eq. (16)
is around 0.137, the difference being a factor 11; see the upper
frame of Fig. 6. As we mentioned earlier and as can be seen
in Fig. 1, such a large enhancement in the required broadening
cannot be compensated by the proposed nonlinearity due to q
statistics.

The comparison with Au-Au stopping data at the maximum
energy of 200 GeV reached at RHIC shows that here the dis-
crepancy between the diffusion strength from the fluctuation-
dissipation relation (γ = 0.12) and the one required to fit the
data (γ = 8) with an adjusted value of time is even larger;
see lower frame of Fig. 6. This means that introducing a
nonlinearity into the diffusion term cannot account for the
observed rapidity spectra at SPS and RHIC energies. Since the
widths are too narrow, there has to be an additional expansion
process that takes place during the reaction that cannot be
accounted for by q statistics. This result is in obvious contrast
to the findings of Refs. [7–9], where an approximate solution
of Eq. (22) had been used.

We have also solved the nonlinear diffusion equation sep-
arately for initial conditions centered at y beam = +y 0 and at
y beam = − y 0 to assess how much the superposition principle
is violated in the nonlinear case. Adding the results shows
that the difference with respect to the full numerical solution
remains, however, below 5% at midrapidity.

As the numerical solution of the nonlinear Eq. (22) does
not explain the experimental data, we return to the model
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FIG. 6. Comparison of the linear (q = 1) model without (dashed)
and with (solid) adjusted diffusion term with NA49 data for 0–5%
central Pb-Pb at

√
sNN = 17.2 GeV [2], upper frame, and with

BRAHMS data for central Au-Au at
√

sNN = 200 GeV [3], lower
frame. The values of the dimensionless diffusion strengths are γ =
0.137 and 0.12 from the fluctuation-dissipation relation (see text),
whereas γ = 1.5 and 8.0 are adjusted to the SPS and the RHIC data,
respectively, and account also for collective expansion. The values
of the freeze-out time have been adjusted in both cases. A numerical
solution of the nonlinear diffusion equation with q > 1 does not fit
the data for any value of γ and time.

with linear diffusion q = 1, and the drift term imposed by
the stationary solution [13]. By fitting experimental data
to this linear model, we can find physical values for the
drift and diffusion coefficients in stopping using the two
data sets from NA49 [2] at

√
sNN = 17.2 GeV with beam

rapidity y beam = ±2.91, and from BRAHMS [3] at
√

sNN =
200 GeV with y beam = ±5.36 in central collisions of Pb-Pb
and Au-Au, respectively. With a freeze-out time of 8 fm/c,
we obtain the results shown in Table I. Corresponding values
with energy-dependent freeze-out times had been obtained in
Ref. [13].

The failure to interpret the broad rapidity distributions
observed in the stopping process of relativistic heavy-ion
collisions within q statistics refers specifically to the solution
of the nonlinear Fokker-Planck equation, Eq. (17), which arises
within nonextensive statistics [6,15]. Among the abundant
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Fig. 1. Rapidity spectra for net proton production (p− !p) in central Pb + Pb collisions at 158A GeV=c [1].
The solid line corresponds to our results using a non-linear evolution equation (q= 1:25), the dashed line
corresponds to the linear case (q= 1).

the nature of these inelastic collisions and the above observed non-extensive statistical
e"ects is under investigations.
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close to the experimental results.

In order to reproduce the measured data for Pb-Pb, we
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frame of Fig. 6. As we mentioned earlier and as can be seen
in Fig. 1, such a large enhancement in the required broadening
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statistics.
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energy of 200 GeV reached at RHIC shows that here the dis-
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data (γ = 8) with an adjusted value of time is even larger;
see lower frame of Fig. 6. This means that introducing a
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observed rapidity spectra at SPS and RHIC energies. Since the
widths are too narrow, there has to be an additional expansion
process that takes place during the reaction that cannot be
accounted for by q statistics. This result is in obvious contrast
to the findings of Refs. [7–9], where an approximate solution
of Eq. (22) had been used.
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is violated in the nonlinear case. Adding the results shows
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whereas γ = 1.5 and 8.0 are adjusted to the SPS and the RHIC data,
respectively, and account also for collective expansion. The values
of the freeze-out time have been adjusted in both cases. A numerical
solution of the nonlinear diffusion equation with q > 1 does not fit
the data for any value of γ and time.
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200 GeV with y beam = ±5.36 in central collisions of Pb-Pb
and Au-Au, respectively. With a freeze-out time of 8 fm/c,
we obtain the results shown in Table I. Corresponding values
with energy-dependent freeze-out times had been obtained in
Ref. [13].

The failure to interpret the broad rapidity distributions
observed in the stopping process of relativistic heavy-ion
collisions within q statistics refers specifically to the solution
of the nonlinear Fokker-Planck equation, Eq. (17), which arises
within nonextensive statistics [6,15]. Among the abundant
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• Return to linear diffusion


• Adjust diffusion 
coefficient manually



Summary

• Measured rapidity spectra broader than anticipated


• Nonextensive statistics supposed to produce collective 
expansion


• Numerically solved the resulting nonlinear Fokker-Planck 
equation


• Effect is too weak to account for experimental data


